Расчет автоматического выключателя для электродвигателя
Расчет автоматического выключателя для электродвигателя
Автоматический выключатель (АВ) выбирают по номинальному току I н.вык выключателя и номинальному току I н.расц расцепителя.
I расц =I дл /К т , где
I дл =I н.дв – длительный ток в линии,
I н.дв – номинальный ток двигателя,
К т – тепловой коэффициент, учитывающий условия установки АВ.
К т =1 — для установки в открытом исполнении;
К т =0,85 – для установки в закрытых шкафах.
Iдл=Iн= Р н /(Uн·√3·ηн·cosφ), (1)
гдеРн — мощность двигателя, кВт;
Uн – номинальное напряжение электродвигателя, кВ;
ηн – КПД двигателя (без процентов),
cosφ – коэффициент мощности двигателя.
Номинальный ток асинхронного двигателя с к. з. ротором будет примерно равен его удвоенной мощности, взятой в киловаттах:
Iн≈ 2Рн(кВт)
Выбираем АВ:
Тип –
Iн.вык –
Iрасц –
Необходимо, чтобы выполнялось условие:
Iмгн.ср ≥ KIкр, где
Iмгн.ср — ток мгновенного срабатывания,
Iкр – максимальный кратковременный ток,
К – коэффициент, учитывающий неточность определения Iкр в линии.
К = 1,25 – для АВ с Iн > 100А;
К = 1,4 – для АВ с Iн ≤ 100А.
Iкр = Iпуск = Кi Iн, где
Кi – кратность пускового момента Кi = Iпуск/Iн.
Значения Кi берутся из таблиц.
Если условие выполняется, значит АВ выбран верно, если не выполняется, то выбирается АВ с большим значением тока расцепителя.
Приведем пример .
Условие установки АВ:
По типу двигателя выписываем из таблицы его номинальные данные:
Так как автомат устанавливается в шкафу, то Кт = 0,85, поэтому:
По току расцепителя выбираем автомат: ВА 51-25; Iн = 25 А Iрасц = 16 А;
Iмгн.ср = 10∙Iрасц = 10∙16 = 160 А
Неравенство выполняется, значит автомат выбран верно.
Как выбрать магнитный пускатель и автоматический выключатель для асинхронного двигателя
На примерах рассмотрен принцип выброра магнитного пускателя для управления электродвигателем и автоматического выключателя для его защиты от токов короткого замыкания и перегрузки.
Содержание статьи
Для пуска, реверсирования, принудительной остановки противотоком асинхронных электродвигателей электрики используются контакторы и магнитные пускатели. От правильности выбора коммутационной аппаратуры зависит, как и безотказность системы в целом, так и электробезопасность обслуживающего персонала.
Выбор пускателя и избыточным коммутируемым током ведет к большим финансовым затратам, при его коммутации слышны шлепки большей громкости, чем те что издают маленькие пускатели. Недостаточные по коммутируемой мощности пускатели долго не прослужат, будут греться, и подгорать клеммники и контакты. В результате переходное сопротивление контакта будет расти до тех пор, пока контакт не исчезнет полностью, что приведет к преждевременной замене аппарата.
Автоматические выключатели также должны быть правильно подобраны, особенно при тяжелом пуске двигателя. Слишком чувствительный автомат будет выбивать при пуске, а если он наоборот взят с излишним запасом по току, то в аварийной ситуации может и не отреагировать, что приведет к повреждению кабеля, обмотки двигателя вплоть до возгорания.
Пуск для электродвигателя сопровождается повышенным током в период разгона его до номинальных оборотов, в случае перегрузки и нехватки мощности двигателя для вращения исполнительных механизмов возможно пониженное число оборотов с повышенными токами, в плоть до того, что он вообще не начнет раскручиваться. И наоборот если мощность двигателя избыточна, то потребляемый им ток будет ниже номинального.
Из-за вышеперечисленных причин и появляется необходимость правильного подбора пусковой и защитной аппаратуры в виде магнитных пускателей, контакторов, тепловых реле и автоматических выключателей.
Автоматические выключатели устанавливаются до магнитного пускателя, чтобы в случае необходимости полностью обесточить систему, как силовую цепь, так и цепь управления (питания катушки).
Вместо автоматических выключателей могут использоваться плавкие вставки или предохранители, но в последнее время такие решения встречаются реже, чем раньше. Это усложняет обслуживание и вызывает необходимость иметь в запасе хотя бы комплект предохранителей.
Выбор магнитного пускателя
Магнитные пускатели выпускаются на определенный номинальный ток, из ряда: 6.3 – 10 – 25 – 40 – 63 – 100 – 160 – 250. Интересно, что линейка номиналов пускателей соотвествует золотому сечению. Еще ему соотвествуют стандартные значения сечения проводов. Подробнее об этом смотрите здесь: Какая связь между сечениями проводов и популяцией кроликов
Часто магнитные пускатели разделяют не по токам, а по величинам от 0 до 7, чем больше ток (или величина пускателя) тем больше его габариты и площадь контактов (0 — 6, 3, 1 — 10, 2 — 25, 3 — 40 и т.д.). Опытный электромонтер может отличить по размеру корпуса, конструкции дугогасителя и габаритам контактных площадок примерный коммутируемые ток и напряжение.
Однако если номинальный ток пускателя соответствует току двигателя, это еще не значит, что их можно использовать в паре. Если такое понятие как категория применения, она характеризует режим работы коммутируемой аппаратуры, частоту и условия коммутации. Иначе говоря – это способность переносить пусковые токи. Пусковые токи асинхронного двигателя могут превышать номинальные и в 10 раз, это зависит от условий пуска, напряжения в сети и прочих факторов.
Категории применения обозначаются: «АС-номеркатегории». Сводная таблица величин и категорий применения для магнитных пускателей расположена ниже.
Из неё нас интересует строка «АС-3 – управления двигателями с короткозамкнутым ротором (пуск, отключение без предварительной остановки)». Из этого очевидно, что коммутационные аппараты с такой категорией созданы для того, что бы включать и отключать электродвигателя. Они выдерживают прямой пуск.
Далее нужно определиться с номинальным током пускателя. Для этого нам нужно знать технические характеристики коммутируемого двигателя, а именно:
cos Ф – коэффициент мощности,
P – мощность двигателя номинальная;
U – рабочее напряжение (коммутируемое);
Тогда номинальный ток пускателя равен:
Для быстрых расчетов иногда применяют другую методику, когда мощность двигателя умножают на 2 и получают номинальный ток (приблизительно).
Далее нужно определить пусковой ток, в справочниках это указывается либо как «k» либо как «Iп/Iн». Это кратность или соотношение пускового тока к номинальному. Показывает, насколько ток в момент пуска превышает номинальную величину.
Пускатель с категорией применения АС-3 может коммутировать ток в 5-7 раз больше чем номинальный, для чего это сказано я покажу при расчетах ниже.
Выбираем пускатель
Допустим, у нас есть асинхронный двигатель с мощностью 2.2 кВт типа 4АМ100L6У3. На его шильдике написано, что кпд 81.0%, коэффициент мощности – 0.73, в интернете я нашел его технические данные, чтобы узнать кратность пускового тока, она оказалась – 5.5
1. Быстрый способ: IН=2.2*2 = 4.4А
2. Сложный способ: IНОМ=2200/(380*0.81*0.73*1.73)=5.6А
Результаты такого расчета дали больший ток.
Теперь считаем пусковой ток: IП=5.6*5.5=30.8А
Подбираем пускатель, с номинальным током более чем 5.6 А, с категорией применения АС-3. В результате обзора рынка, нам подходит пускатель ПМЕ 111 на 10А с тепловым реле.
Выбор автоматического выключателя
Автомат может сработать при пуске или затяжном пуске электродвигателя, когда потребляемый ток значительно превышает максимальный. В автоматическом выключателе за защиту отвечают два узла:
1. Электромагнитный расцепитель. Срабатывает при пиковом токе перегрузке. Этот ток зависит от типа автомата.
2. Тепловой расцепитель. Срабатывает при незначительном но длительном превышении номинального тока.
Номинальный ток двигателя у нас 5.6 А, значит нам нужен автомат не меньше этого значения. Типы автоматов куказывают на доустипое превышение по току в пике:
тип D – 10-50 раз.
Виды защитных характеристик автоматических выключателей
Пример выбора автоматического выключателя
Так как у нас пусковой ток в 5.5 раз больше чем номинальный, это значит что нам подходит автомат типа С и D. Например, автоматический разъединитель EZ9F34306 Schneider Easy9, рассчитан на 6 А и его тип C, позволит выдержать пусковые токи до 60 А.
Но такой автомат будет работать на пределе да и реальная уставка по току может быть ниже 5.5, т.к. тип С находится в пределах 5-10, нужен запас по току хотя бы в 20%.
Поэтому лучше установить автоматический выключатель на тот же ток или немного больший, но типа D, например ИЭК 6-8А ВА47-29
Или на ток 10А с типом C, например PL4-C10/3 Moeller / Eaton
Требования к автомату заключаются в том, чтобы он стабильно выдерживал номинальный ток, и его не выбило при пуске. Если планируется режим работы двигателя с частыми включения и выключениями лучше использовать автомат типа D, он менее чувствителен к всплескам тока.
Приниципы выбора других электрических аппаратов:
Эксплуатация и ремонт электрических аппаратов:
Заключение
Автоматический выключатель нужен для защиты питающего кабеля и дополнительной защиты двигателя, в случае затяжного пуска или заклинивания вала, дополнительно лучше использовать тепловую защиту. Магнитный пускатель должен выдерживать как напряжение, так и ток, который он будет коммутировать.
Электродвигатель должен быть исправен, отсутствовать витковые замыкания, а его вал должен свободно вращаться. В случае пуска двигателя под нагрузкой лучше брать коммутационную аппаратуру с запасом до 2-х раз для уменьшения вероятности преждевременного подгорания контактов и ложных срабатываний автоматического выключателя.
Питающий кабель должен соответствовать номинальному току, с учетом пусковых токов, как и способ соединения кабеля (использование гильз, наконечников, клеммников и прочего). Состояние всех соединений должно быть в норме – отсутствовать окислы, нагар и прочие механические дефекты, которые могут уменьшить площадь прилягания контакта.
Расчет автоматов
Подписка на рассылку
- ВКонтакте
- ok
- YouTube
- Яндекс.Дзен
- TikTok
В этой статье рассмотрим базовые параметры, по которым выполняется расчет автоматического выключателя. Автоматический выключатель – защитный аппарат, который рассчитан на отключение любых сверхтоков в защищаемой цепи в пределах своей чувствительности, прежде чем те вызовут какие-либо повреждения при тепловом воздействии на жилы и изоляцию самого проводника, а также на окружающие его материалы. Под сверхтоками следует понимать токи перегрузки и токи коротких замыканий.
Ввиду необходимости защиты сети от токов КЗ и токов перегрузок в автоматических выключателях применяются комбинированные расцепители (тепловой и электромагнитный), выбор уставок которых рассмотрим ниже.
Расчет автоматов по нагрузке
На основании п. 3.1.4 ПУЭ номинал автомата выбирается наименьшим по расчетному току участка цепи или по току нагрузки электроприемников. Номинал автоматического выключателя по совместительству является уставкой теплового расцепителя. Расчет автоматов по мощности нагрузки сводится к простейшей формуле по оценке максимального тока нагрузки, если нам известна суммарная мощность электроприемников — IB=S/U (при однофазном подключении). После чего подбираем стандартный автомат с номинальным током не менее высчитанного по формуле.
При этом следует учитывать, что выключатель предназначен защищать не нагрузку, а проводник линии, ее питающий.
Основополагающим является следующее условие:
где IB — максимальный рабочий ток нагрузки, In — номинальный ток выключателя, Iz — длительно допустимый ток проводника линии.
См. таблицу расчетов автомата в зависимости от типа подключения и мощности, упрощающую выбор.
Расчет автоматов по току КЗ
Для бытового применения можно ограничиться выбором соответствующего диапазона токов мгновенного расцепления по типу автомата. Для этого вполне подходят типы В (от 3In до 5In) и С (от 5In до 10In). Выбор типа выключателей в зависимости от типа подключенной нагрузки приведен на рисунке.
Конечно, для более точного расчета следует рассчитать величину тока КЗ в конце защищаемого участка цепи, располагая при этом соответствующими исходными данными о питающей подстанции и характеристиках питающей линии. Данные расчеты в большинстве случаев выполняются в специализированных программных комплексах при проектировании новых и реконструкции старых объектов электроснабжения.
Для простых случаев ток однофазного замыкания в искомой точке можно рассчитать по формуле:
Zц определяется по формуле:
Для автоматических выключателей с комбинированным расцепителем допускается обеспечивать защиту от токов однофазного КЗ посредством одного из расцепителей (любого).
Полученное значение тока Iк должно удовлетворять условиям:
Ik≥6In – для теплового расцепителя по п.7.3.139 ПУЭ;
Ik ≥1,25 IM – для электромагнитного расцепителя, где IM- уставка ЭМ расцепителя, 1,25- коэффициент, обеспечивающий чувствительность и срабатывание.
Главное, чтобы защитный аппарат обеспечил отключение защищаемого участка цепи при повреждении в конце линии, так как ток КЗ в данной расчетной точке наименьший.
Выбор автоматических выключателей для электродвигателей
Выбирая автоматические выключатели для защиты двигателей, мы должны учитывать, что при пуске электродвигателя, возникает пусковой ток, превышающий в 5 — 7 раз номинального значения.
Автоматические выключатели выбираются по условиям:
- Uном. – номинальное напряжение, В;
- Uном.сети – номинальное напряжение сети, В.
- Iном.расц. – номинальный ток расцепителя выключателя, А;
- Iном.дв. – номинальный ток электродвигателя, А.
Ток уставки электромагнитного и полупроводникового расцепителя выбирается по формуле [Л1,с. 106]:
Для приближенного расчета тока уставки электромагнитного и полупроводникового расцепителя, можно принять по таблице 6.1 [Л1,с. 107].
Таблица 6.1 – Значения коэффициентов для расчета тока срабатывания отсечки автоматических выключателей, устанавливаемых в цепях электродвигателей
Автоматический выключателиь | Расцепитель | kз | kа | kр | kн | ||
---|---|---|---|---|---|---|---|
А3700; А3790 | Полупроводниковый | РП | 1,1 | 1,0 | 1,3 | 1,5 | |
ВА | БПР | ||||||
«Электрон» | РМТ | 1,35 | 1,6 | ||||
МТЗ-1 | 1,4 | 2,2 | |||||
АВМ | Электромагнитный | 1,4 | 1,1 | 1,8 | |||
А3110; АП-50; А3700; ВА; АЕ20 | 1,3 | 2,1 | |||||
А3120; А3130; А3140 | 1,15 | 1,9 |
Надежность срабатывания автомата при двухфазном и однофазном коротком замыкании при КЗ на выводах электродвигателя определяется коэффициентом чувствительности и рассчитывается по формуле [Л1,с. 107]:
При отсутствии значений по коэффициенту разбросу kp, рекомендуется принимать коэффициент чувствительности в пределах 1,4-1,5.
В случае если чувствительности защиты от междуфазных КЗ недостаточно, следует принять следующие меры:
- уточнить значение Iс.о с учетом влияния сопротивления внешней сети на пусковой ток электродвигателя;
- выбрать другой тип АВ;
- увеличить сечение кабеля на одну, две ступени, но не больше;
- применить выносную релейную защиту.
При недостаточной чувствительности защиты от однофазных КЗ, следует принять следующие меры:
- применить кабель другой конструкции с нулевой жилой, алюминиевой оболочкой;
- проложить дополнительные зануляющие металлические связи;
- применить АВ со встроенной защитой от однофазных КЗ;
- применить выносную релейную защиту от однофазных КЗ, ток срабатывания данной защиты принимается 0,5-1*Iном.дв. Коэффициент чувствительности kч > 1,5, согласно ПУЭ 7-издание;
Выбор тока срабатывания для теплового и электромагнитного (комбинированного) расцепителя автоматического выключателя
Для того, чтобы защитить двигатель от перегрузки, то есть от повреждений, вызываемых длительным протеканием тока превышающего номинальный, нужно использовать тепловые и электромагнитные (комбинированные) расцепители. Номинальный ток теплового расцепителя определяется по формуле [Л1. с 109]:
Данные коэффициенты определяются для разных типов выключателя по таблице 6.2 [Л1. с 112].
Таблица 6.2 – Значения коэффициентов для расчета тока срабатывания защиты от перегрузки автоматических выключателей
Автоматический выключателиь | Расцепитель | kз | kр | kн = kз*kр | kв | |
---|---|---|---|---|---|---|
А3700; АЕ20 | Тепловой | — | — | 1,15 | 1 | |
А3110; АП50 | 1,25 | 1 | ||||
ВА51; ВА52 | 1,2-1,35 | 1 | ||||
АВМ | Электромагнитный | 1,1 | 1,1 | 1,2 | 0,5-0,7 | |
А3700 | Полупроводни- ковый | РП | 1,1 | 1,15-1,2 | 1,27-1,32 | 0,97-0,98 |
«Электрон» | МТЗ-1, РМТ | 1,1 | 1,15-1,35 | 1,27-1,49 | 0,75 | |
ВА | БПР | 1,1 | 1,08-1,2 | 1,19-1,32 | 0,97-0,98 |
Общая формула по определению тока теплового расцепителя, имеет следующий вид:
Время срабатывания защиты от перегрузки выбирается из условия, что защита не будет срабатывать при пуске и самозапуске двигателя [Л1. с 112]:
Продолжительность пуска для двигателей с тяжёлыми условиями пуска, составляет более 5 – 10 сек, например для двигателей центрифуг, дробилок, шаровых мельниц и т.д и для двигателей с лёгкими условиями пуска равным 0,5 – 2 с, например для двигателей вентиляторов, насосов, главных приводов металлорежущих станков и механизмов с аналогичным режимом работы.
Проверка чувствительности при однофазных КЗ
Данную проверку нужно выполнять, если для отключения однофазных КЗ используется защита от перегрузки. В настоящее время ПУЭ 7-издание п. 1.7.79 предъявляет требования, чтобы время отключение выключателя тока однофазного КЗ не превышало 0,4 с.
1. Беляев А.В. Выбор аппаратуры, защит и кабелей в сети 0,4 кВ. Учебное пособие. 2008 г.
Как правильно подобрать автоматический включатель для электродвигателя и другого электротехнического оборудования.
Способ №1.
Для того что бы определить номинал автомата, необходимо знать суммарную мощность приборов, которые будут через него подключаться. Т.е. примерно прикидываем. что мы будем включать, например, в розетки (электрочайник , холодильник , телевизор и т.д.) складываем мощность этих приборов и исходя из этого вычисляем рабочий ток розеточной группы, используя следующую формулу: при однофазной нагрузке на 1 кВт мощности приходится ток, равный 5А . При трехфазной нагрузке на 1 кВт приходится ток, равный 3А . Допустим, у нас получилось 3,6 кВт , умножаем на 5. Получается 18А — это рабочий ток. Номинальный то автомата должен быть больше рабочего — выбираем автомат на 25А. Таким же образом рассчитываем номинал автомата для подключения, например, трехфазного электродвигателя мощностью 4 кВт: 4 умножаем на 3 получаем 12А -рабочий ток, выбираем автомат на 16А . При выборе автоматов для защиты асинхронных трехфазных электродвигателей необходимо учитывать, что пусковой ток электродвигателя в 5-7 раз больше номинального. Поэтому выбирать автомат по номиналу нельзя , т.к. при запуске его будет постоянно выбивать. Для асинхронных электродвигателей с коротко-замкнутым ротором при небольшой частоте включения и легких условиях пуска (время пуска 5-10 секунд) номинальный ток автомата должен быть не менее 0,4 пускового тока электродвигателя. При тяжёлых условиях работы (частые запуски, продолжительность разбега до 40 секунд) соотношение рекомендуется увеличить с 0,4 до 0,6.
Способ №2.
Первое, что мы должны сделать, так это посмотреть паспорта электроприборов, включаемых в одну сеть и выяснить мощности каждого. К примеру, чайник 2 кВт, лампа 100 Вт, холодильник 600 Вт, стиральная машина 2,2 кВт. Подключать мы будем к одной фазе одним кабелем. То есть на конце 3 розетки и один выключатель. Значит, мощность на кабель ляжет суммарная 2 кВт + 100 Вт + 600 Вт + 2,2 кВт. Чтобы не путаться, давайте перейдем к ваттам. 2000 Вт + 100 Вт + 600 Вт + 2200 Вт (кВт — это киловатты, то есть тысячи ватт. Поэтому кВт умножаем на 1000). В итоге мы получаем 4900 Вт. Еще раз повторимся, это суммарная мощность всех приборов, приходящаяся на один кабель. Теперь нам надо просто узнать ток. Берем формулу и подставляем значения. W=U*I отсюда I=W/U I=4900/220 I=22,27A. А здесь вы меня остановите и скажите: «А ведь у стиральной машины и холодильника есть моторы. Как же с реактивным сопротивлением?» И будите правы, но при хорошем заземлении и хорошем нуле для однофазных моторов про реактивные сопротивления можно забыть. Вроде все хорошо, да не все. Опять моторы портят все. Если нагревательные приборы всегда потребляют ток один и тот же, то моторы имеют, так называемый пусковой ток. И он при старте очень большой. Для этих целей производители автоматов предусмотрели такую вещь, как уставка по току. Вот и все.
Что такое уставка по току? Спросите вы. А вот что. Все автоматы делятся на три группы. B C D. Эти группы делят так: B от 3 до 5, C от 5 до 10, D от 10 до 14. Что эти цифры означают. В автомате есть токовый расцепитель. Он срабатывает, когда ток превышает заданный предел. Так вот чтобы при старте мотора автомат не выбивал, существует уставка по току. Это то что держит автомат несколько секунд при старте мотора. А цифра означает всего-навсего коэффициент. То есть если ток при старте превысит номинальный в 4 раза, то автомат нам нужен группы В. А если в 10 раз, то D. Для стиральных машин и холодильников подойдет группа C. И для нашего примера нам нужен автомат на 25А и группа С. Маркировка будет такой С25
Как правильно подобрать автоматический включатель для электродвигателя и другого электротехнического оборудования, учитывая сечение токопроводящего кабеля.
При подборе автоматической защиты для электродвигателя, необходимо так же учитывать сечение токопроводящего кабеля, чтобы избежать плавления или возгорания электрической проводки.
Здесь имеет значение материал провода, количество жил кабеля, и то, как он уложен, открыто, в стену и т.д.
Допустим, у нас двухжильный медный провод с сечением 4 мм.кв. уложенный в стену, смотрим по первой таблице максимально допустимую силу тока, она равна 32 А. Но при выборе автоматического выключателя эту силу тока нужно уменьшать до ближайшего нижнего значения, для того чтобы провод не работал на пределе. Получается, что нам нужен автомат на 25 А.
Так же нужно помнить, если нужен автомат на розеточную группу, то брать выше 16 А нет смысла, так как розетки больше 16 А выдержать не могут, они просто начинают гореть. На освещение самый оптимальный автомат на 10 А.
Допустимый длительный ток для проводов и кабелей с медными жилами
Выбор автомата по мощности
То, что с электричеством шутки плохи, известно каждому. Неправильный расчёт схемы электроснабжения может привести как минимум к двум неприятным последствиям. Первое, это когда при включении нескольких энергоёмких электроприборов (например, стиральной машины, электрочайника и утюга) срабатывают автоматические выключатели и сеть обесточивается. Неприятно, но не смертельно. Второе, это когда при включении тех же приборов автоматы не сработают, и начнёт плавиться и дымиться электропроводка. А это уже смертельная опасность: до пожара всего один шаг. Вот почему выбор автомата по мощности нагрузки – дело первостепенной важности.
Автоматический однополюсный выключатель Schneider ВА63 1П 25А С на 25 ампер.
Немного теории
Из курса физики известно, что существует зависимость между электрической мощностью, силой тока и напряжением в электрической сети. В упрощённом виде эта зависимость выражается следующей формулой для однофазной сети:
где W – мощность тока в ваттах (Вт);
I – сила тока в амперах (А);
V – напряжение в вольтах (В).
В данном случае нас будет интересовать сила тока, поскольку по этому параметру часто подбирается автомат защиты электросети и характеристики электропроводки. Для удобства преобразуем вышеприведённую формулу в выражение:
В качестве примера рассчитаем силу тока для нагрузки, которую дают на электросеть упомянутые выше энергоёмкие потребители. Их суммарная мощность составит порядка 6 кВт, и при напряжении 220 В мы получим силу тока в цепи:
I = 6000 Вт / 220 В = 27,3 А
Для трёхфазной схемы подключения формула (2) примет следующий вид:
Это изменение вызвано тем обстоятельством, что при равной нагрузке и равномерном распределении мощности по фазам ток в трёхфазной сети будет втрое меньше. Таким образом, при той же суммарной мощности в 6 кВт, но при напряжении 380 В, сила тока в цепи будет равна:
I = 6000 Вт / (1,73 х 380 В) = 9,1 А
Получив данный показатель, можно приступать к подбору автоматического выключателя, обеспечивающего защиту сети от перегрузки.
Подбор номинала автоматического выключателя по току и мощности нагрузки
Для выбора подходящего автомата удобно рассчитать силу тока на один киловатт мощности нагрузки и составить соответствующую таблицу. Применив формулу (2) и коэффициент мощности 0.95 для напряжения 220 В, получим:
1000 Вт / (220 В х 0,95) = 4,78 А
Учитывая, что напряжение в наших электросетях нередко не дотягивает до положенных 220 В, вполне корректно принять значение 5 А на 1 кВт мощности. Тогда таблица зависимости силы тока от нагрузки будет выглядеть в таблице 1, следующим образом:
Мощность, кВт | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 |
Сила тока, А | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
Данная таблица даёт приблизительную оценку силы переменного тока, протекающего по однофазной электрической сети при включении бытовых электроприборов. При этом следует помнить, что имеется в виду пиковая потребляемая мощность, а не средняя. Эту информацию можно найти в документации, прилагаемой к электротехническому изделию. На практике удобней пользоваться таблицей предельных нагрузок, учитывающей тот факт, что автоматы выпускаются с определённым номиналом по силе тока (таблица 2):
Схема подключения | Номиналы автоматов по току | |||||||
10 А | 16 А | 20 А | 25 А | 32 А | 40 А | 50 А | 63 А | |
Однофазная, 220 В | 2,2 кВт | 3,5 кВт | 4,4 кВт | 5,5 кВт | 7,0 кВт | 8,8 кВт | 11 кВт | 14 кВт |
Трёхфазная, 380 В | 6,6 кВт | 10,6 | 13,2 | 16,5 | 21,0 | 26,4 | 33,1 | 41,6 |
Например, если нужно узнать, на сколько ампер нужен автомат под мощность 15 кВт при трёхфазном токе, то ищем в таблице ближайшее большее значение – оно составляет 16,5 кВт, что соответствует автомату на 25 ампер.
В реальности существуют ограничения по выделяемой мощности. В частности, в современных городских многоквартирных домах с электроплитой выделенная мощность составляет от 10 до 12 киловатт, а на входе ставится автомат на 50 А. Эту мощность разумно разбить на группы с учётом того, что самые энергоёмкие приборы концентрируются на кухне и в ванной комнате. На каждую группу ставится свой автомат, что позволяет исключить полное обесточивание квартиры в случае возникновения перегрузки на одной из линий.
В частности, под электроплиту (или варочную панель) целесообразно сделать отдельный ввод и установить автомат на 32 или 40 ампер (в зависимости от мощности плиты и духовки), а также силовую розетку с соответствующим номинальным током. Других потребителей подключать к этой группе не стоит. Отдельная линия должна быть и у стиральной машины, и у кондиционера – для них будет достаточно автомата на 25 А.
На вопрос о том, сколько розеток можно подключить на один автомат, можно ответить одной фразой: сколько угодно. Сами по себе розетки не потребляют электроэнергию, то есть не создают нагрузку на сеть. Нужно лишь позаботиться о том, чтобы суммарная мощность одновременно включаемых электроприборов соответствовала сечению провода и мощности автомата, о чём будет сказано ниже.
Для частного дома или коттеджа вводной автомат подбирается в зависимости от выделенной мощности. Далеко не всем хозяевам удаётся получить желаемое количество киловатт, особенно в регионах с ограниченными возможностями электросетей. Но в любом случае, как и для городских квартир, сохраняется принцип разделения потребителей на отдельные группы.
Вводной автомат для частного дома
Подбор номинала автоматического выключателя по сечению провода
Определив номинал автомата, исходя из мощности «подвешенной» нагрузки, необходимо убедиться в том, что электропроводка выдержит соответствующий ток. В качестве ориентира можно воспользоваться нижеприведённой таблицей, составленной для медного провода и однофазной цепи (таблица 3):
Как видим, все три показателя (мощность, сила тока и сечение провода) взаимосвязаны, поэтому номинал автомата можно, в принципе, выбирать по любому из них. В то же время необходимо убедиться, что все параметры стыкуются между собой, и при необходимости сделать соответствующую корректировку.
При любом раскладе следует помнить следующее:
- Установка чрезмерно мощного автомата может привести к тому, что до его срабатывания электрооборудование, не защищённое собственным предохранителем, выйдет из строя.
- Автомат с заниженным числом ампер способен стать источником нервных стрессов, обесточивая дом или отдельные помещения при включении электрочайника, утюга или пылесоса.
Автоматический выключатель для защиты электродвигателя — как правильно подобрать?
При подборе автоматических выключателей, способных защитить электрические моторы от повреждения в результате КЗ или чрезмерно высоких нагрузок, необходимо учитывать большую величину пускового тока, нередко превышающую номинал в 5-7 раз. Наиболее мощным стартовым перегрузкам подвержены асинхронные силовые агрегаты, обладающие короткозамкнутым ротором. Поскольку это оборудование широко применяется для работы в производственных и бытовых условиях, то вопрос защиты как самого устройства, так и питающего кабеля очень актуален. В этой статье речь пойдет о том, как правильно рассчитать и выбрать автомат защиты электродвигателя.
Задачи устройств для защиты электродвигателей
Бытовую электротехнику от пусковых токов большой величины в сетях обычно защищают с помощью трехфазных автоматических выключателей, срабатывающих через некоторое время после того, как величина тока превысит номинальную. Таким образом, вал мотора успевает раскрутиться до нужной скорости вращения, после чего сила потока электронов снижается. Но защитные устройства, используемые в быту, не имеют точной настройки. Поэтому выбор автоматического выключателя, позволяющего защитить асинхронный двигатель от перегрузок и сверхтоков короткого замыкания, более сложен.
Современные автоматы для защиты двигателя нередко устанавливаются в общем корпусе с пускателями (так называются коммутационные устройства запуска мотора). Они предназначены для выполнения следующих задач:
- Защита устройства от сверхтока, возникшего внутри мотора или в цепи подачи электропитания.
- Предохранение силового агрегата от обрыва фазного проводника, а также дисбаланса фаз.
- Обеспечение временной выдержки, которая необходима для того, чтобы мотор, вынужденно остановившийся в результате перегрева, успел охладиться.
Управляющая и защитная автоматика для двигателя на видео:
- Отключение установки, если нагрузка перестала подаваться на вал.
- Защита силового агрегата от долгих перегрузок.
- Защита электромотора от перегрева (для выполнения этой функции внутри установки или на ее корпусе монтируются дополнительные температурные датчики).
- Индикация рабочих режимов, а также оповещение об аварийных состояниях.
Необходимо также учитывать, что автомат для защиты электродвигателя должен быть совместим с контрольными и управляющими механизмами.
Расчет автомата для электродвигателя
Еще недавно для защиты электрических моторов использовалась следующая схема: внутри пускателя устанавливался тепловой регулятор, подключенный последовательно с контактором. Этот механизм работал таким образом. Когда через реле в течение длительного времени проходил ток большой величины, происходил нагрев установленной в нем биметаллической пластины, которая, изгибаясь, прерывала контакторную цепь. Если превышение установленной нагрузки было кратковременным (как бывает при запуске двигателя), пластинка не успевала нагреться и вызвать срабатывание автомата.
Внутреннее устройство автомата защиты двигателя на видео:
Главным минусом такой схемы было то, что она не спасала агрегат от скачков напряжения, а также дисбаланса фаз. Сейчас защита электрических силовых установок обеспечивается более точными и современными устройствами, о которых мы поговорим чуть позже. А теперь перейдем к вопросу о том, как производится расчет автомата, который нужно установить в цепь электромотора.
Чтобы подобрать защитный автоматический выключатель для электроустановки, необходимо знать его времятоковую характеристику, а также категорию. Времятоковая характеристика от номинального тока, на который рассчитан АВ, не зависит.
Чтобы автоматический выключатель не срабатывал каждый раз при запуске мотора, величина пускового тока не должна быть больше той, которая вызывает моментальное срабатывание аппарата (отсечка). Соотношение тока запуска и номинала прописывается в паспорте оборудования, максимально допустимое – 7/1.
Производя расчет автомата практически, следует использовать коэффициент надежности, обозначаемый символом Kн. Если номинальный ток устройства не превышает 100А, то величина Kн составляет 1,4; для больших значений она равна 1,25. Исходя из этого, значение тока отсечки определяется по формуле Iотс ≥ Kн х Iпуск. Автоматический выключатель выбираем в соответствии с рассчитанными параметрами.
Еще одна величина, которую необходимо учитывать при подборе, когда автомат монтируется в электрощитке или специальном шкафу – температурный коэффициент (Кт). Это значение составляет 0,85, и номинальный ток защитного устройства при подборе следует умножать на него (In/Кт).
Современные устройства электрозащиты силовых агрегатов
Большой популярностью пользуются модульные мотор-автоматы, представляющие собой универсальные устройства, которые успешно справляются со всеми функциями, описанными выше.
Кроме этого, с их помощью можно производить регулировку параметров отключения с высокой точностью.
Современные мотор-автоматы представлены множеством разновидностей, отличающихся друг от друга по внешнему виду, характеристикам и способу управления. Как и при подборе обычного аппарата, нужно знать величину пускового, а также номинального тока. Кроме этого, надо определиться, какие функции должно выполнять защитное устройство. Произведя нужные расчеты, можно покупать мотор-автомат. Цена этих устройств напрямую зависит от их возможностей и мощности электрического мотора.
Особенности защиты электрических двигателей в производственных условиях
Нередко при включении устройств, мощность которых превышает 100 кВт, напряжение в общей сети падает ниже минимального. При этом отключения рабочих силовых агрегатов не происходит, но количество их оборотов снижается. Когда напряжение восстанавливается до нормального уровня, мотор начинает заново набирать обороты. При этом его работа происходит в режиме перегрузки. Это называется самозапуском.
Самозапуск иногда становится причиной ложного срабатывания АВ. Это может произойти, когда до временного падения напряжения установка в течение длительного времени работала в обычном режиме, и биметаллическая пластина успела прогреться. В этом случае тепловой расцепитель иногда срабатывает раньше, чем напряжение нормализуется. Пример падения напряжения в электросети автомобиля на следующем видео:
Чтобы предотвратить отключение мощных заводских электромоторов при самозапуске, используется релейная защита, при которой в общую сеть включаются токовые трансформаторы. К их вторичным обмоткам подключаются защитные реле. Эти системы подбираются методом сложных расчетов. Приводить здесь мы их не будем, поскольку на производстве эту задачу выполняют штатные энергетики.
Заключение
В этом материале мы подробно осветили тему защитных устройств для электрических двигателей, и разобрались с тем, как подобрать автомат для электромотора и какие параметры при этом должны быть учтены. Наши читатели могли убедиться, что расчеты, которые производятся при этом, совсем несложны, а значит, подобрать аппарат для сети, в которую включен не слишком мощный силовой агрегат, вполне можно самостоятельно.
Подбираем автоматический выключатель для электродвигателя
Сейчас, автоматические выключатели (АВ) пережили огромнейший скачок в своем развитии. Никто не использует плавкие предохранители или что-то подобное ввиду их очень весомых недостатков в отличие от АВ.
При этом, количество и разнообразие устройств выросло до той степени, что очень часто нужно знать, как подобрать автоматический выключатель для электродвигателя. Для того, чтобы не ошибиться в выборе автоматического выключателя, нужно иметь представление о его основных характеристиках и, конечно же, параметрах.
Первое, это номинальный ток автомата. Это то значение, на которое рассчитан автомат для нормальной работы. Все чаще, автоматы идут с регуляторами диапазона задаваемого номинального тока. Но если вы укажите величину больше, чем допустима на автомате, сработает защита, и он не будет работать.
Второе – тип автомата. Он определяет кратковременное значение силы тока, при котором автомат сработает. Если у вас автоматический выключатель подсоединен к нужной аппаратуре, то токи, возникающие при ее включении, могут быть в десятки раз больше кратковременного значения силы тока, указанного на выключателе.
Отличным примером могут послужить электродвигатели. При их запуске кратковременная сила тока возрастает как раз в 10 раз.
Существует три основных типа выключателей автоматических по кратковременному значению силы тока:
- Тип В – кратковременное увеличение значения силы тока в 3-5 раз;
- Тип С – увеличение в 5-10 раз;
- Тип Д (D) – 10-50 раз;
Следующий параметр – время срабатывания. Отрезок времени, начиная с момента, когда контролируемый параметр превысил предельное значение и до момента разомкнутого состояния контактов. По времени срабатывания, автоматические выключатели делятся на:
- Селективные – время срабатывания – 1 секунда;
- Нормальные – время от 0,02 до 0.1 секунды;
- Быстродействующие – 0, 005 секунды.
Селективные АВ используются в цепи автоматических выключателей, поскольку имеют контакт с задержкой на размыкание. Такие АВ ставятся в начале цепи автоматов, после них идут менее мощные. При возникновении аварийной ситуации, благодаря селективности, они отключат только некоторую часть оборудования, которая подвержена угрозе, а все остальное находится в рабочем состоянии.
И последнее – отключающая способность. Для автоматических выключателей это максимальное значение, которое кратковременно присутствует в цепи, для обеспечения работы выключателя(сваривание контактов при токах больше нормы). Оно может быть в сотню раз больше обычного рабочего тока. Возникает при коротком замыкании.
Нельзя забывать и о механизмах расцепления. Их существует всего два вида:
- Тепловая отсечка. В данном варианте используется пластина, которая выполнена из двух разных металлов с отличными друг от друга показателями теплопроводности. Через нее протекает рабочий ток цепи. Если значение этого тока имеет номинальное или несколько меньшее значение – пластина находится в замкнутом положении.
Но если, в течении длительного времени значение тока превысит номинальное значение – пластина нагреется, деформируется и разомкнется цепь. Тут важен факт, что ток влияет длительно и может превышать норму хоты бы на 10%. - Если вам нужна защита от больших и резких скачков тока, то следует обращать внимание на электромагнитное расцепление. Тут механизм построен на основе соленоида. Задается максимальное значение, при котором должно произойти размыкание цепи. Как только оно достигается в определенный отрезок времени (скачок), соленоид «втягивается» и размыкает контакт – защита сработала.
В нашем интернет-магазине представлены разные версии автоматических выключателей АВ2М с отличными друг от друга приводами.
Зачем использовать автоматический выключатель с электродвигателем
Автоматические выключатели были разработаны для того, чтобы запускать, защищать от перегрузок, выключать и аварийно выключать электродвигатели в случае возникновения аварийной ситуации.
В любом случае, автомат послужит защитой двигателю в экстренной ситуации. К тому же, не стоит забывать, что если вы используете электродвигатели на несколько фаз, то и выключатель может «контролировать» их работу и своевременное отключение. А это очень ценно, особенно если у вас работает высоковольтное оборудование. Его покупка или ремонт обойдутся не мало, а если сработает защита, то в худшем случае заменить нужно будет только выключатель.
Потому, автоматические выключатели являются ценным оборудованием не со стороны высокой стоимости, а со стороны высокой защиты еще более дорогостоящего и ценного оборудования, не говоря уже о помещении и работниках.
Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)