Селективность автоматических выключателей ПУЭ
Селективность автоматических выключателей ПУЭ
Сегодня очень интересная тема, однако, в нормативных документах есть пробелы на этот счет, поэтому хочу озвучить свою позицию по некоторым ситуациям селективности, а также расскажу об одном из производителей электротехнической продукции.
Пару дней назад я согласовывал проект в энергосбыте и совершенно случайно эксперт обратил мое внимание на номинальные токи последовательно стоящих автоматических выключателей расположенных в разных щитах одной электрощитовой.
Должен заметить, что здесь я немного схитрил, чтобы никто не задавал лишних вопросов я в проекте написал, что один автомат 200 А, а второй 160 А. На самом деле оба автомата на 160 А, причем один из них был существующим и никто его не собирался менять на 200 А.
Получилось как раз наоборот. По мне чуток проехались, мол, вот постоянно вам объясняю, что при расстоянии до 10 м (или 100 м) селективность можно не соблюдать. Я попросил ссылку из нормативного документа, но эксперт лишь сказал, смотрите ПУЭ.
Друзья, подскажите, пожалуйста, безграмотному проектировщику, в каком пункте ПУЭ есть требование, что селективность автоматических выключателей можно не соблюдать при расстоянии до 10-100 м. Лично я никак не могу найти.
Подобный вопрос раньше я задавал и на вебинаре ИЕК, одноко, ответ был похожий – ПУЭ.
На мой взгляд, в области проектирования существует пробел в нормативных документах по селективности защитных аппаратов.
Вы знаете, я не сторонник, чтобы завышать рядом стоящие автоматы. Но, чаще всего приходится исходить из того, что требуют проверяющие органы. Подобных проблем раньше у меня никогда не возникало, т.к. очень часто в распределительных щитах я применяю выключатели нагрузки на вводах.
Думаю, многие меня поддержат, но нет никакого смысла обеспечивать селективность защитных аппаратов в пределах одного помещения, а тем более при последовательном расположении в одном силовом щите.
Пример не селективного расположения автоматов
Но, данные мысли хотелось бы увидеть в отражении каких-либо нормативных документов. Если я их не знаю, это ведь еще не значит, что их не существует…
В одном из своих проектов, чтобы соблюсти селективность, я на вводе в распределительный щит имел оплошность установить модульный выключатель нагрузки на 125 А. В ВРУ был установлен автоматический выключатель серии ВА88-32 на номинальный ток 125 А.
В своих проектах чаще всего я не указываю производителя защитных и коммутационных аппаратов. Заказчик в праве сам выбрать, что пожелает.
Подрядчики заказали электрический щит, в который установили вот это чудо китайской промышленности:
Выключатель нагрузки SHCET
Раньше я с таким производителем вообще не сталкивался. Зашел в интернет, чтобы посмотреть производителя, оказался действительно Китай. Как известно, китайские аппараты имеют не очень хорошую репутацию. Я с этим не всегда согласен, но в данном случае я солидарен со всеми критиками китайских аппаратов.
Я не знаю, какого качества и на какой ток были рассчитаны контакты выключателя нагрузки торговой марки SHCET, но они сразу же после ввода в эксплуатацию вышли из строя. По описанию они должны выдерживать ток 125 А, но произошел перекос фаз и выключатель нагрузки SHCET ВН-32 125 А вышел из строя. На фото можете увидеть, как левый полюс подгорел.
Не зря, я вам совсем недавно говорил, что номинальный ток выключателя нагрузки надо выбирать больше номинального тока защитного автомата.
Если выключатель нагрузки вышел из строя, то я даже боюсь предположить, что будет с дифавтоматами, которые установлены в том же щите. На мой взгляд, производитель должен хотя бы в 1,5 раз закладывать предел прочности контактной группы, в зависимости от номинального тока аппарата. Возможно еще и пластмасса у них не качественная.
Я понимаю, что один аппарат — это еще не показатель, но осадок от неприятного случая останется еще на долго.
Хороших вам производителей электротехнического оборудования
Советую почитать:
нет никакого смысла обеспечивать селективность защитных аппаратов в пределах одного помещения, а тем более при последовательном расположении в одном силовом щите.
Действительно, какая разница отключится только 1 этажный щит или все здание.
С какой целью вы ставите АВ на вводе в щит(кроме вводного на ВРУ)?
Объясните мне как у вас отключится все здание?
Я очень редко ставлю автоматы на вводе распределительных щитов.
3 Категория. в одном щите последовательно вводной и отходящий не селективны. При аварии на отходящей вырубается весь щит. Если этот шит ВРУ — то все здание либо только один щит, запитанный от этого ВРУ.
но так же не делают. имелось ввиду, что отходящий из ВРУ и входной на любой распределительный щиток. то есть если между щитами меньше 10м, то можно устанавливать одинаковые автоматы. ну или не устанавливать входной.
Вводной и отходящий на ВРУ это не последовательно.
Щит учета на частный дом — классический вариант. Автомат — счетчик — автомат. Не важно какой автомат сработает: перед счетчиком либо после счетчика.
Я имею ввиду селективность по перегрузке.
Как раз по стандарту «Белэнерго» СТП 09110.20.262-08 классический вариант щита учета ВН-счетчик-АВ. Если про последовательно установленные аппараты вы подразумеваете в начале и конце линии то с точки зрения перегрузки то вообще не имеет смысла их так ставить. От перегрузки можно хоть в конце линии поставить. Например фидер к двигателю. В щите автомат без теплового расцепителя (только отсечка), а защита от перегрузки в пускателе на тепловом реле. Это конечно при условии 1 двигателя на группе. Если не ставить вводные автоматы, то проблемы не селективности по перегрузке впринципе и нет. Вот селективность при КЗ это вот проблема.
Так как там по поводу норм? Где данное решение регламентировано?
Хотя сам применяю (до 5 метров), на основании здравого смысла, вопросов ни у кого при экспертизе не возникало.
Может имеется в виду п.3.1.16 пуэ, но там говорится о расстоянии до 6м.
Неа, это немного из другой оперы.
В Гомельском энергосбыте есть «эксперты»? Очень смешная шутка.
А вобще для таких вещей существуют электронные обращения. Напиши им и пусть Вегера с своими «экспертами» официально тебе ответят про ПУЭ и про селективность.
Как я понимаю, вы тоже из Гомеля)) Не нужно сориться с такими людьми, пусть лучше они думают, что ты дурак)))
Зачем ссорится? Я постоянно пишу письма в энергосбыт, белэнерго, МАИС с просьбой прокомментировать тот или иной вопрос. Присылают официальный ответ с подписью. Никаких ссор.
Письмо — это уже крайняя мера, в последнее время у меня с ЭНЕРГОСБЫТом проблем нет.
Не согласен. Письмо — это просто обращение гражданина или официального лица. Таким образом у Вас будет, на что сослаться в случае чего-либо.
Мне тоже пришлось недавно начать переписку БелГИСС и МАС, чтобы разъяснили, почему в двухпроводке запрещено ставить УДТ.
Смотрю кому писать. Если вы пишите разработчику ТНПА, то проблем никаких не вижу, а вот если тем, с кем постоянно работаете, могут еще припомнить)))
Как говорится, не плюй в колодец, пригодится воды напиться.
Кстати, ответ хотелось бы увидеть.
что припомнить? припомнят вопрос нужно ли соблюдать селективность при расстоянии до 5 м? обидятся на всю жизнь?
Буду по итогам писать статью на своем сайте и на форуме «мастер-сити» продублирую. От БелГИСС первый ответ был ни о чем, то ли не поняли вопроса, то ли прикидываются.
почему ставить запрещено это понятно. другое дело что в ткп 149 рекомендуется ставить. одно другому противоречит. интересно было бы узнать, что вам ответят.
А мне не понятно, почему нельзя ставить. Абсурд какой-то.
Всех приветствую. Выражу пожалуй и своё мнение.
Во-первых в российских нормах ничего вроде «при расстоянии до 10 м (или 100 м) селективность можно не соблюдать» не встречал. Более того, если вспомнить суть СЕЛЕКТИВНОСТИ — становится не понятно почему ее не нужно соблюдать. На мой взгляд можно опять же в определённых случаях ставить вместо двух одинаковых ВА — один выключатель нагрузки (ВН), а после него ВА. Но и то с каждым случаем надо разбираться применяя голову, а не тупо глядя в нормы. Ну и во-вторых как говориться безопасности много не бывает. Если мы итак ставим на линии два ВА, то мне спокойнее спаться будет если они будут стоять с сохранением селективности, чем если два одинаковых. В чём прикол то, мы то все равно ставим их два штуки. Ну и в-третьих. Сам не раз «бодался» с экспертами. Скажу сакральную вещь — эксперты тоже люди, и многое могут не знать, не понимать (понимать по своему) или просто забыть. Если эксперт что-то пишет, он ОБЯЗАН это подтвердить ссылкой на определённый нормативный документ. На то он и эксперт. Если выпендриваются и говорят что-то типа смотри ПУЭ, то это просто разгильдяйство самого эксперта, его не знание предмета так сказать. Что ж ты за эксперт. Поэтому один раз моё бадание дошло до экспертного совета. Мало кто о таком слышал. И я оказался прав. Эксперт пошел на попятную. Так что не только мы учимся на их замечаниях, но и они на наших проектах. Поэтому не только они должны нам говорить как нам делать проект, но и мы в свою очередь должны говорить им (если они подзабыли) как должны выглядеть их замечания, чтобы их устранить. Всем удачи.
Во многом я с вами согласен.
Хочу пояснить, это был первый проект, где у меня были установлены 2 одинаковых автомата и то не по моей воле. Где возможно, я всегда ставлю ВН.
Я не согласен, что будет безопаснее, если поставить два разных автомата в тех случаях, что я описывал в статье. Одно дело когда без проблем можно селективно выставить 25А и 32А, а когда токи сотни ампер, то могут возникнуть трудности, особенно при подключении к существующим сетям.
Приведите тогда нормы, где сказано, что мы должны соблюдать селективность. В ПУЭ кое-где что-то есть, но это не совсем то))
Я не хочу сказать, что мы не должны соблюдать селективность, просто в некоторых обоснованных случаях возможно имеет место, то о чем написано выше.
k-igor , в вашей фразе « Одно дело когда без проблем можно селективно выставить 25А и 32А, а когда токи сотни ампер, то могут возникнуть трудности, особенно при подключении к существующим сетям» полностью с вами согласен, но только в последних словах — проблемы в этом деле начинаются когда лезешь своим проектом в существующую сеть. Безспорно.
По поводу ПУЭ, первое что нашел:
выбор защиты п.3.1.8
места установки аппаратов защиты п.3.1.15
В релейной защите также необходимо выполнять требования селективности — см. п.3.2.3, п.3.2.5, кстати, в п.3.2.3 говорится что селективность мы должны соблюдать не только в линии с ВА, но и с предохранителями.
Это что касается ПУЭ, мало, согласен, но из этого, применив голову можно вынести много правильного.
Есть еще в книгах не мало о селективности, но этот поиск займет много времени.
А какое отношение имеет релейная защита, например, к внутреннему электроснабжению супермаркета или к электроснабжению частного дома?
А книга — это нормативный документ или какой-нибудь журнал, где публикуют ведущих специалистов? Я просто хочу видеть все это в нормативных документах.
Я не тот смысл вкладывал в свои слова. Я написал что в ПУЭ «глава 3.1 выбор защиты п.3.1.8 и места установки аппаратов защиты п.3.1.15» написано, какие аппараты и где нужно ставить и что они должны удовлетворять требованиям селективности. Мне этого достаточно. А что касается релейной защиты, так это я сделал отступление скажем так от силовой части и написал что: «В релейной защите ТАКЖЕ необходимо выполнять требования селективности. ».
Я всего лишь хочу обратить внимание на то, что селективность если смотреть со стороны норм не совсем та вещь которой можно пренебречь. Нигде нет упоминания о том что можно ее не соблюдать, а вот упоминаний что она (селективность) должна быть мало, но есть.
А по поводу книг я с вами согласен. Но у книг немного другая задача. Они должны заставить мыслящего проектировщика задуматься, почитать мысли умных людей которые написали эти книги и что-то из этого вынести. И при проектировании уже стараться опираться на это, даже если в нормах эти вещи не прописаны (что как мы знаем встречается довольно-таки часто).
Селективность защиты в схемах электроснабжения
Одним их важнейших параметров, определяющих надежность схемы электроснабжения, является селективность защиты. То есть способность отключить только поврежденную линию, в которой либо в результате перегрузки, либо вследствие короткого замыкания возник сверхток, не отключая при этом другие цепи. Сверхтоком называют любое превышение тока в линии выше номинального тока аппарата защиты.
В соответствие с ГОСТ Р 50030.2-2010 (IEC 60947-2) селективность по сверхтокам может быть полная и частичная.
При полной селективности (см. 2.17.2) по сверхтокам при отключении аппарата защиты (автоматического выключателя) поврежденной линии вышестоящий по схеме автоматический выключатель не отключается при любых значениях тока перегрузки или короткого замыкания.
В случае частичной селективности (см. 2.17.3) вышестоящий (например, вводной в электрощите) автоматический выключатель щита при перегрузке или коротком замыкании в одной из отходящих линий не отключается одновременно с аппаратом защиты поврежденной линии только в определенном диапазоне токов.
Для достижения требуемой селективности автоматические выключатели подбирают по их времятоковым характеристикам с учетом разброса их параметров. При этом следует пользоваться данными по обеспечению селективности конкретных аппаратов (чаще всего представлены в виде таблиц селективности), предоставляемыми производителями автоматических выключателей.
Добиться полной селективности, используя модульные автоматические выключатели по ГОСТ Р 50345-2010 (МЭК 60898) как правило, практически невозможно. Например, если номинальный ток вводного автоматического выключателя 25 А, а номинальные токи автоматических выключателей отходящих линий 10 А, то селективность при одинаковых характеристиках срабатывания выключателей ограничивается в диапазоне токов до 200 А. То есть при токах короткого замыкания более 200 А автоматические выключатели отключатся не селективно (как правило, оба одновременно). Максимальный ток короткого замыкания, который может возникнуть, рассчитывают или измеряют в точке подключения ближайших по длине кабеля нагрузок (розеток, светильников).
Если вводной автоматический выключатель имеет характеристику срабатывания D при номинальном токе 25 А, а выключатель отходящей линии характеристику C при номинальном токе 10 А, то по таблицам селективности удается подобрать пару выключателей, которые обеспечат селективность при токах короткого замыкания до 500 – 600А. Автоматические выключатели должны быть одного производителя, в противном случае никто не даст никаких гарантий по селективности. А в случае возникновения аварийной ситуации из-за отсутствия селективности претензии предъявить будет некому.
В соответствие с требованиями ГОСТ 50345-2010 (МЭК 60898), модульные автоматические выключатели (для бытового и аналогичного применения) при коротком замыкании должны срабатывать за время, не превышающее 0,1 секунды. Обычно такие выключатели (в зависимости от производителя) срабатывают при коротком замыкании за время 0,03 – 0,05 секунды. При использовании неселективных выключателей, особенно разных производителей, может возникнуть ситуация, когда при коротком замыкании будет отключаться только вышестоящий аппарат защиты. Поэтому гарантии по селективности двух конкретных типов выключателей может дать только их производитель. Таблицы селективности можно найти в каталогах на низковольтное оборудование.
При использовании модульных автоматических выключателей для достижения частичной селективности хотя бы в небольшом диапазоне токов (что определяет размер селективной зоны действия защит по длине отходящей линии) отношение номинального тока вышестоящего аппарата (например, вводного) к нижестоящему, (например, групповых линий) должно быть, как правило, не менее 2,5 — 3.
Для достижения полной селективности при защите отходящих групповых линий модульными автоматическими выключателями по ГОСТ 50345-2010 (МЭК 60898), вышестоящие аппараты защиты электрощитов и автоматические выключатели для защиты распределительной сети должны соответствовать ГОСТ Р 50030.2-2010 (IEC 60947-2) и обладать в зоне действия селективной токовой отсечки определенным временем несрабатывания (как правило, данное время составляет несколько десятков миллисекунд). При этом отношение номинальных токов выключателей должно быть не менее 1,6. Для получения более точных данных следует пользоваться таблицами селективности, или запрашивать информацию у производителей оборудования.
Следует отметить, что в зоне действия неселективной (мгновенной) токовой отсечки вышестоящего аппарата (обычно при значительных токах короткого замыкания вблизи мощных источников питания, определяемых расчетным путем) селективность у ряда производителей так же может быть обеспечена за счет так называемого «рефлексного отключения», когда энергия замыкания рассеивается на нижестоящем аппарате, обладающем функцией токоограничения (быстрое отключение до достижения максимального пика тока менее, чем за 10 мс). В этом случае энергии замыкания, пропускаемой через вышестоящий аппарат недостаточно для его срабатывания.
В распределительных щитах аварийного освещения и других систем обеспечения безопасности зданий необходимо обеспечить максимальную, желательно полную селективность защиты. В обоснованных случаях допускается частичная селективность, если максимальный ток короткого замыкания не выходит за пределы диапазона токов, при которых выполняется условие селективности. Нельзя допустить, что бы при коротком замыкании в отдельной групповой линии отключился вышестоящий (вводной) аппарат защиты.
Необходимо стремиться к уменьшению количества ступеней, используя, где это допустимо, на вводе в щиток выключатель нагрузки. В этом случае селективность должна быть обеспечена между автоматическими выключателями групповых линий и автоматическим выключателем, защищающим распределительную сеть. При использовании выключателей нагрузки на вводе в щиток освещения удается значительно повысить надежность сети аварийного освещения в случае, если вышестоящий аппарат защиты обеспечивает полную селективность с групповыми аппаратами, по сравнению со схемой, когда на вводе в щиток предусматривают аппарат, обеспечивающий только частичную селективность. Если же вышестоящий аппарат, защищающий распределительную сеть, и и вводной аппарат в щиток, предусматриваются одинаковыми (обеспечивающими селективность с групповыми аппаратами), то это ведет к удорожанию и, как правило нерациональному усложнению схемы. При этом данные аппараты работают между собой не селективно. Селективное же их выполнение приводит к завышению вышестоящей защиты, увеличению сечений питающих линий и к неоправданным затратам. Поэтому подобные решения следует применять только в обоснованных случаях (например, при необходимости разделения зон ответственности эксплуатирующих организаций).
Часто в примечаниях к схеме распределительного щита можно увидеть фразу: «Допускается использовать оборудование других производителей, имеющее аналогичные параметры». Следует учитывать, что подбирать автоматические выключатели следует всегда с учетом их селективности.
В электрощитах многих зданий, построенных 30 – 40 лет назад, можно увидеть стандартные электрические щиты, в которых вводной автоматический выключатель установлен с номинальным током 100 А и автоматические выключатели отходящих линий на 10 и 16 А. Если расчетный ток такого щита не превышает 40 – 50 А, то иногда службы эксплуатации здания получают предписание установить в щит вводной автоматический выключатель, соответствующий расчетному току. И когда в такой щит устанавливают современный аппарат защиты, то при коротком замыкании в любой отходящей линии могут отключиться и вводной и групповой аппарат и даже только вводной автоматический выключатель. В щитах аварийного освещения подобное недопустимо.
Автор выражает глубокую признательность Сергею Волкову (АО «Атомэнергопроект»), за полезные советы и рекомендации, сделанные при подготовке статьи.
Что означает селективность в электрике, виды селективной защиты
Одно из ключевых понятий в области электрики является селективность. Не секрет, что безопасность работы электросетей крайне важна, а обеспечить ее можно разными способами. Селективность – это особая функция релейной защиты, благодаря которой удается избегать поломок устройств и повышать их эксплуатационный срок.
Общее понятие селективности
Как уже было сказано, под селективностью понимают особенность релейной защиты. Она определяется возможностью выискивать неисправный элемент во всей электросети и отключать именно аварийный участок, а не всю систему.
Селективная защита может быть абсолютной и относительной.
- Абсолютная защита предполагает точное срабатывание предохранителей на том участке сети, где случилось замыкание или поломка.
- Относительная селективность вызывает отключение автоматов, находящихся также около места поломки, если защита на тех участках не сработала.
Главные функции
Ключевые задачи селективной защиты — обеспечение бесперебойного функционирования электросистемы и недопустимость сгорания механизмов при появлении угроз. Единственным условием для корректной работы такого типа защиты считают согласованность защитных агрегатов между собой.
Как только возникает аварийная ситуация, испорченный участок при помощи селективной защиты мгновенно определяется и отключается. При этом исправные места продолжают работу, а отключенные никак им в этом не мешают. Селективность существенно снижает нагрузку на электрические установки.
Базовый принцип обустройства такого типа защиты кроется в оборудовании автоматов с номинальным током, который меньше, чем у прибора на вводе. В сумме они могут превышать номинал группового автомата, но по отдельности – никогда. К примеру, при установке вводного устройства на 50 А следующий аппарат не должен обладать номиналом выше 40 А. Первым всегда сработает агрегат, находящийся максимально близко к месту ЧП.
ОБРАТИТЕ ВНИМАНИЕ! Выбор автоматов, в том числе и для защиты с абсолютной селективностью, зависит от их номинала и характеристик срабатывания, которые имеют обозначения В, С и D. Зачастую приборами, которые оберегают электросистему, служат различные виды автоматов, предохранителей, УЗО.
Таким образом, к основным функциям селективной защиты можно отнести:
- обеспечение безопасности электрических приборов и работников;
- быстрое выявление и отключение той зоны электросистемы, где случилась поломка (при этом рабочие зоны не прекращают функционирование);
- снижение негативных последствий для рабочих частей электромеханизмов;
- снижение нагрузки на составные механизмы, предотвращение поломок в неисправной зоне;
- гарантия непрерывного рабочего процесса и постоянного электроснабжения высокого уровня.
- поддержка оптимальной работы той или иной установки.
Виды селективной защиты
Полная и частичная
Полная защита предназначена для последовательного подключения приборов. При аварии максимально быстро сработает тот защитный агрегат, который находится ближе всех к месту поломки. Частичная селективная защита во многом похожа на полную, но функционирует лишь до определенной величины тока.
Временная и времятоковая
Временная селективность – это когда у последовательно подсоединенных аппаратов при идентичных характеристиках тока установлена отличающаяся выдержка времени на срабатывание (при последовательном увеличении от проблемной зоны до источника питания). Временная защита применяется, чтобы автоматы могли подстраховать друг друга в случае сбоя. К примеру, первый должен сработать через 0,1 секунды, если он неисправен, спустя 0,5 секунды в дело вступает второй, а при необходимости третий заработает через 1 секунду.
Времятоковую селективность считают максимально сложной. Для нее применяется аппаратура 4 групп – А, В, С и D. У каждой из них наблюдается персональная реакция на электроток и отключение в необходимый момент. Наилучшая защита достигается в группе A, которая используется в основном для электроцепей. Самый популярный тип агрегатов — С, однако специалисты не советуют устанавливать их повсеместно и непродуманно.
Селективность по току
Данная разновидность схожа по методу работы с временной, однако отличие в том, что главным критерием выступает предельная величина токовой отметки. Значения тока выстраиваются в порядке убывания от источника питания до объектов загрузки.
Если около выключателя А возникает КЗ, защита конца В не должна работать, а сам выключатель обязан снимать напряжение с прибора. Чтобы селективность по току гарантировала тотальную избирательность, потребуется иметь большое сопротивление между обоими выключателями. Его получают при помощи:
- протяженной линии электропередачи;
- вставки обмотки трансформатора;
- включения в разрыв провода сечения меньшего размера.
Проектируем электрику вместе
06.08.2013
Выбор автоматических выключателей
В соответствие с табл. 1.7.1 расчетное время отключения не превышает допустимого значения (0,21 сек. сек.).
Таким образом, вводной автоматический выключатель по режиму КЗ выбран правильно.
Пример 4 . Проверим автомат для групповой розеточной сети на соответствие расчетным токам КЗ и допустимому времени защитного отключения.
Дано:
• групповой автомат ВА47-29 С20 с отключающей способностью 4,5кА;
• расчетный ток КЗ в конце линии 1,0 кА
• марка кабеля ВВГнг 3х2,5
Отключающая способность выбранного автомата соответствует расчетному току КЗ.
Время отключения тока КЗ = 1,0 кА определим по формуле:
√t = КS/I ; t =(КS/I)2 = (115∙2,5/1000)2 = 0,1 сек.
Для уровней А и Б характерны следующие особенности:
• повышенные требования к бесперебойности электроснабжения, так как ложное срабатывание аппарата на этих уровнях приводит к отключению большого числа потребителей;
• относительно высокие значения токов короткого замыкания в силу близости к источнику питания;
• большие номинальные токи, так как вся нагрузка нижерасположенной сети питается от этих секций.
Между аппаратами на ГРЩ и нижестоящими аппаратами наиболее часто используется временная селективность. Этот вид селективности обеспечивается за счет смещения или сдвига времятоковых характеристик последовательно расположенных автоматических выключателей по оси времени (см. рис. 4).
Рис. 4. Временная селективность
Уровень В. Конечное распределение
Основными требованиями этого уровня, как правило, являются обеспечение эффективного токоограничения и электробезопасность (т.к. аппараты этого уровня наиболее часто защищают непосредственно конечного потребителя). Поэтому на этом уровне применяются модульные токоограничивающие автоматические выключатели.
Этот случай, когда рассматриваемая пара автоматических выключателей относится к токоограничивающим, является наиболее сложным видом координации защитных аппаратов.
Поэтому координация токоограничивающих аппаратов согласно МЭК 60947.2 (ГОСТ 50030.2) может быть гарантирована только производителем, который обязан проводить испытания и подтверждать таким образом этот тип координации. Результатом этих испытаний и гарантией обеспечения селективности между токоограничивающими аппаратами являются специальные таблицы селективности, которые имеются в каталогах фирм-производителей оборудования. Такие таблицы разработаны для профессиональных серий защитных аппаратов.
Кроме рассмотренной временной селективности, еще есть следующие виды селективности :
• токовая селективность, которая предполагает смещение или разнесение время-токовых характеристик последовательно расположенных защит по оси тока;
• зонная или логическая селективность — реализуется между двумя аппаратами защиты, объединенными специальным каналом связи. Когда расположенный ниже аппарат обнаруживает повреждение, он посылает сигнал вышестоящему выключателю, который начинает отсчет выдержки времени. Если за это время расположенный ниже выключатель не в состоянии отключить возникшее повреждение, то срабатывает выключатель, расположенный выше.
Селективность по току обеспечивается путем задания различных уставок автоматических выключателей (максимальной токовой отсечки). Более высокие уставки имеют автоматические выключатели на стороне питания. Эти решения приемлемы для уровней А (ГРЩ) и уровня Б (вторичное распределение) системы электроснабжения, т. е. для больших автоматов, расцепители которых всегда можно подстроить. При конечном распределении электроэнергии (уровень В), где главным образом используются модульные токоограничивающие автоматы (бюджетные серии), селективность не обеспечивается или возможна только частичная селективность.
Например, в бытовом жилом секторе токи КЗ на вводе в дом и у самого удаленного потребителя будут отличаться незначительно (сети, как правило, короткие). При токах КЗ от 1000 до 3000 А, характерных для таких сетей, модульные автоматические выключатели в аварийной групповой сети и на вводе будут срабатывать практически одновременно. Чтобы этого не происходило, можно установить на вводе вместо вводного автомата выключатель нагрузки. Сделать это несложно, поскольку малогабаритных разъединителей нагрузки с установкой на дин-рейку на рынке предостаточно. В этом случае при КЗ будет отключаться только аварийная групповая линия.
При перегрузках с елективную работу автоматических выключателей обеспечить просто. Для этого достаточно, чтобы номинальный ток автомата со стороны питания был больше номинального тока автоматического выключателя со стороны потребителей.
Похожие статьи:
1. Автоматические выключатели
2. Почему не работает выключатель?
3. Что делать, если автоматический выключатель отключает нагрузку?
4. Как сбросить сработавший выключатель?
Если статья Вам понравилась и Вы цените вложенные в этот проект усилия – у Вас есть возможность внести посильный вклад в развитие сайта на странице «Поддержка проекта».
Внимание! Всех интересующихся практической электротехникой приглашаю на страницы своего нового сайта «Электрика для дома» . Он посвящен основам электротехники и электричества с акцентом на домашние электрические установки и происходящие в них процессы.
Что такое селективность? Расчет селективности автоматических выключателей
Что такое селективность в области электрики?
Селективность или избирательность – особенность релейной защиты, которая определяется умением находить неисправный элемент всей электрической системы и выключать именно его. Защита может быть двух видов: абсолютная и относительная, в зависимости от отключения участков. В первом случае более точно срабатывают предохранители на том участке, где произошло замыкание или поломка. Второй тип селективности заставляет отключаться автоматы, которые находятся выше, если защита других не вступила в действие по каким-либо причинам.
Редакторы сайта рекомендуют ознакомиться с лучшими брендами розеток и выключателей.
Типы селективности электрических приборов
Классификацию защиты электрических устройств можно представить в различии схем подключения:
- Полная. Если несколько приборов подключены последовательно, то на неисправность быстрее реагирует тот, что находится ближе к зоне аварии.
- Частичная. Принцип действия селективности автоматов аналогичен с полной, но существует ограничение величины тока.
- Временная. Такого рода избирательность предполагает разное время выдержки автоматов с одинаковыми характеристиками на срабатывание в случае поломки. Эта защита предназначена для того, чтобы подстраховать автоматы по скорости выключения. Например: первый начинает действовать спустя 0,2 сек, второй – 0,4 сек и т. д.
- Токовая. Принцип работы селективности тот же, что и у временной, но в этом случае параметром выступает максимальная токовая отметка. Выставляются определённые значения в порядке убывания от источника питания до объекта нагрузки. Например, при вводе 28 А., к розеткам 18 А и 12 – к свету.
- Времятоковая. Одна из самых сложных систем по защите от неисправностей. Аппараты подразделяются на четыре различные группы: A, B, C и D, каждая из которых реагирует на ток. В этом случае сложно составить схему защиты автоматических выключателей при коротком замыкании. Наиболее эффективна защита будет при первой группе А. Её используют в основном для электронных цепей. Наибольшую популярность и распространённость получили аппараты типа С, однако следует серьёзно отнестись к их установке.
- Зонная. Этот способ защиты используется чаще всего в промышленности, так как он является дорогостоящим и довольно сложным. За работой электрической сети следят специальные приборы. При достижении установленного значения все данные передаются в центр контроля, где выбирается аппарат для выключения. Селективность этого вида предполагает наличие специальных электронных расцепителей. Они действуют следующим образом: при обнаружении какого-либо нарушения аппарат, расположенный ниже, подаёт сигнал другому автомату, который находится выше. Если в течение 1 секунды не сработает первое устройство, включится второе.
- Энергетическая. Здесь автоматы действуют очень быстро, благодаря чему ток короткого замыкания не успевает достичь максимального значения.
Виды селективной защиты
Полная и частичная
Полная защита предназначена для последовательного подключения приборов. При аварии максимально быстро сработает тот защитный агрегат, который находится ближе всех к месту поломки. Частичная селективная защита во многом похожа на полную, но функционирует лишь до определенной величины тока.
Временная и времятоковая
Временная селективность – это когда у последовательно подсоединенных аппаратов при идентичных характеристиках тока установлена отличающаяся выдержка времени на срабатывание (при последовательном увеличении от проблемной зоны до источника питания). Временная защита применяется, чтобы автоматы могли подстраховать друг друга в случае сбоя. К примеру, первый должен сработать через 0,1 секунды, если он неисправен, спустя 0,5 секунды в дело вступает второй, а при необходимости третий заработает через 1 секунду.
Времятоковую селективность считают максимально сложной. Для нее применяется аппаратура 4 групп – А, В, С и D. У каждой из них наблюдается персональная реакция на электроток и отключение в необходимый момент. Наилучшая защита достигается в группе A, которая используется в основном для электроцепей. Самый популярный тип агрегатов – С, однако специалисты не советуют устанавливать их повсеместно и непродуманно.
Селективность по току
Данная разновидность схожа по методу работы с временной, однако отличие в том, что главным критерием выступает предельная величина токовой отметки. Значения тока выстраиваются в порядке убывания от источника питания до объектов загрузки.
Если около выключателя А возникает КЗ, защита конца В не должна работать, а сам выключатель обязан снимать напряжение с прибора. Чтобы селективность по току гарантировала тотальную избирательность, потребуется иметь большое сопротивление между обоими выключателями. Его получают при помощи:
- протяженной линии электропередачи;
- вставки обмотки трансформатора;
- включения в разрыв провода сечения меньшего размера.
Расчёт селективности
Чаще всего защитными устройствами выступают обыкновенные автоматические выключатели. Их селективность обеспечивается с помощью верного выбора и настроек параметров. Принцип работы таких выключателей обусловлен выполнением следующего условия:
- Iс.о.послед ≥ Kн.о.* I к.пред., где: — Iс.о.послед — ток, при котором вступает в действие защита;
- — I к.пред. — ток короткого замыкания в конце зоны действия защиты;
- — Kн.о. — коэффициент надёжности, зависящий от параметров.
Определить селективность при управлении аппаратов по времени можно при помощи следующей формулы:
- tс.о.послед ≥ tк.пред.+ ∆t, где: — tс.о.послед и tк.пред. — временные интервалы, через которые срабатывают отсечки автоматов, в зависимости от близости к источнику питания;
- — ∆t — временная ступень селективности.
Что это такое?
В первую очередь, понятие «селективность» включает в себя защитный механизм и отлаженную работу неких приборов, состоящих из отдельных элементов, последовательно подключенных между собой. Зачастую такими приборами служат различные виды автоматов, предохранителей, УЗО и т.д. Результатом их работы является предупреждение «сгорания» электромеханизмов в случае возникновения угроз. Схема селективной работы автоматических выключателей и УЗО в щитке предоставлена ниже:
Преимуществом данной системы является ее свойство отключать лишь необходимые участки, при этом вся остальная система остается в рабочем состоянии. Единственным условием при этом остается согласованность защитных устройств между собой.
Карта селективности
Для того чтобы обеспечить максимальную защиту автоматических выключателей, нужна специальная карта селективности или её графическое изображение. Эта карта представляет собой своеобразную схему, где отображаются все совокупности токовых характеристик используемых устройств в электрической сети (пример представлен ниже).
Одно из основных правил защиты выключателей – все автоматы должны быть подключены друг за другом по очереди. Карта селективности предназначена для изображения характеристик всех этих приборов. Для её создания необходимо придерживаться ряда правил:
- Установки защит должны исходить из одного напряжения;
- Рисуя карту нужно правильно выбрать масштаб, чтобы были изображены все расчётные точки;
- Помимо характеристик автоматов, следует указать максимальные и минимальные значения коротких замыканий в точках системы.
Как показывает практика, селективность защиты требуется не всегда. Её применяют, только если есть риск серьёзных повреждений. Когда при расчёте получаются высокие значения номиналов автоматов, рекомендуется установить рубильники или специальные селективные устройства.
Селективность автоматов ПУЭ
Существует свод правил устройств электроустановок (ПУЭ), где есть чёткие понятия, как эксплуатировать автоматические выключатели. В пункте 3.1.4. сказано: для того чтобы автоматы защиты не отключали устройства при кратковременных перегрузках, уставки выключателей нужно выбирать по номинальным токам электроприёмников.
Следует выделить ещё одно важное правило: в качестве устройств защиты должны использоваться предохранители и автоматические выключатели.
Принцип селективности для выбора выключателей
При проведении электрики в доме необходимо учитывать тот факт, что ток может причинить большой вред. Во избежание неприятных последствий устанавливают предохранители или автоматические выключатели. Принцип селективности позволяет надёжно использовать электрическую сеть благодаря правильному выбору автоматов.
Для абсолютно любой схемы выявляется определённая система защиты, которая разделяют проводку на определённые участки, именуемые электрическими цепями. Поломка может возникнуть внутри приёмника, генератора или же проводов. Каждая неисправность требует особенного технического решения, благодаря которому можно быстро и эффективно найти и исправить повреждение.
Принцип селективности призван определять правила установки и совместимости защит. Он обеспечивает:
- безопасность электрики и людей;
- автоматическое выявление зоны поломки и её устранение;
- снабжение электрическим током все участки, расположенные рядом с повреждённым;
- поддержание качества электроэнергии.
Обобщая все вышесказанное, можно отметить, что избирательность защитных устройств, в том числе и автоматических выключателей, необходимо всегда учитывать при установке электрической проводки для безопасного и наиболее надёжного использования.
Главные функции
Ключевые задачи селективной защиты — обеспечение бесперебойного функционирования электросистемы и недопустимость сгорания механизмов при появлении угроз. Единственным условием для корректной работы такого типа защиты считают согласованность защитных агрегатов между собой.
Как только возникает аварийная ситуация, испорченный участок при помощи селективной защиты мгновенно определяется и отключается. При этом исправные места продолжают работу, а отключенные никак им в этом не мешают. Селективность существенно снижает нагрузку на электрические установки.
Базовый принцип обустройства такого типа защиты кроется в оборудовании автоматов с номинальным током, который меньше, чем у прибора на вводе. В сумме они могут превышать номинал группового автомата, но по отдельности – никогда. К примеру, при установке вводного устройства на 50 А следующий аппарат не должен обладать номиналом выше 40 А. Первым всегда сработает агрегат, находящийся максимально близко к месту ЧП.
ОБРАТИТЕ ВНИМАНИЕ! Выбор автоматов, в том числе и для защиты с абсолютной селективностью, зависит от их номинала и характеристик срабатывания, которые имеют обозначения В, С и D. Зачастую приборами, которые оберегают электросистему, служат различные виды автоматов, предохранителей, УЗО.
Таким образом, к основным функциям селективной защиты можно отнести:
- обеспечение безопасности электрических приборов и работников;
- быстрое выявление и отключение той зоны электросистемы, где случилась поломка (при этом рабочие зоны не прекращают функционирование);
- снижение негативных последствий для рабочих частей электромеханизмов;
- снижение нагрузки на составные механизмы, предотвращение поломок в неисправной зоне;
- гарантия непрерывного рабочего процесса и постоянного электроснабжения высокого уровня.
- поддержка оптимальной работы той или иной установки.
Селективность автоматических выключателей: теория и практика
Проектируя новую электрическую сеть или реконструируя уже существующую, всегда необходимо придерживаться требований, которые создают условия надежной работы. В частности, речь идет о селективности — согласовании рабочих характеристик защитных аппаратов на всех этапах распределения электроэнергии. Это делается для того, чтобы в случае короткого замыкания или перегрузки сработал только тот защитный аппарат, в цепи которого возникла неисправность. При этом остальная часть электроустановки должна не отключаться, а оставаться в работе.
Например, если произошло короткое замыкание в розетке на кухне, то должен сработать групповой автоматический выключатель (на схеме аппарат с защитной характеристикой «В» и номинальным током в 10 А). Таким образом, должна отключиться только поврежденная линия «розетки кухни», а не вводной аппарат, отключая при этом всю квартиру.
Если отключения защитного аппарата по каким-либо причинам не произошло, то возникшую неисправность в розетке контролирует вышестоящий автоматический выключатель квартирного щитка.
Основные определения:
Селективность — согласование характеристик установленных последовательно аппаратов защиты таким образом, чтобы в случае аварии отключалась только та линия питания или часть схемы, где возникла неполадка.
Полная селективность — вид координации работы защитных аппаратов, при котором аппарат со стороны потребителя отключается раньше, чем аппарат со стороны источника питания. Отключение происходит во всем диапазоне возможного тока к.з. в данной сети вплоть до значения максимальной отключающей способности нижестоящего аппарата.
Частичная селективность — вид координации работы защитных аппаратов, при котором аппарат со стороны потребителя осуществляет защиту до значения Is (предельного тока селективности). При этом аппарат со стороны источника питания не должен срабатывать.
Зона перегрузки — диапазон сверхтока, в котором за срабатывание автоматического выключателя отвечает тепловой расцепитель.
Зона короткого замыкания — диапазон сверхтока, в котором за срабатывание автоматического выключателя отвечает электромагнитный расцепитель.
Избирательность срабатывания устройств защиты достигается за счет согласования время-токовых характеристик. Например, для обеспечения селективной работы оборудования при перегрузках достаточно, чтобы номинальный ток защитного аппарата со стороны питания минимум на 1 ступень был выше номинального тока автоматического выключателя со стороны нагрузки.
Методы обеспечения селективности
В зоне перегрузки обычно реализуется время-токовый тип селективности. В зоне КЗ могут использоваться другие методы обеспечения селективности, о которых мы поговорим далее.
Временная селективность
Этот вид селективности обеспечивается благодаря разному времени срабатывания аппаратов защиты.
Время срабатывания ближайшего к защитному оборудованию аппарата защиты №1 настраивается на значение 0,02 с. На следующем этапе защиты отключение неисправности в цепи обеспечивается настройкой времени срабатывания аппарата 0,5 с. На последнем этапе выбирается время срабатывания выключателя — 1 секунда. Защита № 3 будет резервировать 2 нижестоящие защиты №1 и №2.
Токовая селективность
У всех защит №1, №2 и №3 выдержка по времени срабатывания минимальна: 0,02 с, однако значения срабатывания по току (уставки) отличаются: 200, 300 и 400 А соответственно. При возникновении в защищаемой сети короткого замыкания ток будет резко возрастать и вызывать срабатывание защит. Если защита №1 не сработает, то ее будет резервировать следующая защита №2.
Время-токовая селективность
Еще одним способом настройки защиты электроустановок до 1 кВ является согласование время-токовых характеристик применяемых автоматических выключателей.
Так, например, можно добиться избирательности срабатывания защиты, подобрав время-токовую характеристику выключателя В таким образом, чтобы она располагалась на определенном расстоянии ниже характеристики выключателя А. Эта зона определяется опытно-расчетным путем с учетом погрешностей срабатывания защит расцепителей. С учетом этой зоны строятся таблицы селективности.
Сегодня производители предоставляют своим клиентам уже готовые таблицы селективности, при помощи которых можно с уверенностью выбирать гарантированно селективные связки автоматических выключателей.
Выбирая аппараты защиты с учетом требований селективности защиты, вы повышаете не только надежность электроустановки, но и упрощаете работу по поиску поврежденного участка. Создать селективную защиту, применяя аппараты разных производителей, проблематично, поэтому следует устанавливать защитные аппараты одного производителя, дополнительно пользуясь специальными таблицами селективности.
ПУЭ. Раздел 3. Защита и автоматика
Раздел 3. Защита и автоматика
Глава 3.1. Защита электрических сетей напряжением до 1 кВ
Область применения, определения
3.1.1. Настоящая глава Правил распространяется на защиту электрических сетей до 1 кВ, сооружаемых как внутри, так и вне зданий. Дополнительные требования к защите сетей указанного напряжения, вызванные особенностями различных электроустановок, приведены в других главах Правил.
3.1.2. Аппаратом защиты называется аппарат, автоматически отключающий защищаемую электрическую цепь при ненормальных режимах.
Требования к аппаратам защиты
3.1.3. Аппараты защиты по своей отключающей способности должны соответствовать максимальному значению тока КЗ в начале защищаемого участка электрической сети (см. также гл. 1.4).
Допускается установка аппаратов защиты, нестойких к максимальным значениям тока КЗ, а также выбранных по значению одноразовой предельной коммутационной способности, если защищающий их групповой аппарат или ближайший аппарат, расположенный по направлению к источнику питания, обеспечивает мгновенное отключение тока КЗ, для чего необходимо, чтобы ток уставки мгновенно действующего расцепителя (отсечки) указанных аппаратов был меньше тока одноразовой коммутационной способности каждого из группы нестойких аппаратов, и если такое неселективное отключение всей группы аппаратов не грозит аварией, порчей дорогостоящего оборудования и материалов или расстройством сложного технологического процесса.
3.1.4. Номинальные токи плавких вставок предохранителей и токи уставок автоматических выключателей, служащих для защиты отдельных участков сети, во всех случаях следует выбирать по возможности наименьшими по расчетным токам этих участков или по номинальным токам электроприемников, но таким образом, чтобы аппараты защиты не отключали электроустановки при кратковременных перегрузках (пусковые токи, пики технологических нагрузок, токи при самозапуске и т. п.).
3.1.5. В качестве аппаратов защиты должны применяться автоматические выключатели или предохранители. Для обеспечения требований быстродействия, чувствительности или селективности допускается при необходимости применение устройств защиты с использованием выносных реле (реле косвенного действия).
3.1.6. Автоматические выключатели и предохранители пробочного типа должны присоединяться к сети так, чтобы при вывинченной пробке предохранителя (автоматического выключателя) винтовая гильза предохранителя (автоматического выключателя) оставалась без напряжения. При одностороннем питании присоединение питающего проводника (кабеля или провода) к аппарату защиты должно выполняться, как правило, к неподвижным контактам.
3.1.7. Каждый аппарат защиты должен иметь надпись, указывающую значения номинального тока аппарата, уставки расцепителя и номинального тока плавкой вставки, требующиеся для защищаемой им сети. Надписи рекомендуется наносить на аппарате или схеме, расположенной вблизи места установки аппаратов защиты.
Выбор защиты
3.1.8. Электрические сети должны иметь защиту от токов короткого замыкания, обеспечивающую по возможности наименьшее время отключения и требования селективности.
Защита должна обеспечивать отключение поврежденного участка при КЗ в конце защищаемой линии: одно-, двух- и трехфазных — в сетях с глухозаземленной нейтралью; двух- и трехфазных — в сетях с изолированной нейтралью.
Надежное отключение поврежденного участка сети обеспечивается, если отношение наименьшего расчетного тока КЗ к номинальному току плавкой вставки предохранителя или расцепителя автоматического выключателя будет не менее значений, приведенных в 1.7.79 и 7.3.139.
3.1.9. В сетях, защищаемых только от токов КЗ (не требующих защиты от перегрузки согласно 3.1.10), за исключением протяженных сетей, например сельских, коммунальных, допускается не выполнять расчетной проверки приведенной в 1.7.79 и 7.3.139 кратности тока КЗ, если обеспечено условие, чтобы по отношению к длительно допустимым токовым нагрузкам проводников, приведенным в таблицах гл. 1.3, аппараты защиты имели кратность не более:
- 300% для номинального тока плавкой вставки предохранителя;
- 450% для тока уставки автоматического выключателя, имеющего только максимальный мгновенно действующий расцепитель (отсечку);
- 100% для номинального тока расцепителя автоматического выключателя с нерегулируемой обратно зависящей от тока характеристикой (независимо от наличия или отсутствия отсечки);
- 125% для тока трогания расцепителя автоматического выключателя с регулируемой обратной зависящей от тока характеристикой; если на этом автоматическом выключателе имеется еще отсечка, то ее кратность тока срабатывания не ограничивается.
Наличие аппаратов защиты с завышенными уставками тока не является обоснованием для увеличения сечения проводников сверх указанных в гл. 1.3.
3.1.10. Сети внутри помещений, выполненные открыто проложенными проводниками с горючей наружной оболочкой или изоляцией, должны быть защищены от перегрузки.
Кроме того, должны быть защищены от перегрузки сети внутри помещений:
- осветительные сети в жилых и общественных зданиях, в торговых помещениях, служебно-бытовых помещениях промышленных предприятий, включая сети для бытовых и переносных электроприемников (утюгов, чайников, плиток, комнатных холодильников, пылесосов, стиральных и швейных машин и т. п.), а также в пожароопасных зонах;
- силовые сети на промышленных предприятиях, в жилых и общественных зданиях, торговых помещениях — только в случаях, когда по условиям технологического процесса или по режиму работы сети может возникать длительная перегрузка проводников;
- сети всех видов во взрывоопасных зонах — согласно требованиям 7.3.94.
3.1.11. В сетях, защищаемых от перегрузок (см. 3.1.10), проводники следует выбирать по расчетному току, при этом должно быть обеспечено условие, чтобы по отношению к длительно допустимым токовым нагрузкам, приведенным в таблицах гл. 1.3, аппараты защиты имели кратность не более:
- 80% для номинального тока плавкой вставки или тока уставки автоматического выключателя, имеющего только максимальный мгновенно действующий расцепитель (отсечку), — для проводников с поливинилхлоридной, резиновой и аналогичной по тепловым характеристикам изоляцией; для проводников, прокладываемых в невзрывоопасных производственных помещениях промышленных предприятий, допускается 100%;
- 100% для номинального тока плавкой вставки или тока уставки автоматического выключателя, имеющего только максимальный мгновенно действующий расцепитель (отсечку), — для кабелей с бумажной изоляцией;
- 100% для номинального тока расцепителя автоматического выключателя с нерегулируемой обратно зависящей от тока характеристикой (независимо от наличия или отсутствия отсечки) — для проводников всех марок;
- 100% для тока трогания расцепителя автоматического выключателя с регулируемой обратно зависящей от тока характеристикой — для проводников с поливинилхлоридной, резиновой и аналогичной по тепловым характеристикам изоляцией;
- 125% для тока трогания расцепителя автоматического выключателя с регулируемой обратно зависящей от тока характеристикой — для кабелей с бумажной изоляцией и изоляцией из вулканизированного полиэтилена.
3.1.12. Длительно допустимая токовая нагрузка проводников ответвлений к короткозамкнутым электродвигателям должна быть не менее:
- 100% номинального тока электродвигателя в невзрывоопасных зонах;
- 125% номинального тока электродвигателя во взрывоопасных зонах.
Соотношения между длительно допустимой нагрузкой проводников к короткозамкнутым электродвигателям и уставками аппаратов защиты в любом случае не должны превышать указанных в 3.1.9 (см. также 7.3.97).
3.1.13. В случаях, когда требуемая допустимая длительная токовая нагрузка проводника, определенная по 3.1.9 и 3.1.11, не совпадает с данными таблиц допустимых нагрузок, приведенных в гл. 1.3, допускается применение проводника ближайшего меньшего сечения, но не менее, чем это требуется по расчетному току.
Места установки аппаратов защиты
3.1.14. Аппараты защиты следует располагать по возможности в доступных для обслуживания местах таким образом, чтобы была исключена возможность их механических повреждений. Установка их должна быть выполнена так, чтобы при оперировании с ними или при их действии были исключены опасность для обслуживающего персонала и возможность повреждения окружающих предметов.
Аппараты защиты с открытыми токоведущими частями должны быть доступны для обслуживания только квалифицированному персоналу.
3.1.15. Аппараты защиты следует устанавливать, как правило, в местах сети, где сечение проводника уменьшается (по направлению к месту потребления электроэнергии) или где это необходимо для обеспечения чувствительности и селективности защиты (см. также 3.1.16 и 3.1.19).
3.1.16. Аппараты защиты должны устанавливаться непосредственно в местах присоединения защищаемых проводников к питающей линии. Допускается в случаях необходимости принимать длину участка между питающей линией и аппаратом защиты ответвления до 6 м. Проводники на этом участке могут иметь сечение меньше, чем сечение проводников питающей линии, но не менее сечения проводников после аппарата защиты.
Для ответвлений, выполняемых в труднодоступных местах (например, на большой высоте), аппараты защиты допускается устанавливать на расстоянии до 30 м от точки ответвления в удобном для обслуживания месте (например, на вводе в распределительный пункт, в пусковом устройстве электроприемника и др.). При этом сечение проводников ответвления должно быть не менее сечения, определяемого расчетным током, но должно обеспечивать не менее 10% пропускной способности защищенного участка питающей линии. Прокладка проводников ответвлений в указанных случаях (при длинах ответвлений до 6 и до 30 м) должна производиться при горючих наружных оболочке или изоляции проводников — в трубах, металлорукавах, или коробах, в остальных случаях, кроме кабельных сооружений, пожароопасных и взрывоопасных зон, — открыто на конструкциях при условии их защиты от возможных механических повреждений.
3.1.17. При защите сетей предохранителями последние должны устанавливаться на всех нормально незаземленных полюсах или фазах. Установка предохранителей в нулевых рабочих проводниках запрещается.
3.1.18. При защите сетей с глухозаземленной нейтралью автоматическими выключателями расцепители их должны устанавливаться во всех нормально незаземленных проводниках (см. также 7.3.99).
При защите сетей с изолированной нейтралью в трехпроводных сетях трехфазного тока и двухпроводных сетях однофазного или постоянного тока допускается устанавливать расцепители автоматических выключателей в двух фазах при трехпроводных сетях и в одной фазе (полюсе) при двухпроводных. При этом в пределах одной и той же электроустановки защиту следует осуществлять в одних и тех же фазах (полюсах).
Расцепители в нулевых проводниках допускается устанавливать лишь при условии, что при их срабатывании отключаются от сети одновременно все проводники, находящиеся под напряжением.
3.1.19. Аппараты защиты допускается не устанавливать, если это целесообразно по условиям эксплуатации, в местах:
- ответвления проводников от шин щита к аппаратам, установленным на том же щите; при этом проводники должны выбираться по расчетному току ответвления;
- снижения сечения питающей линии по ее длине и на ответвлениях от нее, если защита предыдущего участка линии защищает участок со сниженным сечением проводников или если незащищенные участки линии или ответвления от нее выполнены проводниками, выбранными с сечением не менее половины сечения проводников защищенного участка линии;
- ответвления от питающей линии к электроприемникам малой мощности, если питающая их линия защищена аппаратом с уставкой не более 25 А для силовых электроприемников и бытовых электроприборов, а для светильников — согласно 6.2.2;
- ответвления от питающей линии проводников цепей измерений, управления и сигнализации, если эти проводники не выходят за пределы соответствующих машин или щита или если эти проводники выходят за их пределы, но электропроводка выполнена в трубах или имеет негорючую оболочку.
Не допускается устанавливать аппараты защиты в местах присоединения к питающей линии таких цепей управления, сигнализации и измерения, отключение которых может повлечь за собой опасные последствия (отключение пожарных насосов, вентиляторов, предотвращающих образование взрывоопасных смесей, некоторых механизмов собственных нужд электростанций и т. п.). Во всех случаях такие цепи должны выполняться проводниками в трубах или иметь негорючую оболочку. Сечение этих цепей должно быть не менее приведенных в 3.4.4.
Все о селективности
Время на чтение:
Для упрощения и безопасной жизни человека было придумано множество устройств. К таким элементам относят предохранители. В этой статье рассказывается о том, что такое селективные автоматические выключатели и как они работают.
Определение селективности автоматических выключателей
Определение «селективность» подразумевает защитный механизм и отлаженное функционирование некоторых устройств, состоящих из отдельных частей, последовательно соединенных друг с другом. Зачастую такими приборами служат различные виды автоматов, предохранителей, УЗО и т. д. Результатом их работы является предупреждение сгорания электромеханизмов в случае возникновения угроз.
Как выглядит прибор
Обратите внимание! Преимуществом данной системы является ее свойство отключать лишь необходимые участки, при этом вся остальная система остается в рабочем состоянии. Единственное условие — согласованность защитных устройств между собой.
Для чего нужна селективность
Во время перегрузки или короткого замыкания на линии электросети автоматический предохранитель должен среагировать. В то же время необходимо, чтобы минимальная часть потребителей была отключена, а другие продолжали функционировать. Если селективность установлена грамотно, должен функционировать только аварийный предохранитель линии, а групповой предохранитель должен оставаться работающим.
Селективность автоматов
Следовательно, селективность автоматических предохранителей — это выбор устройств в системе, в которых в случае аварии в любой ее части отключение выполнялось элементом, отвечающим только за эту часть. Проще говоря, селективность — это координация функционирования приборов защиты, подключенных последовательно, так что в случае скачков напряжения или короткого замыкания отключается только та часть установки, в которой происходит неисправность.
Принцип работы и функции
Главные функции селективности заключаются в:
- обеспечении безопасной работы приборов в помещении;
- мгновенном определении и обесточивании зоны питания, в которой произошла поломка, без других выключений приборов, не прекращающих подачу электрической энергии в местах стабильной работы техники;
- снижении последствий после поломки приборов или техники;
- уменьшении напряжения на составные приборы и предупреждении поломок в неисправной части;
- обеспечении максимально возможной безостановочной подачи энергии;
- обеспечении беспрерывного рабочего процесса;
- обеспечении поддержки в том случае, если сама защита, отвечающая за размыкание, придет в неисправность;
- поддержке оптимального функционирования установки;
- обеспечении практичности в использовании и экономической доступности.
Виды селективной защиты разделяют на:
- полную. Два устройства соединены последовательным соединением. При воздействии сверхтоков активируется только одна защита, которая находится ближе к зоне повреждения;
- частичную. Похожа на полное, но защита действует только до определенного показателя перегрузки по току;
- временную. Схема включает в себя несколько машин с одинаковыми токовыми параметрами, но с разным временем воздействия. В результате от ближайшего к поломке до самого удаленного выключателя устройства страхуют друг друга (например, ближайший будет работать через 0,02 сек., следующий через 0,5 сек., а последний — через 1 сек., если остальные 2 не работают).
Конструкция предохранителя
Принцип действия текущей селективности защиты подобен времени, но только воздействие происходит по величине тока. Например, автоматические выключатели установлены на входе 25 А, затем 16 А, а затем 10 А. В то же время они могут иметь одинаковое время отключения. В дополнение к реакции защитных механизмов на ток также определяется время этой реакции.
Предохранители в щитке
При обнаружении некорректной работы в установке можно точно определить неисправную зону и отключить подачу электроэнергии только в нее. Все процессы предотвращения повреждений происходят в литом корпусе выключателя. Отключение происходит за такое короткое время, что отметка максимального значения тока не достигает своего результата.
К сведению! Избирательность защиты может быть абсолютной и относительной. В первом случае отключается только поврежденная часть цепи. По этому принципу работают предохранители, установленные в электроприборах.
Какое токоограничение в селективности
Модульные автоматические выключатели имеют такой параметр, как класс ограничения тока, который фактически отражает скорость электромагнитного расцепителя. Казалось бы, чем быстрее, тем лучше, но для селективности имеет смысл поставить групповую машину с более медленным откликом, чтобы во время короткого замыкания на какой-либо исходящей линии она не работала вместе с автоматом этой линии.
Зона перегрузки
Хотя нет никакой гарантии, что автомат с более низким классом ограничения тока будет работать медленнее, чем автомат с более высоким. Вряд ли все производители придерживаются единых стандартов по этому параметру. Но если на выходной линии можно поставить автомат с более высоким классом ограничения тока, то это стоит сделать.
Разновидность селективности
Селективность защиты подразделяется на абсолютную или относительную в зависимости от того, какие участки отключаются. Для первого случая надежней всего срабатывают предохранители на поврежденном участке цепи. Во втором отключаются выше расположенные автоматы, если защита ниже не отработала по разным причинам.
Полная и частичная защита
При такой защищённости цепи подразумевается последовательное подключение аппаратов. В случае возникновения сверхтока сработает тот автомат, который ближе всего к месту повреждения.
Разновидности УЗО
Важно! Частичная избирательная защита отличается от полной селективности тем, что срабатывает лишь до установленного значения сверхтока.
Токовый тип селективности
Выстраивая в убывающем порядке величины токов от источника к нагрузке, обеспечивают работу токовой избирательности. Главной мерой здесь является предельное значение токовой метки. Например, начиная от источника питания или ввода, автоматические выключатели устанавливают в последовательности: 25 А, 16 А, 10 А. Все автоматы могут иметь одинаковое время на срабатывание.
Обратите внимание! Между автоматами должно быть высокое сопротивление цепи, тогда они будут иметь эффективную избирательность. Повышают сопротивление путём увеличения протяжённости линии, включения участков с проводом меньшего диаметра или вставкой трансформаторной обмотки.
Временной и времятоковый вариант
Что значит селективная защита по времени? Особенностью такого построения схемы релейной защиты является привязка ко времени срабатывания каждого защитного элемента.
Принцип работы выключателей
Автоматические выключатели обладают одинаковыми токовыми параметрами, но имеют разную выдержку времени при срабатывании. Время срабатывания увеличивается по мере удаления от нагрузки. К примеру, самый ближний рассчитан на срабатывание после 0,2 сек. В случае его отказа через 0,5 сек. должен сработать второй. Работа третьего автоматического выключателя рассчитана через 1 сек. в случае несрабатывания первых двух.
К сведению! Очень сложной считается времятоковая избирательность. Чтобы её организовать, необходимо выбирать приборы групп A, B, C, D. У группы А наивысшая защита (применяется в электроцепях). Каждая из этих групп имеет индивидуальную реакцию на величину электрического тока и временную задержку.
Зонная схема защиты
Зонный способ сложный и недешевый, поэтому применяют его в основном в промышленности. Как только пороговые показатели тока достигают максимума, в центр контроля поступают данные, и выбранный автомат срабатывает. Электрическая сеть с таким видом избирательности включает специальные электронные расцепители.
Когда обнаруживается нарушение, от выключателя, расположенного ниже, поступает сигнал к устройству, находящемуся выше. Первый автомат должен отреагировать в течение секунды. Если он не среагировал, срабатывает второй.
Сравнивая этот вид селективности с временной избирательностью, можно увидеть, что время срабатывания в этом случае намного ниже, иногда составляет сотни миллисекунд.
Обратите внимание! При зонной схеме защиты снижается как процент интервенции в систему, так и процент ее повреждения. Уменьшаются тепловые и динамические влияния на части установки, возрастает число уровней селективности.
Как правильно рассчитать селективность
Чаще всего защитными устройствами выступают обыкновенные автоматические выключатели. Их селективность обеспечивается с помощью верного выбора и настроек параметров. Принцип работы таких выключателей обусловлен соблюдением следующих условий:
- Iс.о.послед ≥ Kн.о. I к.пред., где: Iс.о.послед — ток, при котором вступает в действие защита; I к.пред. — ток короткого замыкания в конце зоны действия защиты;
- Kн.о. — коэффициент надёжности, зависящий от параметров.
Определить селективность при управлении аппаратами по времени можно при помощи следующей формулы: tс.о.послед ≥ tк.пред.+ ∆t, где: tс.о.послед и tк.пред. — временные интервалы, через которые срабатывают отсечки автоматов в зависимости от близости к источнику питания; ∆t — временная ступень селективности.
Таблица селективности
Ниже представлена таблица селективности для автоматических выключателей. Расчет селективности автоматических выключателей можно осуществить с помощью онлайн-калькулятора. Вручную просчитывать лучше только опытному электрику, который и будет подключать предохранители.
Таблица селективности
Безопасная проводка не может работать без избирательности автоматов. Благодаря этой статье можно грамотно подобрать устройства для создания защиты. Для безопасного подключения рекомендуется обращаться к мастерам.