Astro-nn.ru

Стройка и ремонт
17 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как включаются автоматы отключающие при перегрузках

Почему выбивает автомат – 5 причин и способы их устранения

Наверное, многие сталкивались с ситуацией, когда в доме или квартире отключалась подача электроэнергии не по вине электроснабжающей организации. Первое, что приходит сразу же на ум, это проверить автоматы в распределительном щитке. И как это часто бывает, именно они и являлись причиной отключения. Остается лишь только опять их включить, и дом снова наполнялся светом, начинают работать бытовые приборы. Так почему же выбивает автомат – причины каковы?

Как работает автоматический выключатель

Чтобы ответить на поставленный вопрос, необходимо знать, для чего необходим автомат, какие функции на него возложены. И уже после этого можно говорить и о самих причинах.

  • Во-первых, этот прибор устанавливается на фазный контур, который по необходимости разрывает. Если в щитке устанавливается многополюсный выключатель, то разрывать он будет и нулевой контур.
  • Во-вторых, само название автоматический выключатель говорит о том, что разрывать он может цепи не только по желанию хозяина квартиры или дома, но и в автоматическом режиме.
  • В-третьих, основное предназначение этого прибора – защитить электропроводку и бытовые приборы от электрического тока высокой мощности, который возникает по разным причинам. Кстати, ток этого типа может вызвать пожары и незначительные разрушения.

Причины выбивания автомата

Итак, переходим к основному вопросу статьи, почему выбивает автомат – каковы причины этой неприятности? Начнем с того, что таких причин пять:

  1. Перегруз в электрической сети.
  2. Неисправность самого автоматического выключателя.
  3. Неисправность одного из бытовых приборов.
  4. Неисправность осветительного прибора.
  5. Короткое замыкание в электропроводке.

Перегруз

Что такое перегруз сети? По сути, это токовая нагрузка, которая превышает номинальную, определенную самим автоматом. К примеру, для розеточных групп чаще всего используются автоматы с номиналом тока или 16 ампер, или 25. Это соответствует или 3,5 кВт выдерживаемой мощности, или 5,5 кВт.

Теперь представьте ситуацию, когда в розеточную группу, к которой подключен автоматический выключатель токовым номиналом 25 ампер, несколько бытовых приборов, суммарная мощность которых превышает номинальную. Например, включается стиральная машинка мощностью 2,5 кВт, кондиционер – 2 кВт, электрический чайник – 1,5 кВт. Суммарная мощность трех приборов будет составлять 6 кВт. То есть, такую нагрузку автомат просто не выдержит и обязательно отключить (разорвет) цепь.

Что делать в этом случае?

  • Контролировать суммарную мощность подключаемой бытовой техники.
  • Перераспределять подключение приборов на разные розеточные группы.

Но ни в коем случае нельзя менять сам автомат на большего номинала. Все дело в том, что все будет зависеть от электрических проводов, уложенных в схему проводки в квартире или доме. Если в схеме использовался медный провод сечением 2,5 мм², то в нее устанавливается автомат номиналом 25 ампер, не больше. Если проводка алюминиевая того же сечения, то выключатель на 16 ампер.

Дефект автомата

Насколько высока вероятность того, что за счет неисправности самого прибора, выбивает автомата? Вероятность ничтожно мала, особенно, когда дело касается брендовых моделей. Но она есть. Поэтому единственный способ убедиться, что именно это является причиной выбивания, это провести замену на другой прибор. Или можно в распределительном щите переподключить контур на соседний автоматический выключатель. Если и в этом случае выбивает автомат, то причина совершенно в другом.

И еще один момент. Как и любой прибор, автомат имеет свой срок эксплуатации. Износ различных деталей приводит к снижению технических его характеристик. Это касается и контактов расцепителя, которые отвечают за выбивание за счет повышения токовой нагрузки.

Неисправности бытовой техники

Бытовая техника сама может стать причиной выбивания автомата. Как это можно проверить?

  1. Вытаскиваете из розеток все подключенные приборы.
  2. Если в таком положении автомат не выбило, то начинаете подключать каждый прибор по отдельности.
  3. Как только автомат отключился, значит, включенный в розетку бытовой прибор неисправен. Его придется ремонтировать или заменять новым.

Некоторая техника подключена к питанию не через розетки, а, так сказать, напрямую. К примеру, кондиционеры или посудомоечные машины. Проверить их можно лишь единственным способом – отключить от автомата в распределительном щите.

Дефекты осветительных приборов

Иногда случаются такие ситуации, что выбивает автомат, когда включается люстра. Это говорит о том, что в ней есть какая-то неисправность.

  • Произошло замыкание в цоколе лампочки. Для этого придется вывернуть все лампочки, и затем по одной заново их вкручивать и включать осветительный прибор. Как только автомат отключится, это, значит, найдена та лампочка, в которой пробит цоколь. Ее надо будет просто заменить.
  • Подгорел контакт между питающим проводом и проводкой внутри люстры. Надо просто провести осмотр контакта, зачистить его и хорошо заизолировать.
  • Светодиодные люстры в своем составе имеют трансформатор на 12 вольт. Так вот именно он может стать причиной выбивания автомата за счет короткого замыкания внутри. Нужно будет снять люстру и поменять трансформатор.

Дефекты в электропроводке

Здесь две причины:

  1. Плохой контакт в розетке.
  2. Износ изоляции в проводнике.

В первом случае необходимо вскрыть розетку, найти место подгорания, зачистить его и провести правильное подсоединение провода к розетке. Второй случай более сложный. Он обычно касается короткого замыкания, которое происходит внутри схемы электроразводки в квартире или доме. Найти место КЗ без специального аппарата просто невозможно. Не каждый обыватель даже слышал о нем. Этот прибор называется трассоискатель.

Хорошо, если проводка в квартире или доме была сделана открытым способом. Найдя место замыкания, можно легко исправить дефект. Если разводка была скрытая, то придется обнаруженное место КЗ вскрывать (удалять отделку и штукатурку), исправлять изъян, а затем заделывать отверстие, проводя отделочные работы.

Заключение по теме

Еще совсем недавно место автоматов занимали пробки, но вопрос, почему выбивает пробки, стоял и тогда. Причины все те же. Хотя не всегда их исправляли. Домовладельцы шли по легкому пути, заменяя защитный проводник медной проволокой большего сечения. Это нередко приводило к пожарам. С автоматами такое не проходит. И все же необходимо тщательно подходить к определению причин, почему выбивает автомат.

Принцип работы автоматического выключателя

Автоматические выключатели

Автоматические выключатели – это устройства, которые предназначаются для защитного отключения цепей постоянного и переменного тока в случаях короткого замыкания, токовой перегрузки, снижения напряжения или его исчезновения.

В отличии от плавких предохранителей автоматические выключатели имеют более точный ток отключения, могут многократно использоваться, а также при трехфазном исполнении при срабатывании предохранителя какая – то из фаз (одна либо две) могут остаться под напряжением, что является тоже аварийным режимом работы (особенно при питании трехфазных электродвигателей).

Автоматические выключатели классифицируют по выполняемым функциям, таким как:

  • Автоматы минимального и максимального тока;
  • Автоматы минимального напряжения;
  • Обратной мощности;

Принцип действия автоматического выключателя

Мы рассмотрим принцип действия автоматического выключателя на примере автомата максимального тока.

Его схема показана ниже:

1 – электромагнит, 2 – якорь, 3, 7 – пружины, 4 – ось, по которой движется якорь, 5 – защелка, 6 – рычаг, 8 – силовой контакт.

При протекании номинального тока система работает нормально. Как только ток превысит допустимое значение уставки, последовательно включенный в цепь электромагнит 1, преодолеет усилие сдерживающей пружины 3 и втянет якорь 2, и провернувшись через ось 4 защелка 5 освободит рычаг 6. Тогда отключающая пружина 7 разомкнет силовые контакты 8. Такой автомат включается вручную.

В настоящее время созданы автоматы, которые имеют время отключения от 0,02 – 0,007 с на токи отключения 3000 – 5000 А.

Конструкции автоматических выключателей

Существует довольно много различных конструкций автоматических выключателей как цепей переменного, так и цепей постоянного тока.

В последнее время очень широкое распространение получили автоматы малогабаритные, которые предназначаются для защиты от КЗ и токовых перегрузок сетей бытовых и производственных в установках на токи до 50 А и напряжением до 380 В.

Главным защитным средством в таких выключателях являются биметаллические или электромагнитные элементы, срабатывающие с определенной выдержкой времени при нагревании. Автоматы, в которых присутствует электромагнит, обладают довольно большим быстродействием, и этот фактор очень важен при коротких замыканиях.

Ниже показан пробочный автомат на ток 6 А и напряжением не превышающим 250 В:

1 – электромагнит, 2 –пластина биметаллическая, 3, 4 – кнопки включения и выключения соответственно, 5 – расцепитель.

Биметаллическую пластину, как и электромагнит, включают в цепь последовательно. Если через автоматический выключатель протекает ток выше номинального, пластина начинает нагреваться. При длительном протекании превышающего тока пластина 2 деформируется в следствии нагрева, и воздействует на механизм расцепителя 5. При возникновении в цепи короткого замыкания электромагнит 1, мгновенно втянет сердечник и этим тоже воздействует на расцепитель, который разомкнет цепь. Также данный тип автомата отключается вручную путем нажатия кнопки 4, а включение только ручное путем нажатия кнопки 3. Механизм расцепления выполняется в виде ломающегося рычага или защелки.

Принципиальная электрическая схема автомата показана ниже:

1 – электромагнит, 2 – биметаллическая пластина.

Принцип действия трехфазных автоматических выключателей практически ничем не отличается от однофазных. Трехфазные выключатели снабжаются специальными дугогасительными камерами или катушками, в зависимости от мощности устройств.

Ниже приведено видео, подробно описывающее работу автоматического выключателя.

Модульные автоматические выключатели

Типы автоматических выключателей

Существуют такие типы:

  • 2-полюсный: предназначен для однофазной линии, состоящей из одного разъема под напряжением и одного нейтрального провода.
  • 4-полюсный: он рассчитан на трехфазную линию, состоящую из 4 слотов, где могут быть подключены три фазовых провода и нейтральный провод.

Следовательно, он обеспечивает устройство защиты в режиме реального времени для основных цепей, используемых в промышленности и других высоковольтных коммерческих местах, где из-за этого всегда существует риск поражения электрическим током и несчастного случая.

Штатный режим работы

В штатном режиме через автоматический выключатель течет ток, который меньше номинального или равен ему.

При этом напряжение питания поступает на верхнюю клемму, которая соединена с неподвижным контактом.

С последнего ток идет к подвижному контакту, затем по гибкому медному проводнику на соленоид.

Далее ток с соленоида поступает на расцепитель (тепловое реле) и после на клемму, расположенную снизу. Именно она соединяется с потребителями электроэнергии.

Аварийные режимы работы

Принцип работы автоматического выключателя переменного тока таков, что при аварийной ситуации (перегрузка или короткое замыкание) происходит отключение защищаемой цепи.

Начинает работать механизм свободного расцепления, он приводится в действие специальным расцепителем (обычно электромагнитные или тепловые используются в конструкциях).

Режим перегрузки

Режим перегрузки – это когда ток, потребляемый подключенной к автомату нагрузкой, становится выше, нежели номинальное значение прибора. При этом ток, который проходит через расцепитель, вызывает нагрев пластины из биметалла, что приводит к увеличению ее изгиба. Это приводит к тому, что срабатывает расцепительный механизм. В этот момент выключается автомат, и цепь размыкается.

Тепловая защита срабатывает не мгновенно, так как для нагрева пластины нужно некоторое время. И оно варьируется в зависимости от того, насколько превышено номинальное значение силы тока. Промежуток времени может колебаться от пары секунд до часа. Задержка позволит избавиться от отключения питания при непродолжительном и случайном повышении тока. Часто такие превышения можно наблюдать при запуске электродвигателя.

Ток срабатывания

Минимальное значение силы тока, при котором обязан срабатывать тепловой расцепитель, регулируется специальным винтом на заводе-изготовителе.

Значение примерно в полтора раза выше, нежели номинал, который указывается на корпусе выключателя. Как видите, принцип работы расцепителя автоматического выключателя не очень сложен. Но на силу тока, при котором происходит срабатывание тепловой защиты, огромное влияние оказывает и то, какая у окружающей среды температура.

Если в помещении жарко, то прогрев и выгибание биметаллической пластины начнут происходить при малом значении тока.

А если в помещении холодно, то тепловой расцепитель начнет работать при более высоком токе.

Поэтому один и тот же автоматический выключатель с биметаллической пластиной будет работать по-разному зимой и летом.

Это к автоматам с электромагнитными расцепителями не относится.

Время-токовая характеристика

Время на чтение:

При правильной работе электросети и подключенных к ней электроприборов через автоматический выключатель проходит электрический ток. Но иногда бывает, что при перегрузке происходит КЗ. В этой статье рассказывается о том, что такое токовременная характеристика автоматического выключателя.

Понятие время-токового параметра

Электрический ток имеет основную отличительную черту — он может проходить только по замкнутой цепи. Если контур открыть, то работа тока сразу останавливается. Эта особенность нашла применение в функционировании наибольших токовых защит, основанных на работе предохранителей и автоматов.

График ВТХ

Они выбираются так, чтобы могли долгое время сохранять номинальное значение проходящего сквозь них тока. Таким образом создается надёжность электроснабжения потребителей. Также автоматы и предохранители оснащены защитными функциями, в случае образования чрезвычайных ситуаций в контролируемой цепи они разрывают протекающий через них опасный ток.

На это влияют два фактора:

  • величина проходящего тока нагрузки;
  • время его действия.

Пределы токов

К сведению! Плавкая вставка предохранителя перегорает от теплового воздействия, созданного проходящим по ней током.

Читать еще:  Характеристики срабатывания автоматических выключателей

Предохранители также учитывают температурный режим цепи и размыкают контуры за счет действия теплового расцепителя. В то же время в его составе имеется еще одно устройство — электромагнитный расцепитель, который реагирует на превышение электромагнитной энергии, возникающей даже в импульсном режиме.

Время-токовая характеристика (ВТХ) выражается в виде графиков в декартовых координатах. По оси ординат располагают время, отсчитываемое в секундах, а абсцисс — отношение протекающего тока аварийного режима I к номинальной величине Iн коммутационного аппарата.

Значение автоматических выключателей

Автомат, защищающий сеть, выполняет 2 задачи:

  • вовремя определить слишком большой ток;
  • разорвать цепь до того, как возникнет повреждение.

Характеристики автоматов и срабатывания электромагнитного расцепителя

Главная задача автоматического выключателя — отреагировать на появление чрезмерного тока и обесточить сеть. Опасно влияют на сеть 2 вида токов:

  • ток перегрузки, возникающий из-за включения большого количества приборов в сеть;
  • сверхтоки из-за короткого замыкания.

Современные электромагнитные устройства легко и безошибочно определяют ток короткого замыкания и выключают нагрузку. С током перегрузки проблем больше. Они мало чем отличаются от номинального значения и в течение некоторого промежутка времени протекают без последствий. Проблема заключается в наличии предельного значения тока нагрузки, который и вредит сети.

Обратите внимание! В автоматических выключателях 3 вида расцепителей — механический для ручного выключения, электромагнитный для реагирования на токи короткого замыкания и тепловой для защиты от перегрузок.

Параметры время-токового срабатывания автоматов (A, B, C и D)

Параметры автоматических выключателей

К основным параметрам автоматических выключателей относятся:

  • номинальное напряжение автоматического выключателя;
  • номинальный ток максимального расцепителя;
  • уставка по току срабатывания максимального расцепителя;
  • уставка по времени срабатывания максимального расцепителя (только для селективных автоматов).

Автоматы разных моделей

Номинальным АВ считается ток, на который рассчитаны его главные контакты в продолжительном режиме работы. Для отключения токов КЗ в АВ устанавливают максимальные расцепители (реле максимального напряжения). Номинальные токи максимальных расцепителей могут отличаться от номинальных токов АВ.

Уставкой по току срабатывания максимального расцепителя считается такой, при котором максимальный расцепитель отключит автомат. Уставка по току срабатывания АВ обычно приводится в относительных единицах.

К сведению! Уставка по времени срабатывания максимального расцепителя — это время между моментом обнаружения короткого замыкания и моментом отключения автоматического выключателя.

Как работают автоматические выключатели

Работа автоматического выключателя в различных режимах происходит по простому принципу.

Нормальный режим

Во время взвода рычага управления выключателем приводится в движение механизм взвода и расцепления, тем самым осуществляя коммутацию силовых контактов.
После коммутации ток протекает от питающего провода или кабеля, подключенного к винтовому зажиму. Через этот зажим по контактам проходит ток, причем сначала по неподвижным, а затем и по подвижным.

Короткое замыкание

В данном режиме электромагнитный расцепитель автоматического выключателя должен произвести мгновенное отключение нагрузки. Принцип действия заключается в следующем: при значительном превышении номинального показателя, протекающего через обмотку электромагнита, возникает мощное магнитное поле, которое тянет вниз якорь с подвижным контактом.

Последствия КЗ

Якорь в свою очередь надавливает на рычажок спускового механизма, в результате чего происходит отключение нагрузки.

Перегрузка

За защиту от перегрузки отвечает тепловой расцепитель. Принцип работы данного расцепителя заключается в следующем: когда энергия, протекающая через биметаллическую пластину, становится равной или больше установленного значения, пластина нагревается и постепенно изгибается.

Обратите внимание! Достигнув определенного угла изгиба, она надавливает своим кончиком на рычажок спускового механизма. Таким образом автомат отключается.

Как правильно выбирать автоматические выключатели

При выборе устройств стоит обратить на внимание на три критерия.

Количество

Чтобы разобраться с количеством выключателей, нужно знать число силовых цепей в квартире.

Номиналы автоматов

Силовая цепь — это провод, идущий от электрощитка в квартиру вместе с подключенными к нему приборами-потребителями электроэнергии. Как правило, в квартирах в одну цепь объединены осветительные приборы, в другую — розетки.

Обратите внимание! Каждый из бытовых приборов, например, посудомойка, водонагреватель, кондиционер, получает электричество по отдельному проводу, а значит включен в свою электрическую цепь.

Полюсность и рабочее напряжение

Электрическое подключение в доме может быть однофазным или трехфазным. С точки зрения выбора автомата эти подключения отличаются количеством жил в проводе, которые выключатель должен обесточить, когда будет срабатывать. На каждую жилу нужна своя секция выключателя. Полюсность — это фактически количество секций в автомате, их может быть от одной до четырех.

Щиток с предохранителем

Безопасный для проводки номинальный показатель

Номинальный ток — это самая важная характеристика автоматов.

Она говорит о том, какую энергию автомат пропускает через себя в течение длительного времени и не размыкает цепь. От правильного выбора номинального тока зависит, сможет ли автомат защитить проводку.

К сведению! Распространенные классы номинального показателя бытовых автоматов: 6, 10, 16, 25, 32, 50 А.

Сфера применения автоматов

Что касается области применения автоматов, она возможна как в бытовых условиях (защита домов и квартир), так и на промышленных предприятиях. Автоматические выключатели применяются во всех сферах электроэнергетики.

Для бытовой сферы рекомендуется использовать ВТХ типа С, а для промышленной или сельскохозяйственной тип В.

Таким образом, время-токовые характеристики — важный показатель, который играет не последнюю роль в обеспечении электричеством здания, квартиры или завода. Он нужен для выбора автоматических выключателей во избежание КЗ. Перед эти нужно изучить параметры срабатывания и принцип работы устройств, чтобы после покупки не оказалось, что они не тянут все нагрузки.

ПУЭ. Раздел 3. Защита и автоматика

Раздел 3. Защита и автоматика

Глава 3.1. Защита электрических сетей напряжением до 1 кВ

Область применения, определения

3.1.1. Настоящая глава Правил распространяется на защиту электрических сетей до 1 кВ, сооружаемых как внутри, так и вне зданий. Дополнительные требования к защите сетей указанного напряжения, вызванные особенностями различных электроустановок, приведены в других главах Правил.

3.1.2. Аппаратом защиты называется аппарат, автоматически отключающий защищаемую электрическую цепь при ненормальных режимах.

Требования к аппаратам защиты

3.1.3. Аппараты защиты по своей отключающей способности должны соответствовать максимальному значению тока КЗ в начале защищаемого участка электрической сети (см. также гл. 1.4).

Допускается установка аппаратов защиты, нестойких к максимальным значениям тока КЗ, а также выбранных по значению одноразовой предельной коммутационной способности, если защищающий их групповой аппарат или ближайший аппарат, расположенный по направлению к источнику питания, обеспечивает мгновенное отключение тока КЗ, для чего необходимо, чтобы ток уставки мгновенно действующего расцепителя (отсечки) указанных аппаратов был меньше тока одноразовой коммутационной способности каждого из группы нестойких аппаратов, и если такое неселективное отключение всей группы аппаратов не грозит аварией, порчей дорогостоящего оборудования и материалов или расстройством сложного технологического процесса.

3.1.4. Номинальные токи плавких вставок предохранителей и токи уставок автоматических выключателей, служащих для защиты отдельных участков сети, во всех случаях следует выбирать по возможности наименьшими по расчетным токам этих участков или по номинальным токам электроприемников, но таким образом, чтобы аппараты защиты не отключали электроустановки при кратковременных перегрузках (пусковые токи, пики технологических нагрузок, токи при самозапуске и т. п.).

3.1.5. В качестве аппаратов защиты должны применяться автоматические выключатели или предохранители. Для обеспечения требований быстродействия, чувствительности или селективности допускается при необходимости применение устройств защиты с использованием выносных реле (реле косвенного действия).

3.1.6. Автоматические выключатели и предохранители пробочного типа должны присоединяться к сети так, чтобы при вывинченной пробке предохранителя (автоматического выключателя) винтовая гильза предохранителя (автоматического выключателя) оставалась без напряжения. При одностороннем питании присоединение питающего проводника (кабеля или провода) к аппарату защиты должно выполняться, как правило, к неподвижным контактам.

3.1.7. Каждый аппарат защиты должен иметь надпись, указывающую значения номинального тока аппарата, уставки расцепителя и номинального тока плавкой вставки, требующиеся для защищаемой им сети. Надписи рекомендуется наносить на аппарате или схеме, расположенной вблизи места установки аппаратов защиты.

Выбор защиты

3.1.8. Электрические сети должны иметь защиту от токов короткого замыкания, обеспечивающую по возможности наименьшее время отключения и требования селективности.

Защита должна обеспечивать отключение поврежденного участка при КЗ в конце защищаемой линии: одно-, двух- и трехфазных — в сетях с глухозаземленной нейтралью; двух- и трехфазных — в сетях с изолированной нейтралью.

Надежное отключение поврежденного участка сети обеспечивается, если отношение наименьшего расчетного тока КЗ к номинальному току плавкой вставки предохранителя или расцепителя автоматического выключателя будет не менее значений, приведенных в 1.7.79 и 7.3.139.

3.1.9. В сетях, защищаемых только от токов КЗ (не требующих защиты от перегрузки согласно 3.1.10), за исключением протяженных сетей, например сельских, коммунальных, допускается не выполнять расчетной проверки приведенной в 1.7.79 и 7.3.139 кратности тока КЗ, если обеспечено условие, чтобы по отношению к длительно допустимым токовым нагрузкам проводников, приведенным в таблицах гл. 1.3, аппараты защиты имели кратность не более:

  • 300% для номинального тока плавкой вставки предохранителя;
  • 450% для тока уставки автоматического выключателя, имеющего только максимальный мгновенно действующий расцепитель (отсечку);
  • 100% для номинального тока расцепителя автоматического выключателя с нерегулируемой обратно зависящей от тока характеристикой (независимо от наличия или отсутствия отсечки);
  • 125% для тока трогания расцепителя автоматического выключателя с регулируемой обратной зависящей от тока характеристикой; если на этом автоматическом выключателе имеется еще отсечка, то ее кратность тока срабатывания не ограничивается.

Наличие аппаратов защиты с завышенными уставками тока не является обоснованием для увеличения сечения проводников сверх указанных в гл. 1.3.

3.1.10. Сети внутри помещений, выполненные открыто проложенными проводниками с горючей наружной оболочкой или изоляцией, должны быть защищены от перегрузки.

Кроме того, должны быть защищены от перегрузки сети внутри помещений:

  • осветительные сети в жилых и общественных зданиях, в торговых помещениях, служебно-бытовых помещениях промышленных предприятий, включая сети для бытовых и переносных электроприемников (утюгов, чайников, плиток, комнатных холодильников, пылесосов, стиральных и швейных машин и т. п.), а также в пожароопасных зонах;
  • силовые сети на промышленных предприятиях, в жилых и общественных зданиях, торговых помещениях — только в случаях, когда по условиям технологического процесса или по режиму работы сети может возникать длительная перегрузка проводников;
  • сети всех видов во взрывоопасных зонах — согласно требованиям 7.3.94.

3.1.11. В сетях, защищаемых от перегрузок (см. 3.1.10), проводники следует выбирать по расчетному току, при этом должно быть обеспечено условие, чтобы по отношению к длительно допустимым токовым нагрузкам, приведенным в таблицах гл. 1.3, аппараты защиты имели кратность не более:

  • 80% для номинального тока плавкой вставки или тока уставки автоматического выключателя, имеющего только максимальный мгновенно действующий расцепитель (отсечку), — для проводников с поливинилхлоридной, резиновой и аналогичной по тепловым характеристикам изоляцией; для проводников, прокладываемых в невзрывоопасных производственных помещениях промышленных предприятий, допускается 100%;
  • 100% для номинального тока плавкой вставки или тока уставки автоматического выключателя, имеющего только максимальный мгновенно действующий расцепитель (отсечку), — для кабелей с бумажной изоляцией;
  • 100% для номинального тока расцепителя автоматического выключателя с нерегулируемой обратно зависящей от тока характеристикой (независимо от наличия или отсутствия отсечки) — для проводников всех марок;
  • 100% для тока трогания расцепителя автоматического выключателя с регулируемой обратно зависящей от тока характеристикой — для проводников с поливинилхлоридной, резиновой и аналогичной по тепловым характеристикам изоляцией;
  • 125% для тока трогания расцепителя автоматического выключателя с регулируемой обратно зависящей от тока характеристикой — для кабелей с бумажной изоляцией и изоляцией из вулканизированного полиэтилена.

3.1.12. Длительно допустимая токовая нагрузка проводников ответвлений к короткозамкнутым электродвигателям должна быть не менее:

  • 100% номинального тока электродвигателя в невзрывоопасных зонах;
  • 125% номинального тока электродвигателя во взрывоопасных зонах.

Соотношения между длительно допустимой нагрузкой проводников к короткозамкнутым электродвигателям и уставками аппаратов защиты в любом случае не должны превышать указанных в 3.1.9 (см. также 7.3.97).

3.1.13. В случаях, когда требуемая допустимая длительная токовая нагрузка проводника, определенная по 3.1.9 и 3.1.11, не совпадает с данными таблиц допустимых нагрузок, приведенных в гл. 1.3, допускается применение проводника ближайшего меньшего сечения, но не менее, чем это требуется по расчетному току.

Места установки аппаратов защиты

3.1.14. Аппараты защиты следует располагать по возможности в доступных для обслуживания местах таким образом, чтобы была исключена возможность их механических повреждений. Установка их должна быть выполнена так, чтобы при оперировании с ними или при их действии были исключены опасность для обслуживающего персонала и возможность повреждения окружающих предметов.

Аппараты защиты с открытыми токоведущими частями должны быть доступны для обслуживания только квалифицированному персоналу.

3.1.15. Аппараты защиты следует устанавливать, как правило, в местах сети, где сечение проводника уменьшается (по направлению к месту потребления электроэнергии) или где это необходимо для обеспечения чувствительности и селективности защиты (см. также 3.1.16 и 3.1.19).

3.1.16. Аппараты защиты должны устанавливаться непосредственно в местах присоединения защищаемых проводников к питающей линии. Допускается в случаях необходимости принимать длину участка между питающей линией и аппаратом защиты ответвления до 6 м. Проводники на этом участке могут иметь сечение меньше, чем сечение проводников питающей линии, но не менее сечения проводников после аппарата защиты.

Читать еще:  Расчет мощности автомата с учетом нагрузки на проводку

Для ответвлений, выполняемых в труднодоступных местах (например, на большой высоте), аппараты защиты допускается устанавливать на расстоянии до 30 м от точки ответвления в удобном для обслуживания месте (например, на вводе в распределительный пункт, в пусковом устройстве электроприемника и др.). При этом сечение проводников ответвления должно быть не менее сечения, определяемого расчетным током, но должно обеспечивать не менее 10% пропускной способности защищенного участка питающей линии. Прокладка проводников ответвлений в указанных случаях (при длинах ответвлений до 6 и до 30 м) должна производиться при горючих наружных оболочке или изоляции проводников — в трубах, металлорукавах, или коробах, в остальных случаях, кроме кабельных сооружений, пожароопасных и взрывоопасных зон, — открыто на конструкциях при условии их защиты от возможных механических повреждений.

3.1.17. При защите сетей предохранителями последние должны устанавливаться на всех нормально незаземленных полюсах или фазах. Установка предохранителей в нулевых рабочих проводниках запрещается.

3.1.18. При защите сетей с глухозаземленной нейтралью автоматическими выключателями расцепители их должны устанавливаться во всех нормально незаземленных проводниках (см. также 7.3.99).

При защите сетей с изолированной нейтралью в трехпроводных сетях трехфазного тока и двухпроводных сетях однофазного или постоянного тока допускается устанавливать расцепители автоматических выключателей в двух фазах при трехпроводных сетях и в одной фазе (полюсе) при двухпроводных. При этом в пределах одной и той же электроустановки защиту следует осуществлять в одних и тех же фазах (полюсах).

Расцепители в нулевых проводниках допускается устанавливать лишь при условии, что при их срабатывании отключаются от сети одновременно все проводники, находящиеся под напряжением.

3.1.19. Аппараты защиты допускается не устанавливать, если это целесообразно по условиям эксплуатации, в местах:

  1. ответвления проводников от шин щита к аппаратам, установленным на том же щите; при этом проводники должны выбираться по расчетному току ответвления;
  2. снижения сечения питающей линии по ее длине и на ответвлениях от нее, если защита предыдущего участка линии защищает участок со сниженным сечением проводников или если незащищенные участки линии или ответвления от нее выполнены проводниками, выбранными с сечением не менее половины сечения проводников защищенного участка линии;
  3. ответвления от питающей линии к электроприемникам малой мощности, если питающая их линия защищена аппаратом с уставкой не более 25 А для силовых электроприемников и бытовых электроприборов, а для светильников — согласно 6.2.2;
  4. ответвления от питающей линии проводников цепей измерений, управления и сигнализации, если эти проводники не выходят за пределы соответствующих машин или щита или если эти проводники выходят за их пределы, но электропроводка выполнена в трубах или имеет негорючую оболочку.

Не допускается устанавливать аппараты защиты в местах присоединения к питающей линии таких цепей управления, сигнализации и измерения, отключение которых может повлечь за собой опасные последствия (отключение пожарных насосов, вентиляторов, предотвращающих образование взрывоопасных смесей, некоторых механизмов собственных нужд электростанций и т. п.). Во всех случаях такие цепи должны выполняться проводниками в трубах или иметь негорючую оболочку. Сечение этих цепей должно быть не менее приведенных в 3.4.4.

Устройство и принцип работы автоматического выключателя

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Многих интересует, для чего нужен автоматический выключатель, а также устройство и принцип действия автоматического выключателя. Сегодня в нашей статье мы постараемся ответить на эти вопросы.

Итак, начнем с первого вопроса. Автоматический выключатель устанавливают для того, чтобы защитить кабели, провода, а также электроприборы от короткого замыкания (к.з.) и перегрузки.

Устройство автоматического выключателя

Модульный автоматический выключатель внешне представлен в виде корпуса и рычага управления, которые выполнены из ПВХ-пластиката пониженной горючести. Также невооруженным взглядом можно определить клеммы (нижняя и верхняя) для подключения кабеля или провода. Внутри же корпуса защитного аппарата размещаются следующие элементы:

• силовые контакты (подвижный и неподвижный), обеспечивающие коммутацию;
• механизм взвода и расцепления, который взаимосвязан с рычагом управления;
• катушка (электромагнит) и подвижный сердечник (якорь), выполняющий функцию толкателя. Эти элементы являются электромагнитным расцепителем и обеспечивают защиту от токов к.з.;
• дугогасительная камера. Данное устройство выполняет быстрое гашение дугового разряда, который образуется при размыкании контактов;
• биметаллическая пластина. Данный элемент является тепловым расцепителем и обеспечивает защиту от повышенной нагрузки. Также имеется регулировочный винт, при помощи которого обеспечивается регулировка значения тока, при котором данный расцепитель должен сработать.

Принцип работы автоматического выключателя

Работа автоматического выключателя в различных режимах происходит по такому принципу:

1. Нормальный режим.

Во время взвода рычага управления выключателем приводится в движение механизма взвода и расцепления, тем самым осуществляя коммутацию силовых контактов.
После коммутации ток протекает от питающего провода или кабеля, подключенного к винтовому зажиму, через этот зажим по контактам, сначала по неподвижному, а затем и по подвижному. Далее ток проходит через гибкую связь, катушку электромагнита, снова через гибкую связь и биметаллическую пластину, и в конце через нижний винтовой зажим к отходящей линии, «питающей» электроприбор.

2. Короткое замыкание.

В данном режиме электромагнитный расцепитель автоматического выключателя должен произвести мгновенное отключение нагрузки. Принцип действия заключается в следующем: при значительном превышении номинального тока, протекающего через обмотку электромагнита, возникает мощное магнитное поле, которое тянет вниз якорь с подвижным контактом. Якорь в свою очередь надавливает на рычажок спускового механизма, в результате чего происходит отключение нагрузки.
Необходимо отметить, что в результате мгновенного возникновения магнитного поля автоматический выключатель успевает отключиться до появления нежелательных последствий.
Однако во время размыкания возможно возникновение дугового разряда между подвижным и неподвижным контактами. Дуга движется в сторону дугогасительной камеры. Попадая на пластины, дуга расщепляется, завлекается внутрь камеры и тухнет. Образовавшиеся продукты горения вместе с избыточным давлением выходят наружу через специальное отверстие в корпусе автомата.

За защиту от перегрузки отвечает тепловой расцепитель. Принцип работы данного расцепителя заключается в следующем: когда ток, протекающий через биметаллическую пластину, становится равным или больше установленного значения, пластина нагревается и постепенно изгибается. Достигнув определенного угла изгиба, она надавливает своим кончиком на рычажок спускового механизма. Таким образом автомат отключается.

Стоит отметить, что терморасцепитель, в отличие от магнитного, является более медлительным. Для его срабатывания требуется больше времени, но зато он более точный и легче поддается настройке.

Мы рассказали об устройстве и принципе работы автоматического выключателя. Также вы можете посмотреть наше видео, в котором детально показано, как устроен автомат и принцип его работы.

Что делать, если срабатывает автомат в электрощите

Если в квартире погас свет, отключились розетки, или перестала работать электроплита, то любой мало-мальски знакомый с электротехникой человек идет на площадку проверять в электрощите состояние автоматических выключателей. Чаще всего, устранение неисправности сводится к повторному включению автомата.

Факт срабатывания современного модульного автоматического выключателя определяется легко: ручка находится в положении «вниз», на ней отчетливо виден круглый знак – «ноль». Для включения достаточно повернуть эту ручку вверх, тогда появится горизонтальная черта, и можно будет считать, что миссия выполнена.

Многие квартиры на постсоветском пространстве оборудованы щитками с автоматами немного другого образца. Автоматические выключатели серии АЕ и им подобные имеют немного большие габариты, крепятся к основанию длинными винтами и обладают неприятным свойством: при срабатывании их ручка остается в прежнем, верхнем положении. Это затрудняет поиск сработавшего автомата, который необходимо выключить и снова включить, чтобы вновь подать напряжение.

Но все это, по большому счету, мелочи. Сработавший автомат говорит о какой-то неисправности, а нам надо разобраться, о какой именно.

Всё! Кина не будет! Электричество кончилось!

Расцепители автоматических выключателей

Для начала надо выяснить хотя бы в общих чертах, что такое автоматический выключатель, и как он работает. Многим известно, что автомат разрывает «фазу». Многополюсный автомат может разрывать и нулевой рабочий проводник. Но разрывать цепь автомат может не только по желанию владельца, поворачивающего ручку вниз. На то это и «автоматический» выключатель, что выключиться он может и автоматически.

Необходимо это для того, чтобы защитить проводники и квартирное электрооборудование от повышенного электрического тока, способного вызвать пожар и разрушения. Причиной же возрастания тока может стать:

1. Перегрузка сети. Ее может вызвать включение неисправных электроприемников, или электроприемников, суммарная мощность которых превышает возможности сети. Последнее может быть связано и с неправильной электрической разводкой по квартире, когда на одну группу приходится большое количество штепсельных розеток. Каждая розетка в отдельности вполне может быть и не перегружена, но суммарный их ток может достигать недопустимых для одного автомата значений.

Для защиты от токов перегрузки в автоматических выключателях применяется тепловой расцепитель – биметаллический контакт, состояние которого зависит от температуры, которая, в свою очередь, зависит от протекающего электрического тока. Уставку, то есть, ток срабатывания теплового расцепителя обычно можно регулировать в небольших пределах.

2. Короткое замыкание в сети. Оно может быть вызвано неисправностью электропроводки или выходом из строя какого-либо электроприемника. Для новой электропроводки короткое замыкание может стать результатом ошибки в монтаже, например, при соединении проводов в ответвительной коробке. Физически короткое замыкание – это электрическое соединение фазного и нулевого проводника помимо нагрузки. Поскольку сопротивление цепи в этом случае ограничивается только сопротивлением проводов, то электрический ток мгновенно достигает очень большого значения.

Для защиты от сверхтоков короткого замыкания тепловой расцепитель автомата неэффективен: пока нагреется и разорвется биметаллический контакт, провода уже практически наверняка будут повреждены, а электрическая дуга вызовет возгорание. Поэтому в модульных автоматических выключателях всегда применяется электромагнитный расцепитель, скорость срабатывания которого составляет доли секунды с момента возрастания тока.

Итак, если в вашем квартирном щитке сработал автоматический выключатель, то можно, конечно, включить его вновь. Однако систематическое срабатывание говорит о какой-то проблеме, которую придется решать. Что же делать, если отключился автомат в электрощите?

Короткое замыкание в цепи розеток

При мгновенном срабатывании автомата после его включения есть все основания полагать, что мы имеем дело с коротким замыканием – тепловой расцепитель так быстро не сработает. Убедиться в наличии замыкания можно при помощи мультиметра – сопротивление между нулевой рабочей шиной N и выводом автоматического выключателя при коротком замыкании должно быть близко к нулю. Разумеется, проводить подобные измерения можно, только при выключенном автомате.

Коль скоро мы убедились, что причина срабатывания – короткое замыкание, то необходимо выяснить, где именно оно произошло. Автоматические выключатели в щитке должны быть подобраны в соответствии с принципами селективности, а это значит, что сработать должен именно автомат, расположенный ближе всего к месту короткого замыкания. При этом выключатель реагирует только на замыкания в той части цепи, которая расположена после него относительно линии.

Поэтому, скажем, если срабатывает только вводной автоматический выключатель, то место замыкания с большой долей вероятности расположено прямо во вводном щите. При замыкании в пределах квартиры срабатывает групповой выключатель и зачастую вместе с ним – вводной автомат. В этом случае вводной аппарат можно смело включить вновь и выяснить, какая именно группа электроприемников подключена к проблемному проводу – эта группа не будет работать.

Выяснив этот вопрос, можно отключить все эти электроприемники и вновь ввести групповой автомат в работу. Если он не сработал, то причина состоит в неисправности одного из отключенных электроприборов. Найти конкретного виновника можно либо поочередным включением всех электроприемников, либо измерением их входного сопротивления. Второй способ не подходит для приборов, имеющих электронное управление. Неисправный прибор, разумеется, подлежит ремонту.

Если все приборы исправны, необходимо приступить к осмотру розеток, входящих в состав группы: пластиковые корпуса разобрать, проверить и подтянуть клеммные зажимы. После розеток наступает черед коробок.

Их придется вскрыть. И если осмотр не выявит явных неисправностей, то провода надо разъединить, чтобы проверить сопротивление между жилами кабелей по отдельности. Такая проверка уже точно позволит определить, в каком именно из кабелей имеется замыкание. Поврежденная линия подлежит замене, а жилы в коробке необходимо вновь соединить с применением сертифицированных зажимов.

Короткое замыкание в цепи освещения

Если срабатывающий автоматический выключатель защищает цепи освещения, то проверку можно начать с введения автомата при выключенных выключателях. Не сработал автомат – можно поочередно щелкать выключателями для того, чтобы выяснить, в цепи какого именно из них имеется короткое замыкание. Таким образом сужаем область поиска до цепи группы светильников, вводимых с одного выключателя.

В этой группе следует тщательно осмотреть каждый светильник, выкрутив лампы и рассмотрев клеммные зажимы. Мультиметром можно измерить сопротивление между фазным и нулевым проводом со стороны каждого светильника. При этом можно определить светильник или кабельную линию, в которой произошло замыкание.

Читать еще:  Какие бывают автоматические выключатели

Если же короткое замыкание выявляется на всех светильниках группы, или присутствует в сети вне зависимости от положения выключателя, то местом замыкания, скорее всего, является ответвительная коробка освещения. Ее необходимо вскрыть и проверить точно так же, как в случае с замыканием розеточной сети. Ну, а если и в коробке полный порядок, то прозваниваем отдельные кабельные линии, разъединив их концы.

Перегрузка сети

Как уже говорилось, в случае перегрузки сети по току автоматическому выключателю требуется некоторое время для срабатывания. Обычно речь идет о нескольких минутах. Поэтому если автомат вышибает время от времени, то очень может быть, что вы имеете дело именно с перегрузкой.

Перегрузка цепи освещения – явление достаточно редкое, и чтобы его избежать, используйте только лампы, подходящие по мощности к вашим светильникам, а модернизацию цепи освещения производите с учетом резерва по мощности. Ведь цепи освещения отдельных квартир часто бывают защищены одним автоматом на десять ампер. Этого часто бывает и достаточно, но при установке большого количества дополнительных светильников в щитке необходимо предусмотреть дополнительный автомат освещения для их питания, особенно, если светильники галогеновые или с обычными лампами накаливания.

Перегрузка розеточной сети – это совсем не редкость. Во время проектирования и монтажа электропроводки в доме невозможно точно определить нагрузку на каждую группу. Поэтому для удобства жильцов на группу, включаемую одним автоматическим выключателем, приходится по три-четыре розетки. И, несмотря на то, что номинал автоматического выключателя обычно подбирается по сечению питающей жилы и не превышает 25 ампер, номинальный ток розеток может составлять 16 ампер.

Здесь есть все предпосылки для перегрузки, если все мощные электроприемники, такие как чайник, утюг, микроволновая печь и тому подобное, включить в розетки одной группы. Тут уж, разумеется, сработает автоматический выключатель. И чтобы подобного не происходило, необходимо равномерно распределять мощную нагрузку между группами, а при отсутствии такой возможности – не включать в сеть одновременно несколько мощных электроприемников.

Случается, что неисправный электроприбор потребляет повышенный ток, который приводит к перегрузке сети и срабатыванию автоматического выключателя. Замерить ток в бытовых условиях не всегда возможно, но если срабатывание теплового расцепителя происходит только при включении какого-то одного электроприемника, а номинальная мощность этого прибора не превышает 2,5 кВт, то следует произвести его ревизию на предмет наличия неисправностей.

Неисправность автоматического выключателя

Не так уж и редко причиной постоянного срабатывания автоматических выключателей является неисправность последних. Даже среди новых автоматов допускается некоторое количество бракованных экземпляров. Их неспособность держать уставку (а касается это, в основном, тепловых расцепителей) часто выявляется только в ходе эксплуатации.

Поэтому при систематическом срабатывании теплового расцепителя автомата, прежде чем приступать к радикальным методам решения проблемы, можно просто произвести пробную замену автомата на схожий по номиналу и характеристике.

В заключение

В статье мы умышленно обошли стороной моменты, когда срабатывание автомата вызвано повреждением линии в ходе ремонтных работ – это тема отдельного разговора. По той же причине мы не стали касаться ситуации, когда срабатывает дифференциальный автоматический выключатель.

Но напоследок хотелось бы напомнить, что самый популярный способ решения проблемы срабатывающего автомата – замена его на автомат большего номинала – не допустим категорически. Автоматические выключатели – это аппараты, обеспечивающие защиту от пожара и повреждений. Их номинал подбирается именно с целью обеспечения безопасности. Произвольно выбранный автомат не выполнит своих функций и не защитит от опасных режимов работы электрической сети.

Защита в действии. Принцип действия автоматического выключателя

Основные принципы работы автоматических выключателей

Так как автоматический выключатель кроме коммутационных операций выполняет функции защиты электрических сетей и различного электрического оборудования в аварийных ситуациях, то его нужно рассматривать с учетом вариантов использования.
Коммутационные функции автоматический выключатель может выполнять не часто — не более 30 раз в сутки. Для более частых переключений, отключений и включений существуют специальные устройства и приборы.
Автоматические выключатели (автоматы) сконструированы таким образом, чтобы обеспечивалась простата и удобство их эксплуатации и обслуживания, особенно в установках большой мощности.
В основном, коммутация автоматических выключателей выполняется в ручном режиме, но есть модели, разработанные для использования со специальным (электромагнитным или электродвигательным) приводом. Такие устройства позволяют проводить управление выключателем дистанционно.
Но ручной (или приводный) режим управления относится к операции включения. Отключение автоматического выключателя (автомата) происходит в автоматическом режиме. Выключение может происходить при достижении максимально допустимых токов или (в некоторых устройствах) при достижении минимально допустимых токов.
В зависимости от функциональности автоматического выключателя их делят на:

  • • автоматы тока максимального,
  • • автоматы понижения напряжения,
  • • автоматы обратной мощности.

Автомат тока максимального применяется для разрыва электрической цепи в условиях достижения предельных нагрузок или тока короткого замыкания. Такое использование автоматического выключателя повторяет использование рубильника с предохранителями. Но в выключателе не нужно менять плавкие вставки, а достаточно его повторно включить. Хотя рубильник с предохранителем незаменим при некоторых особых режимах использования электрической системы.
Использование автоматических выключателей в условиях с повышенной влажностью или запыленностью должно быть в закрытом щите или шкафу с достаточной степенью защиты IP.
Скорость срабатывания (отключения цепи) определяется принципом работы и системой гашения дуги. Эти характеристики свойственны для токоограничивающих автоматов.
Регулируемая скорость срабатывания (отключения) автоматического выключателя реализована в селективных (регулируемых) автоматах.
Но если требуется защита от токов другой направленности по сравнению с рабочими, то применяют автоматы обратного тока.
Особую конструкцию имеют неполяризованные автоматические выключатели, которые могут отключать цепь, контролируя его величину во всех направлениях. Поляризованный автомат производит контроль величины тока только в одном направлении.

Конструкция автоматических выключателей

Конструкция автоматического выключателя зависит от его назначения и предполагаемого применения.
Управление автоматическим выключателем может выполняться в ручном режиме или приводом (дистанционно). Ручное управление применяется для автоматов с номиналом до 1000 А. Причем включение должно производиться уверенно, без остановок и возвратов. Начатое движение рукоятки автомата должно закончиться его включением.
Привод управления автоматическим выключателем должен иметь исключение повторного включения при коротком замыкании. Но важную конструкционную особенность должны выполнять автоматические выключатели при срабатывании защитного механизма вне зависимости от положения включающего привода. Это достигается за счет применения специальных расцепителей.
Расцепитель автоматического выключателя отслеживает контролируемый параметр и управляет расцепляющим устройством.
Расцепители могут иметь несколько вариантов исполнения:

  • • электромагнитный — защищают от короткого замыкания цепи,
  • • тепловой — защищают от перегрузок цепи,
  • • комбинированный — совмещают защиту от КЗ и перегрузок,
  • • полупроводниковый — настраиваемые системы защиты с точной установкой параметров.

Если автоматический выключатель устанавливается для выполнения включения и отключения цепи без токов или коммутация производится редко, то применяют автоматы без расцепителя.
Различные автоматические выключатели могут иметь совершенно разную степень защиты IP. Так как автоматы применяются в различных условиях с различными факторами воздействия (пыль, влага и т.д.), то информация об их степени защиты и типаже должна быть указана в документации, прилагаемой к устройству. Хотя большинство производителей работают по ТУ (техническим условиям), некоторые автоматы получили уровень государственного стандарта (ГОСТ).

Узлы и механизмы автоматического выключателя

Конструкция автомата предусматривает применение многих механизмов и узлов, среди которых:

  • • контактная система,
  • • система расцепителей,
  • • система дугогашения,
  • • система управления,
  • • механизм свободного расцепления.

Контактная система — это неподвижные контакты установленные в корпус и подвижные контакты на оси (одинарный разрыв).
Система дугогашения — это дугогасительная камера со стальной решеткой или фибровые пластины (искрогаситель). Устанавливаются отдельно для каждого полюса автоматического выключателя.
Механизм свободного расцепления — шарнирный механизм с 3 или 4 звеньями. Выполняет отключение контактов при ручном и автоматическом управлении.
Расцепитель тока с электромагнитом — это якорный электромагнит срабатывающий при коротком замыкании. Существуют электромагнитные расцепители с системой гидравлического замедления, которые обеспечивают защиту от перегрузочных токов.
Расцепитель тепловой — это биметаллическая пластина с тепловой характеристикой. Когда ток перегрузки деформирует пластину, она создает усилие необходимое для отключения автомата.
Расцепитель на основе полупроводников — это прибор содержащий измерительный элемент, полупроводниковые реле и электромагнит на выходе, который связан с механизмом свободного расцепления.
Комбинированные расцепители — это сочетание нескольких систем защиты. Например, тепловые и электромагнитные.

Автоматические выключатели могут снабжаться многими другими устройствами и приспособлениями, которые помогают сконцентрировать в одном устройстве максимальное количество функций и характеристик. Все эти устройства ориентированы на удобное использование прибора с исключением дополнительных действий и операций по защите и коммутации электрической системы.
Особые конструкции автоматических выключателей, таких как автоматы с минимальным или независисмым расцепителем позволяют обеспечить дистанционное выключение. Применение специальных устройств замковой фиксации положения рукоятки обеспечивают дополнительную защиту персонала при выполнении ремонтных или регламентных работ. А сигнализация положения контактов автомата упрощает контроль рабочего режима электрической системы.
Поэтому, применение автоматических выключателей должно быть предварительно взвешенным и тщательно обдуманным. Это гарантирует максимальную функциональность электрических систем и обеспечит их надежную защиту.

Отключение автомата в электрощите: причины и принципы устранения неисправностей

Периодически может возникать ситуация, когда в электрощитке срабатывает автоматический выключатель и помещение остается без электричества.Пугаться этого не нужно, ведь это означает что у вас правильно работает установленная система защиты от перегрузок сети! Если бы автомат не сработал, могло возникнуть возгорание, что привело бы к трагическим последствиям.

Обычно срабатывание происходит из-за перепадов напряжения в сети и бывает достаточно просто перевести обратно в положение «Вкл» отключившийся автомат или устройство защитного отключения (УЗО). Но что делать, если УЗО тут же или спустя пару минут срабатывает снова? Этот тревожный сигнал говорит о том, что в сети электропроводки появились какие-то неполадки и нужно предпринять действия по их устранению.

Возможны две причины, вызывающие подобную ситуацию. Соответственно, будет отличаться и порядок ваших действий при срабатывании автомата. Но помните, что самостоятельный поиск и устранение проблем с электрической проводкой возможны лишь при достаточном уровне соответствующих знаний и навыков и четком соблюдении правил техники безопасности.

Причины

Короткое замыкание — прямое электрическое соединение фазных проводников между собой (либо фазного с нулевым) и возникновение вследствие этого очень высокого значения тока в цепи. Оно происходит при поломке какого-либо электроприбора или в случае неисправности самой электропроводки. Сигналом этой неприятности будет мгновенное повторное выключение автомата после его перевода в положение «Вкл».

Перегрузка — это увеличение суммарной нагрузки всех электропотребителей сети по мощности сверх допустимых норм. Например, если ваша электрическая сеть допускает сумму мощностной нагрузки в 10кВт, то при любом превышении этого значения возникнет перегрузка. Причина этого — появление на одной фазе или сразу нескольких повышенного тока, приводящего к срабатыванию автомата и разрыву цепи. Также перегрузка возникает при так называемом «перекосе» фаз. Это явление характерно для трёхфазной цепи вследствие неравномерного распределения нагрузки по фазам. Сигналом такой неполадки будет повторное отключение автомата через определенное время (до нескольких минут) после включения.

Что делать?

Прежде всего определите, какой из автоматов сработал в электрощите. Если это только общий автомат, то возникло замыкание непосредственно в электрощите. При внимательном осмотре это будет заметно, кроме того почувствуется запах горелой пластмассы. При наличии навыков можно приступить к ремонту повреждений, иначе нужно вызывать специалиста.

При срабатывании какого-либо линейного автомата (линия розеток или освещения) нужно искать неисправность конкретно на отключенной линии.

Линия розеток. Вынимаем все вилки электроприборов из розеток и пробуем включить автомат. Если автомат не отключился, то проблема состоит в поломке одного из устройств — потребителей электроэнергии. Найти его несложно — по очереди подключайте приборы в розетки и автоматический выключатель «выбьет» при подключенном неисправном приборе. Если же «выбивает» при всех выключенных электроприёмниках — дело в повреждении электропроводки. Тогда искать неисправность нужно в розетках и распределительных коробках — подтянуть для начала внутренние контакты. Если это ни к чему не приводит, то разъединяем провода в коробках и «прозваниваем» их мультиметром на факт короткого замыкания. Так можно понять, какой провод или кабель нужно заменить.

Линия освещения. Аналогичный принцип действий и в этом случае — обесточить все средства освещения на линии. Если автомат включился, то неисправность в одном из светильников. Поочерёдно включаем каждый из светильников, таким образом находя неисправный. Нашли — осматриваем контакты в электрическом патроне и приступаем к его ремонту. Если же автомат не включился и при выключенных светильниках, то ремонту подлежит электропроводка (неполадку нужно искать также, как и в случае с линией розеток).

И последнее: старайтесь ответственно отнестись к выбору автоматических выключателей, чтобы в дальнейшем избежать крупных проблем.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты