Astro-nn.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Солнечный генератор своими руками

Дешёвая энергия: солнечная батарея своими руками

Главная страница » Дешёвая энергия: солнечная батарея своими руками

Солнечная энергетика быстро набирает популярность в обществе. Процент интереса к солнечным панелям стремительно увеличивается за счёт владельцев загородных домов, коттеджей, вилл. Не остаются в стороне и владельцы дачных хозяйств, для кого дешёвая энергия солнца также необходима. Вариант — солнечная батарея, обещает существенное снижение расходов на содержание любой недвижимости. Счета на оплату за потребление электрической энергии традиционно входят в книгу рекордов Гиннеса. А тут — электрический ток практически даром. Так ли это в действительности? Рассмотрим тему.

Определение солнечной батареи

Конструктивно солнечная батарея представляет собой схему преобразователя одного вида энергии в другой. В частности, энергия света преобразуется в электрическую энергию. Причём результатом преобразования становится электрический ток постоянной величины.

Активными элементами конструкции солнечной панели выступают полупроводники, обладающие свойствами фотохимического синтеза. Например, кремний (Si), применением которого были отмечены самые первые исследования в области получения электричества солнца.

Простейший набор из солнечной панели и автомобильного аккумулятора уже составляет конструкцию настоящей домашней энергетической установки

На текущий момент кремний уже не рассматривается безальтернативным химическим элементом, опираясь на который есть смысл сооружать солнечные батареи из панелей, в том числе своими руками.

Более перспективными и эффективными теперь видятся другие представители таблицы Менделеева (в скобках цифры энергетической отдачи):

  1. Арсенид галлия GaAs (кристаллический 25,1).
  2. Фосфит индия InP ( 21,9).
  3. Фосфат индия с галлием + Арсенид галлия + Германий GaInP + GaAs + Ge (32).

Рассматривать солнечную панель глазами обывателя следует как пластину полупроводника (кремния и т.п.), каждая из сторон которой является положительным и отрицательным электродом.

Под влиянием света солнца, в результате химического фотосинтеза, на электродах панели образуются электрические потенциалы. Казалось бы, всё просто. Остаётся только подключить провода к нагрузке и пользоваться электричеством. Но на деле всё несколько иначе.

Эффективность солнечных батарей

Достичь высокой степени эффективности от использования солнечной батареи крайне проблематично. Тем более, когда солнечная батарея изготавливается своими руками, и делаются попытки получить энергию под бытовые нужды целого дома или хозяйственные нужды дачного участки.

Такая промышленная бытовая установка генерирует 150 ватт мощности при напряжении сети 12 вольт. Правда, заявленная мощность гарантируется при полностью открытом солнечном небосводе

Чтобы получать максимальную эффективность от солнечного генератора энергии, необходимо постоянно определять и точно согласовывать сопротивление нагрузки.

Здесь без привлечения технологичных электронных устройств – контроллеров управления, не обойтись никак. А сделать подобный контроллер своими руками – задача сложная.

Фотоэлементам, на основе которых выстраивается структура солнечных панелей, присуща температурная нестабильность. Практика применения указывает на значительное падение производительности фотоэлементов в результате повышения температуры их поверхности.

Так появляется ещё одна, не менее трудная задача. Её решение требует использования солнечного света, лишённого тепла. Сделать нечто подобное в кустарных условиях видится бесперспективной идеей.

И ещё недостатки альтернативной энергетики:

  • потребность в значительных площадях под размещение панелей батареи;
  • бездействие установки в тёмное время суток;
  • наличие в составе компонентов батареи ядовитых веществ (свинца, галлия, мышьяка и т.п.);
  • значительные эксплуатационные издержки.

Тем не менее, профессиональное изготовление солнечных генераторов энергии стабильно наращивается. Существует уже как минимум пять компаний, готовых предложить к установке современные конструкции, в том числе предназначенные для объектов жилой недвижимости:

  • Canadian Solar
  • Jinko Solar
  • Hanwha Qcells
  • JA Solar
  • Trina Solar

Солнечная энергия в доме своими руками

Самостоятельное изготовление батареи на базе солнечных панелей, пригодной для нужд частного хозяйства, видится реальным делом только в рамках скромных проектов.

Батарея солнечная, собранная самостоятельно из кремниевых пластин, разложенная под прямыми лучами солнца, готова к тестированию на присутствие напряжения

К примеру, изготовление солнечной батареи своими руками для подзарядки небольшого аккумулятора, энергия которого используется для питания двух-трёх маломощных (6 – 12 вольтовых) фонарей.

По таким проектам делаются установки, вырабатывающие напряжение не выше 20 вольт при токе не более 1 А. Рассмотрим один из возможных вариантов создания солнечной батареи с похожими рабочими характеристиками.

Для реализации проекта потребуются:

  1. Пластины кремниевых фотоэлементов.
  2. Паяльник электрический.
  3. Олово паяльное.
  4. Этиловый спирт.
  5. Канифоль сосновая для пайки.
  6. Инструмент электро-монтажника.
  7. Вспомогательные электронные компоненты и модули.

Подготовленные детали под сборку домашней (дачной) солнечной панели. Каждый из элементов является индивидуальным источником энергии. Их нужно объединить

Пластины фотоэлементов (кремниевых) проще всего приобрести уже готовые. Вполне пригодные конструкции разных размеров продаются по доступной цене. Также доступны предложения на отечественном Маркете:

Инструмент электро-монтажника, у человека знакомого с электроникой, как правило, имеется по умолчанию. Из вспомогательной аппаратуры потребуется регулятор заряда аккумулятора, инвертор.

Сборка солнечной батареи: пошаговая инструкция

Пошаговая сборка генератора на солнечных панелях выглядит примерно следующим образом:

  1. Пайка отдельных пластин с фотоэлементами в единую солнечную батарею.
  2. Проверка работы собранной батареи измерительным прибором.
  3. Укладка панелей внутрь защитной конструкции.
  4. Подключение собранной батареи через контроллер заряда к АКБ.
  5. Преобразование энергии АКБ в требуемое напряжение.

Спайка отдельных панелей в единую батарею – работа кропотливая, требующая навыков пайки и внимания. Сложность действий для сборщика обусловлена здесь хрупкой конструкцией кремниевых пластин.

Пайку на пластинах выполняют аккуратно паяльником подходящей мощности, предварительно заточив жало под угол 45 градусов, используя качественный припой

Соединять пластины одну с другой рекомендуется плоскими ленточными проводниками. Цель – минимизировать, насколько это возможно, сопротивление проводников.

Места пайки следует предварительно обрабатывать этиловым спиртом. Паять рекомендуется с минимальным использованием канифоли и олова.

Завершив спайку, нужно проверить конструкцию на работоспособность. Делается эта процедура обычным образом, с помощью измерительного прибора – тестера (стрелочного, электронного).

Проверка работоспособности солнечной батареи, сделанной своими руками с помощью обычного цифрового прибора для измерения напряжения, тока, сопротивления

На выходных проводниках замеряют выходное напряжение и ток в условиях максимальной и минимальной освещённости полотна. При качественной спайке всех пластин и без наличия дефектов, результат получается, как правило, положительный.

Контроллер заряда аккумулятора

Энергетическая солнечная установка станет надёжнее и безопаснее, если в состав её схемы включить контроллер заряда (разряда) аккумулятора. Этот прибор можно купить уже в готовом виде.

Но если имеются способности в области электроники и желания к совершенству, контроллер заряда нетрудно сделать своими руками. Для справки можно уточнить: разработаны два вида таких приборов:

  1. PWM (Pulse Width Modulation).
  2. MPPT (Maximum Power Point Tracking).

Если перевести на русский язык, первый вид устройств действует на принципах широтно-импульсной модуляции. Второй вид приборов создан под вычисление так называемой максимальной точки мощности.

В любом случае, обе схемы собраны на классической элементной базе, с той лишь разницей, что вторые устройства отличаются более сложными схемными решениями. В систему контроллеры заряда включаются так:

Классическая структурная схема включения контроллера заряда: 1 — солнечная панель; 2 — контроллер заряда/разряда АКБ; 3 — аккумулятор; 4 — инвертор напряжения 12/220В; 5 — нагрузочная лампа

Главная задача контроллера заряда АКБ энергетической солнечной установки – отслеживание уровня напряжения на клеммах аккумуляторной батареи. Недопущение выхода напряжения за границы, когда нарушаются условия эксплуатации АКБ.

Благодаря присутствию контроллера, остаётся стабильным срок службы аккумуляторной батареи. Конечно же, помимо этого прибор контролирует температурные и другие параметры, обеспечивая безопасность работы АКБ и всей системы.

Для сборки контроллера MPPT своими руками можно взять массу схемных решений. В поиске схемотехники проблем нет, стоит только сделать соответствующий запрос в поисковой системе.

Например, собрать контроллер можно на основе такой вот, несложной на первый взгляд, структурной схемы:

На основе этой структурной схемы собирается достаточно эффективное и надёжное устройство контроля заряда АКБ по типу MPPT технологии

Однако для бытовых целей вполне достаточно простейшего ШИМ-контроллера, так как в составе бытовых энергоустановок, как правило, не используются массивные солнечные панели. Для контроллеров же типа MPPT, характерной особенностью является именно работа с панелями большой мощности.

На малых мощностях они не оправдывают их схемной сложности. Для пользователя приобретение таких приборов оборачивается лишними расходами. Поэтому логично рекомендовать для дома простой PWM аппарат, собранный своими руками, к примеру, по этой схеме:

Принципиальная схема простого ШИМ-контроллера для домашней солнечной установки. Работает с выходным напряжением панели 17 вольт и обычным автомобильным аккумулятором

Солнечная батарея: схема инвертора

Полученную от солнца энергию аккумулируют. В домашних условиях для накопления энергии обычно используется стандартная автомобильная батарея (или несколько батарей).

Напряжения и силы тока аккумулятора вполне достаточно для питания маломощных бытовых приборов, рассчитанных под напряжение 12 (24) вольт. Однако этот вариант устраивает далеко не всегда.

Поэтому дополнительно к собранной конструкции подключают инвертор – устройство, преобразующее напряжение аккумулятора в переменное напряжение 127/220 вольт, пригодное для питания бытовых приборов или хозяйственной техники.

Найти подходящую схему инвертора несложно. Есть множество идей на этот счёт. Традиционно схема инвертора включает следующие компоненты:

  • полупроводниковую солнечную панель,
  • интегральную микросхему типа SG3524 (регулятор заряда),
  • аккумуляторную батарею,
  • интегральную микросхему управления МОП-транзисторами,
  • силовые МОП-транзисторы,
  • трансформатор.

Структурная схема регулятора в паре с инвертором выглядит примерно так:

Структурная схема регулятора напряжения аккумуляторной батареи в ассоциации с инвертором-преобразователем напряжения для солнечной энергетической установки

Защитная конструкция солнечной панели

Собранную из хрупких кремниевых пластин солнечную батарею необходимо дополнительно защитить от внешнего воздействия. Защитный корпус делают на основе прозрачного материала, который легко поддаётся чистке.

Полиуретановые или алюминиевые уголки каркаса и прозрачное органическое стекло подойдут в самый раз. Разъяснять тонкости сборки защитного корпуса не имеет смысла. Это простейшая сборка, собранная своими руками при помощи набора бытовых инструментов.

Пример реализации домашней энергоустановки на видео

Представленное ниже виде демонстрирует существующие возможности сборки и эксплуатации домашнего энергетического источника от природы. Однако, как показывает практика, достичь с помощью самодельных устройств реально высоких мощностей в условиях бытовых — задача крайне затруднительная:

Трёхфазный асинхронный электромотор – расчёт нагрузки в момент работы

Закон Ома: примеры на последовательной и параллельной схеме

Электрический ток это заряд в движении, в металлах, газах, вакууме

КРАТКИЙ БРИФИНГ

Zetsila — публикации материалов, интересных и полезных для социума. Новости технологий, исследований, экспериментов мирового масштаба. Социальная мультитематическая информация — СМИ .

Солнечная электростанция своими руками. Подбор компонентов.

Попытаемся понять подход к выбору автономной солнечной системы, какие факторы имеют большее, а какие меньшее значение.

Прежде всего, надо определить, сколько энергии вам понадобится в месяц, и, чтобы стоимость солнечной электростанции не стала фантастически высокой, по мере возможности уменьшить потребности. Затем необходимо определить, сколько солнечной энергии можно получить в той местности, где будет работать солнечная установка. Примерные данные приводятся в метеорологических справочниках, кое-какую информацию по солнечной инсоляции можно найти в Интернете. Обычно уровень солнечной инсоляции выражается в Ваттах/м2 с разбивкой по месяцам. Причём сезонные колебания могут быть очень значительными.

Солнечные электростанции. Схема электроснабжения дома от солнечных батарей

Как выбирать солнечную батарею?

Если предполагается использовать солнечную электростанцию круглогодично, расчёт надо производить по месяцам с наихудшими параметрами по инсоляции (конечно, если предполагается использовать только солнечную энергию). КПД солнечных батарей для расчётов надо принимать не выше 14% (а лучше 12%), т.к., несмотря на КПД элементов 16 или даже 17 % (а чаще используются элементы с КПД 14-15%), часть излучения отразится от поверхности стекла закрывающего элементы (даже если используется антибликовое стекло), часть излучения погасится в толщине стекла, т.к. не вся поверхность солнечной батареи закрыта кремниевыми пластинами (между ними есть зазоры 2-3 мм). Кроме этого некоторые элементы имеют обрезанные углы, что также уменьшает полезную площадь. Некоторые изготовители приводят примерную выработку энергии в месяц при разных уровнях солнечного излучения.

Карта инсоляции России. Продолжительность солнечного сияния.

Теперь, чтобы определить количество солнечных батарей, необходимо разделить желаемую потребность в энергии на возможную выработку энергии одной батареей в те месяцы, когда будет использоваться солнечная электростанция. Естественно, расчёт ведется по самым наихудшим параметрам по инсоляции.

Например, установка будет эксплуатироваться круглогодично, потребность в энергии 100 кВт час/месяц, одна батарея из выбранных вами произведёт в декабре не более 2 кВт-час энергии, 100 : 2 = 50 батарей. При тех же условиях, но неизвестной производительности батареи, а известной её площади 0,7 м², определяем, что за месяц будет произведено примерно 20 х 0,7 х 0,12(КПД) = 1,68 кВт-час энергии (инсоляция в декабре составляет примерно 20 кВт-час/м²). Для определения количества солнечных батарей необходимо разделить желаемое количество энергии на выработку одной батареи: 100 : 1,68 =59,5 шт., округляем в большую сторону 60 шт.

Следует отметить, что все эти расчёты носят приблизительный, ориентировочный характер, т.к. количество солнечных дней может сильно отличаться в разные годы. Всегда надо учитывать, что запас только улучшает параметры системы.

Увеличение производительности солнечных батарей – это отдельная большая тема. Можно отметить только несколько способов увеличения производительности:

Выбор оптимального угла установки. Желательно, чтобы поверхность солнечной батареи располагалась перпендикулярно к лучам солнца, с максимальным отклонением в ту или иную сторону на не более, чем 15°. В связи с тем, что солнце в течении года постоянно меняет высоту над горизонтом, желательно устанавливать солнечные батареи под тем углом, который обеспечивает максимальный выигрыш по производительности в нужное время. Например, если предполагается использовать солнечную электростанцию круглогодично, то батареи устанавливают под углом + 15° к широте местности, а если только в летние месяцы, то под углом – 15° от широты местности.

Поворот солнечной батареи вслед за солнцем в течение дня(применим только для небольших систем), таким образом можно увеличить выработку энергии вплоть до 50% от выработки в стационарном положении.

Применение контроллера заряда с функцией ОТММ (Отслеживания Точки Максимальной Мощности, по-английски MPPT (Maximum Power Point Tracking)). Такой контроллер при наличии достаточной освещённости не препятствует поступлению энергии от солнечных батарей на аккумуляторы, а при недостатке освещённости накапливает энергию и подаёт её на аккумулятор порциями с оптимальными значениями тока и напряжения.

Но, конечно, если с таким трудом полученную энергию расходовать не экономно, то все ухищрения по получению дополнительной энергии пропадут впустую. Наибольший выигрыш в автономных системах электроснабжения можно получить, экономя энергию. Замена ламп накаливания на люминесцентные или компактные люминесцентные (энергосберегающие), а там где надо получать большие световые потоки (освещение территорий, торговых залов и т.д.), на металлогалогеновые даёт снижение затрат на освещение примерно в 4-5 раз. Применение бытовой техники с индексом энергопотребления «А» или «А+» даёт ещё более значительный выигрыш. Вообще, вопрос энергосбережения, в условиях значительного роста цен на энергоносители приобретает первостепенное значение.

Немного коснёмся принципов конструирования систем автономного электроснабжения на солнечных батареях. Мы уже пробовали рассчитать необходимое количество солнечных батарей, теперь перейдём к остальным компонентам системы. Энергия, полученная от солнечных батарей, направляется на зарядку аккумуляторов. Это необходимо по двум причинам:

— сглаживание неравномерности поступления энергии, например, в облачную погоду;

— реализация потребности в электроэнергии тогда, когда нет солнечного излучения (ночью и в пасмурные дни).

Для подбора количества и типа аккумуляторов также используются два параметра: конструкция инвертора (напряжение на низкой стороне) и ток зарядки, который может поступать от нескольких источников и не должен превышать 10 % от номинальной ёмкости для кислотных аккумуляторов и 25-30% от номинальной ёмкости для щелочных. Если в инверторе имеется зарядное устройство от сети, то оно должно автоматически регулировать зарядный ток в зависимости от степени заряда аккумуляторов. Кроме этого, особенно если подзарядка от существующей сети отсутствует, необходимо, чтобы аккумуляторы не боялись сульфатации пластин, иначе подзарядка маленьким током, который часто бывает в не очень ясную погоду, быстро выведет аккумуляторы из строя.

К необходимым свойствам аккумуляторов, применяемых в солнечных электростанциях, добавим и низкий уровень саморазряда (иногда изготовители указывают эту отличительную черту). Обычный кислотный аккумулятор требует подзарядки не реже чем один раз в шесть месяцев, иначе выходит из строя. Через год после начала эксплуатации уровень саморазряда обычного кислотного аккумулятора достигает 1,5% в день от его номинальной ёмкости. Поэтому к аккумуляторам, применяемым в солнечных системах, предъявляются специфические требования.

Теперь перейдём к инверторам. Вообще, идеальной конструкцией солнечной электростанции следует считать ту, где разные группы нагрузок получают питание от разных инверторов, и количество и мощность инверторов соответствует количеству и мощности автоматических выключателей в распределительном щитке. Эти параметры выбираются при конструировании домашней электросети. Например, в распределительном щитке — 4 автомата на 16 А (максимально допустимая нагрузка на бытовые сети: розетки и освещение) и 2 автомата на 25 А (для питания силовой техники). Идеальным считаем применение 4 инверторов мощностью 16А х 220В=3520 Ватт и двух инверторов мощностью 25А х 220В=5500 Ватт. Причём питание эти инверторы могут получать от одной группы аккумуляторов, заряжаемых одной группой солнечных батарей.

Читать еще:  Рейтинг парогенераторов для дома

Обычно изготовители указывают не мощность в Ваттах, а пиковую мощность в вольт-амперах, т.к. этот параметр выше по значению примерно на 20-30%. Многие фирмы выпускают инверторы с самыми различными свойствами. Они могут отличаться формой выходного сигнала (наиболее простые и дешёвые на выходе дают прямоугольный сигнал, так называемый «меандр», изготовители которого, правда, чаще называют его: модифицированной синусоидой, имитированной синусоидой, псевдо синусоидой, квазисинусоидой и т.д.), способом компенсации нагрузок (за счёт сохранения амплитуды напряжения или площади кривой), применяемым схемным решением (одно или два преобразования напряжения, импульсным или аналоговым преобразованием сигнала).

Некоторые инверторы имеют встроенное зарядное устройство от существующей сети, другие могут осуществлять подпитку сети и направлять энергию, полученную от солнца, в сеть. Вообще, конструкция инвертора может быть самой разнообразной.

Но в целом качественный инвертор должен выдавать чистый синусоидальный сигнал с искажениями меньше 3 %, не менять значение амплитуды напряжения при подключении нагрузки более 10 %, осуществлять двойное преобразование (первое — постоянного тока, второе – переменного), иметь аналоговую часть вторичного преобразования с качественным трансформатором, иметь значительный запас по перегрузке и набор защитных функций от короткого замыкания в нагрузке, от неправильного подсоединения к аккумуляторам, от перегрузки, от неисправности аккумуляторов, не допускать глубокого разряда аккумуляторов. Все остальные функции могут быть, а могут и отсутствовать. Иногда лишние сервисные функции затрудняют пользование подобным прибором, пользователь должен в идеале включить прибор и забыть об его существовании.

Ещё один достаточно важный вопрос, на который необходимо обратить внимание при выборе солнечных систем, вопрос запаса параметров. При использовании солнечной энергии мы применяем непредсказуемые природные явления. Поэтому для обеспечения стабильности электроснабжения необходимо иметь запас по источникам энергии (солнечным батареям), по хранилищам энергии (аккумуляторам) и по преобразователям энергии (инверторам). Естественно, подходить к вопросу избыточности надо разумно. Иногда бывает лучше и дешевле применять гибридную схему электроснабжения с применением других источников энергии: разного рода генераторов, существующего подключения к электросети и т.д.

В заключение можно сделать вывод, что в условиях, когда традиционные энергоносители дорожают, а на горизонте истощение природных ресурсов, обоснованность и необходимость применения альтернативных источников электроснабжения возрастает многократно.

Все про солнечную электростанцию для дома: подключение, реальная выработка, подключение, особенности

В 2017 году я установил на участке одну солнечную батарею мощностью 260Вт для выработки электроэнергии. В июне выработка панели составила 34кВт электроэнергии, что в 4.5 раза превысило её нормативную мощность.

Далее я расскажу о том, как работает солнечная электростанция, из каких элементов состоит, кому подойдет и как её подключить. Кроме того, поделюсь реальной статистикой выработки одной панели.

Кому подойдет домашняя солнечная электростанция

  1. Тем, у кого на участке нет электричества. Солнечные батареи смогут автономно обеспечивать объект электроэнергией. В качестве альтернативы также можно рассматривать ветряк (для которого должна быть соответствующая роза ветров) или дизельный генератор (который не очень удобен в эксплуатации и неэкономичен).
  2. Также солнечную станцию можно рассматривать как инвестицию, чтобы на фоне постоянно растущих тарифов в будущем меньше платить за электроэнергию. К тому же срок службы батарей очень большой, а солнце светит всегда.
  3. И последний вариант — всем, кто хочет заработать. В Украине существует закон о зеленом тарифе, согласно которому государство выкупает выработанную электроэнергию с помощью альтернативных источников энергии по особой цене.

Как устроена солнечная батарея

Солнечная батарея (или ФЭМ – фотоэлектрический модуль) работает за счет кремниевых элементов, которые преобразовывают световую энергию в электрическую (в отличие от солнечных коллекторов, которые работают за счет солнечного тепла).

Сзади у панели есть выход двух кабелей, которые подключатся на инвертор или аккумулятор, в зависимости от схемы использования (об этом далее подробнее).

Как подключить, если на участке нет электричества

Если участок не подключен к сети, то главная задача — накапливать электроэнергию, чтобы использовать её в будущем по мере необходимости.

Какое оборудование понадобится:

  • Солнечные батареи.
  • Аккумулятор для накопления заряда.
  • Контролер заряда (чтобы контролировать ток заряда аккумулятора).
  • Преобразователь в 220В. По умолчанию солнечная панель выдает 12В, 24В, тогда как большинство электроприборов подключаются к 220В. Если вы используете приборы, работающие от 12В, то преобразователь не понадобится.
  • Оборудование для фиксации и крепежа самой батареи.

Самый простой вариант, «своими руками»

Самый примитивный, но рабочий вариант «для дачи»: солнечная батарея + аккумулятор, которые соединяются между собой клеммами. В таком виде станция уже готова к эксплуатации и её можно даже не ставить на крышу, а просто установить на землю. Электроэнергия будет накапливаться на аккумуляторе, от которого можно зарядить телефон, подключить освещение и т.д.

Такую станцию очень легко собрать своими руками. Достаточно просто купить аккумулятор (подойдет даже обычный автомобильный), солнечная батарея, провода и клеммы. Если вы приезжаете на дачу только по выходным, то станция может быть переносной, так как легко разбирается и прячется (или увозится с собой).

Более сложная реализация

Схема для повседневной эксплуатации и разводкой по розеткам. Солнечные батареи устанавливают на крышу (или отдельную металлическую конструкцию), а кабель от них прокладывают к аккумулятору, от которого электричество через преобразователь поступает на розетки.

По мере необходимости станцию легко масштабировать, подключая дополнительные батареи и аккумуляторы.

Как подключить, если на участке есть электричество

Если участок подключен к сети, то установка солнечной электростанции сделает дом более энергонезависимым, позволит сократить затраты на электроэнергию и даже заработать на этом благодаря зеленому тарифу.

В этой схеме подключения отсутствует аккумулятор, так как не нужно накапливать электроэнергию (но если вы хотите иметь резервный источник питания на случай выключения света, то аккумулятор необходим).

Для подключения такой станции нужна только солнечная батарея (или несколько), которая через сетевой инвертор подключается в розетку. В таком виде станция уже готова к работе. Батарея вырабатывает электричество и вы сразу же его потребляете для внутренних нужд: работы холодильника, освещения, чайника и т.п.

Например, выработка станции в сутки — 1кВт электроэнергии, а здание суммарно потребляет 5кВт. По факту из сети вы берёте лишь 4кВт. Но если станция вырабатывает в сутки 5кВт, а вы реально потребляете только 2кВт, то остаток (3кВт) сгорает. В этом случае можно подключить зеленый тариф и продавать разницу государству по более высокой цене, либо же поставить аккумулятор и накапливать избыток на него.

Сейчас существуют компании которые подключают зеленый тариф «под ключ». Начиная от подбора и установки станции, до заключения договора с ОБЛЭНЕРГО.

Реальная выработка солнечной электростанции для дома

Выработка зависит от мощности и угла наклона панелей, интенсивности солнца и продолжительности светового дня.

Между собой батареи отличаются площадью, что отражается на их мощности. Это может быть 10Вт, 100Вт, 150Вт, 260Вт и так далее. Однако реальная выработка панели обычно выше её номинальной мощности, так как необходимо учитывать коэффициент интенсивности солнца. В южных регионах солнце светит сильнее и дольше, а в северных слабее и меньше, поэтому одна и та же панель вырабатывает разное количество электроэнергии.

Пример из практики

Это график выработки электроэнергии одной панелью мощностью 260Вт за июнь 2018 года. Суммарная выработка станции за месяц — 34,89 кВт. Из расчета, что номинальная месячная мощность батареи — 7,8кВт (260Вт Х 30 дней), её фактическая мощность оказалась в 4.5 раза выше (поправочный коэффициент). Летом он больше, зимой – меньше или вообще отсутствует.

Из графика видно, что выработка непостоянна и присутствуют резкие спады – это пасмурные дни, когда световой день короче, а солнечная активность очень слабая. Худшая производительность была зафиксирована 17.06 — около 0.4кВт, а максимальная 25.06 — около 1.4кВт.

А вот так выглядит выработка солнечной батареи по часам в течение дня:

Выработка начинается ближе к 9 утра, достигает пика к 13:00, затем постепенно снижается и прекращается около 19:00. В течение дня есть небольшие провалы — когда солнце было закрыто облаками.
Примерно с 13:00 до 15:00 выработка электроэнергии была нестабильна из-за облачности. Но и это не сильно сказалось на итоговой производительности станции — 1.32кВт.
В течение дня было множество провалов, что и отразилось на итоговой выработке станции — 0.98кВт.
А это пасмурный дождливый день, когда солнечная активность очень слабая и выработка в течение дня составила 0.45кВт.

Из этого можно сделать вывод, что целиком полагаться на солнечную электроэнергию сложно. Производительность станции сильно зависит от интенсивности солнца и даже летом она может быть непостоянна из-за пасмурной погоды.

Угол наклона солнечной батареи

Панель вырабатывает максимум электроэнергии тогда, когда солнечные лучи падают на неё под прямым углом. В этом случае лучи практически не отражаются и потери энергии минимальны. Но так как солнце в течения дня постоянно движется и меняет высоту, то поддерживать постоянным угол падения в 90° сложно.

Для этого существуют специальные механизмы, которые поворачивают панель вслед за солнцем в течение дня и изменяют угол её наклона, что дает максимально возможную выработку электроэнергии. Однако для домашней станции они нецелесообразным: при малой мощности станции дополнительные 5-15% электричества не покроют затраты на их установку.

Поэтому рекомендуется универсальное положение солнечной панели: для северного полушария направление на юг (которое охватывает максимальную траекторию движения солнца) и угол наклона в 30 ° на лето и 60 ° на зиму. Либо же средний вариант в 45 °, если панель работает круглый год.

Как рассчитать мощность электростанции на солнечных батареях

Оттолкнуться нужно от того, сколько электроэнергии вам нужно для нормального функционирования здания. Самый простой способ — выписать все эл. приборы, которые вы планируете использовать, время их работы и потребляемую мощность.

Пример:

  • Холодильник: 100Вт – 24ч – 2400Вт
  • Освещение: 100Вт – 5ч – 500Вт
  • Чайник: 15мин – 1,5кВт – 0,03кВт
  • Стиральная машина:
  • Ноутбук:
  • .
  • Итого: 3кВт

3кВт — это мощность, которую должна производить солнечная электростанция для нормальной жизнедеятельности здания. Т.е. понадобится 12 панелей мощностью по 260Вт. На практике их производительность будет выше (при коэффициенте солнечной активности 4.5 суточная выработка станции составит 14кВт), однако мы отталкиваемся от самого пессимистичного сценария, при котором каждый день — пасмурный. Также учитывайте: если вы не подключены к зеленому тарифу или не запасаете энергию на аккумулятор, то избыток будет сгорать.

Если вы устанавливаете солнечную электростанцию для заработка на зеленом тарифе, то начать можно с любой мощности и постепенно её наращивать.

Заключение

Солнечные электростанции для дома решают две основные задачи:

  • могут обеспечивать электроэнергией участок, который не подключен к сети. В самом простом варианте вам понадобится только панель, аккумулятор и контролер заряда, которые уже способны генерировать электроэнергию. Также возможна более сложная реализация, когда станция генерирует электричество и через инвертор передает его в розетки. В этой схеме дополнительно необходим преобразователь из 12В в 220В.
  • служить инвестицией и источником дохода. В Украине существует закон о зеленом тарифе, согласно которому государство готово покупать у населения электроэнергию, выработанную на альтернативных источников энергии, по более высокому тарифу. Другими словами: каждый может установить в доме солнечную электростанцию и продавать электроэнергию государству.

Производительность станции зависит от мощности панели и коэффициента интенсивности солнца. Для южных регионов, где солнце светит долго и интенсивно, выработка панелей может быть в 4.5 — 5 раз больше номинала. Зимой коэффициент практически отсутствует.

При пасмурных днях даже летом выработка сильно падает. Поэтому целиком полагаться на солнечную энергию не стоит (особенно если у вас автономное энергообеспечение объекта) и не лишним будет иметь резервный источник, например — дизельный генератор.

Электростанция на солнечных батареях своими руками

Дата публикации: 25 августа 2020

  • Автономная солнечная электростанция для дома своими руками
  • Другие схемы солнечных электростанций своими руками

Собственное электроснабжение выручит как в условиях отсутствия централизованной сети (в удаленных и труднодоступных регионах, на даче, в походе), так и при построении более экологичного подхода к потреблению природных ресурсов.

Автономная солнечная электростанция для дома своими руками

Собрать собственную гелиостанцию несложно, она содержит всего четыре составных элемента:

  • солнечные панели;
  • аккумулятор заряда;
  • контроллер;
  • инвертор.

Все их легко найти и заказать через интернет-магазины. А вот как сделать солнечную электростанцию своими руками, чтобы создать полноценную автономную систему энергоснабжения дома? Для начала необходимо собрать информацию о ваших потребностях, возможностях местности, где будет работать гелиостанция, и произвести все необходимые расчеты для подбора составных элементов.

Как рассчитать количество гелиопанелей

Выбор гелиостанции начинается с поиска информации по инсоляции в вашей местности — количеству солнечной энергии, которое попадает на земную поверхность (измеряется в ваттах на кв. метр). Эти данные можно найти в специальных метеосправочниках или интернете. Обычно инсоляцию указывают отдельно для каждого месяца, потому что уровень сильно зависит от сезона. Если вы планируете пользоваться гелиостанцией круглый год, то ориентироваться нужно по месяцам с самыми низкими показателями.

Далее нужно подсчитать ваши потребности в электроэнергии на каждый месяц. Помните, что для автономной системы электроснабжения роль играет не только эффективность накопления энергии, но и экономное ее использование. Меньшие потребности позволят значительно сэкономить при покупке гелиопанелей и создании бюджетной версии солнечной электростанции своими руками.

Сравните ваши потребности в электричестве с уровнем инсоляции в вашей местности и вы узнаете площадь гелиопанелей, которая необходима для вашей гелиостанции. Учтите, что КПД панелей составляет всего 12-14%. Всегда ориентируйтесь на самый низкий показатель.

Таким образом, если уровень инсоляции в самый неблагоприятный месяц в вашей местности равен 20 кВт-час/м², то при КПД равном 12% одна панель площадью 0.7м² будет вырабатывать 1.68 кВт-час. Ваша энергопотребность, например, составляет 80 кВт-час/месяц. Значит, в самый несолнечный месяц удовлетворить эту потребность смогут 48 панелей (80/1,68). Подробнее о том, как выбирать солнечные батареи, вы можете почитать в нашей предыдущей статье. А тут можно узнать, как сделать свечи в домашних условиях.

Как установить гелиопанель

Для наилучшего КПД устанавливать гелиопанель нужно так, чтобы лучи солнца падали на нее под углом 90 градусов. Поскольку солнце постоянно перемещается по небу, то здесь есть два решения:

  • Динамичная установка. Используйте сервопривод, чтобы гелиопанель поворачивалась по мере того, как солнце перемещается по небосводу. Сервопривод позволит собрать на 50% больше энергии, чем статичная установка.
  • Стационарная установка. Чтобы извлечь максимальную пользу из неподвижного положения гелиопанели, необходимо найти тот угол установки, при котором панель соберет максимально возможное количество лучей солнца. Для круглогодичной работы этот угол рассчитывается по формуле +15 градусов к широте местности. Для летних месяцев это -15 градусов к широте местности.

Как подобрать контроллер заряда

Еще один способ, как самому собрать солнечную электростанцию, чтобы заставить ее работать эффективно, это использовать контроллер заряда, который позволяет отслеживать точки максимальной мощности (англ. MPPT). Такой контроллер может накапливать энергию даже во время низкой освещенности и продолжает подавать ее на аккумулятор в оптимальном режиме.

Как выбрать аккумулятор

Итак, от солнечных панелей энергия поступает на аккумулятор. Это позволяет накапливать энергию, чтобы использовать ее даже при отсутствии солнечного света. Кроме того, аккумуляторы сглаживают неравномерное поступление энергии, например, при сильном ветре или облачности.

Чтобы правильно выбрать и установить аккумулятор для домашней солнечной электростанции своими руками, необходимо учесть два параметра:

  • Очень важно, чтобы ток зарядки (от панелей) не превышал 10% от уровня номинальной емкости для кислотных аккумуляторов и 30% — для щелочных устройств.
  • Конструкция инвертора с напряжением на низкой стороне.

Учитывайте показатели саморазряда аккумуляторов (не всегда указываются производителями). Например, кислотные устройства во избежание поломки подзаряжают каждые полгода.

Как выбрать инвертор

Описание параметров и обязательных функций идеального инвертора:

  • сигнал синусоидальный с искажениями не выше трех процентов;
  • при подключении нагрузки амплитуда напряжения изменяется не более чем на десять процентов;
  • двойное преобразование тока — постоянного и переменного;
  • аналоговая часть преобразования переменного тока с хорошим трансформатором;
  • защита от короткого замыкания;
  • запас по перегрузке.
Читать еще:  Калькулятор расчета мощности генератора

При моделировании электросистемы вашего дома сгруппируйте нагрузки так, чтобы разные их виды получали питание от разных инверторов.

Другие схемы солнечных электростанций своими руками

Гелиостанции — это работающий альтернативный способ энергоснабжения дома. Но не во всех регионах инсоляция достаточна для окупаемости гелиооборудования и для полноценного обеспечения электроэнергией. Иногда стоит обратить внимание на гибридные солнечные электростанции, которые тоже можно построить своими руками, но где кроме солнечных батарей могут быть ветряки, а также дизельные или даже бензиновые генераторы.

Если же вы хотите лишь попробовать «приручить» гелиоэнергию, но не готовы полностью изменить электроснабжение своего дома, сделайте мини солнечную электростанцию своими руками. Она будет состоять из нескольких солнечных панелей, аккумулятора и контроллера. Это все поместится в чемодане, но обеспечит вас энергией при внезапном отключении электричества, поездке на дачу или на природу. Расчеты и подбор компонентов происходят по тому же принципу, что и для полноценной домашней станции.

  • Солнечные мобильные телефоны
  • Выгодно ли использовать СБ в России?
  • Солнечные комплекты для дачи
  • 20 самых больших проектов солнечной энергетики

Очень интересная разработка, при чем думаю что очень экономит бюджет. Один только вопрос, а во сколько обходится это все производство, хотя бы примерно? Хочу себе на дом такие же солнечные батареи!

Лайфхак из личного опыта. Для тех, кто в первые решил собрать панель, не тратьте деньги на дорогие запчасти, а найдете в ВК сообщество, где можно приобрести бу панели (со сколами) и попробуйте например запитать 1 комнату для на чала!!

Вам нужно войти, чтобы оставить комментарий.

Солнечный генератор своими руками

Солнечные коллекторы – это отличный способ сэкономить энергоресурсы. Бесплатная солнечная энергия сможет как минимум 6-7 месяцев в году обеспечивать теплую воду для хозяйственных нужд. А в остальные месяцы – еще и помогать системе отопления.

Но самое главное, что простой солнечный коллектор (в отличии, например, от солнечных панелей) можно изготовить самостоятельно. Для этого вам понадобятся материалы и инструменты, которые можно купить в большинстве строительных магазинов. В некоторых случаях будет достаточно даже того, что найдется в обычном гараже.

Представленная ниже технология сборки солнечного нагревателя использовалась в проекте «Включи солнце — живи комфортно». Она была разработана специально для проекта немецкой компанией Solar Partner Sued, которая профессионально занимается продажей, монтажом и сервисом солнечных коллекторов и фотоэлектрических систем.

Главная идея – все должно получиться дешево и сердито. Для изготовления коллектора используются довольно простые и распространенные материалы, но его эффективность получается вполне приемлемого уровня. Она ниже, чем у фабричных моделей, но разница в цене полностью компенсирует этот недостаток.

Существуют различные типы солнечных водонагревателей, но все они основаны на простом принципе: темная поверхность «впитывает» солнечную энергию, потом это тепло передается теплоносителю (воде). Простейшие модели могут быть построены из доступных материалов и не требуют насосов или иного электрооборудования. Эффективный солнечный коллектор может использоваться даже в зимнее время благодаря применению незамерзающих жидкостей – антифризов.

Описанная система солнечного коллектора является пассивной и не зависит от электроэнергии. Она обходится без электрических приборов. Горячая жидкость перемещается между коллектором и баком по принципу конвекции, благодаря простому правилу: нагретая жидкость всегда поднимается вверх.

Принцип работы такого солнечного коллектора заключается в следующем:

  • Солнце нагревает жидкость в коллекторе
  • Нагретая жидкость поднимается по коллектору и трубе в бак-аккумулятор
  • Когда горячая жидкость поступает в теплообменник, установленный в бак с водой, тепло передается от теплообменника воде
  • Жидкость в теплообменнике, охлаждаясь, перемещается вниз по спирали и поступает из отверстия в нижней части бака обратно в коллектор
  • Вода, нагретая в баке, аккумулируется в верхней части бака
  • Холодная вода из водопроводной сети / резервуара поступает в нижнюю часть бака
  • Нагретая вода отбирается через выходное отверстие в верхней части бака.

Пока на коллектор светит солнце, жидкость в трубах абсорбера нагревается, перемещается в бак и таким образом постоянно циркулирует. Этот процесс обеспечивает нагрев воды в баке всего за несколько часов при интенсивном солнечном излучении.

Основной элемент коллектора отопления — абсорбер. Он состоит из металлического листа, приваренного к металлическим трубам. Несколько труб устанавливаются вертикально и привариваются к двум трубам большего диаметра, расположенных горизонтально. Эти толстые трубы для входа и выхода жидкости должны быть расположены параллельно друг другу. А входное отверстие для жидкости (нижняя часть абсорбера) и выходное отверстие (верхняя часть абсорбера) должны располагаться с разных сторон панели (диагонально). Для соединения в толстых трубах необходимо просверлить отверстия под диаметр вертикальных труб.

Для лучшей передачи тепла от металлической пластины к трубам очень важно обеспечить максимальный контакт пластины с трубами. Сварка должна быть вдоль всего элемента. Важно, чтобы металлический лист и трубы плотно прилегали друг к другу.

Абсорбер укладывается в деревянную раму и накрывается стеклом, которое защищает коллектор и создает внутри эффект теплицы. Используется обычное оконное стекло. Оптимальная толщина — 4 мм, при этом сохраняется хорошее соотношение надежности и веса. Желательно нужную площадь стекла разделять на несколько частей. Так удобнее и безопаснее работать с ним.

Использование нескольких слоев стекла или стеклопакета даст прирост эффективности, но увеличит вес конструкции и стоимость системы.

Солнечные лучи проходят через стекло и нагревают коллектор, а остекление предотвращает утечку тепла. Стекло также препятствует движению воздуха в абсорбере без него коллектор быстро терял бы тепло из-за ветра, дождя, снега или низких внешних температур.

Раму следует обработать антисептиком и краской для наружных работ.

В корпусе делаются сквозные отверстия для подачи холодной и отвода нагретой жидкости из коллектора.

Сам абсорбер красят жаростойким покрытием. Обычные черные краски при высоких температурах начинают шелушиться или испаряться, что приводит к потемнению стекла. Краска должна полностью высохнуть, прежде чем вы закрепите стеклянное покрытие (для предотвращения конденсации).

Под абсорбером закладывается утеплитель. Чаще всего используется минеральная вата. Главное, чтобы он выдерживал довольно высокие температуры в течение лета (иногда более 200 градусов).

Снизу раму закрывают ОСБ плитой, фанерой, досками и т.п. Основное требование к этому этапу — убедиться, что низ коллектора надежно защищен от попадания влаги внутрь.

Для закрепления стекла в раме делают пазы, или крепят планки по внутренней стороне рамы. При расчете размеров рамы следует учитывать, что при изменении погоды (температуры, влажности) в течение года ее конфигурация будет немного меняться. Поэтому на каждой стороне рамы оставляют несколько миллиметров запаса.

На паз или планку крепится резиновый оконный уплотнитель (D- или Е-образный). На него кладется стекло, на которое таким же образом наносится уплотнитель. Сверху это все закрепляется оцинкованной жестью. Таким образом, стекло надежно закреплено в раме, уплотнитель защищает абсорбер от холода и влаги, а именно стекло не повредится, когда деревянная рама будет «дышать».

Стыки между листами стекла изолируются уплотнителем или силиконом.

Чтобы организовать солнечное отопление дома понадобиться накопительный бак. Здесь хранится нагретая коллектором вода, поэтому стоит позаботиться о его термоизоляции.

В качестве бака можно использовать:

  • неработающие электрические бойлеры
  • различные баллоны для газов
  • бочки для пищевого использования

Главное — помнить, что в герметичном баке будет создаваться давление в зависимости от давления водопроводной системы, к которой он будет подключен. Не каждая емкость способна выдерживать давление в несколько атмосфер.

В баке делают отверстия для входа и выхода теплообменника, ввода холодной воды, и забора нагретой.

В баке размещается спиральный теплообменник. Для него используют медь, нержавеющую сталь или пластик. Нагретая через теплообменник вода будет подниматься вверх, поэтому его следует поместить в нижней части бака.

Коллектор соединяется с баком с помощью труб (например, металлопластиковых или пластиковых), проведенных от коллектора к баку через теплообменник и обратно в коллектор. Здесь очень важно предотвратить утечку тепла: путь от бака до потребителя должен быть максимально коротким, и трубы должны быть очень хорошо изолированными.

Расширительный бачок — это очень важный элемент системы. Он представляет собой открытый резервуар, расположенный в крайней верхней точке контура циркуляции жидкости. Для расширительного бачка можно использовать как металлическую, так и пластиковую емкость. С ее помощью контролируется давление в коллекторе (из-за того, что жидкость от нагрева расширяется, могут треснуть трубы). Для снижения потерь тепла бачок также необходимо изолировать. Если в системе присутствует воздух, то он также может выходить через бачок. Через расширительный бачок происходит также наполнения коллектора жидкостью.

Больше подробностей о создании дешевого солнечного коллектора, перечень необходимых материалов и правила установки нагревателя можно узнать, загрузив Практическое руководство по сооружению солнечных коллекторов для горячей воды.

А вы что думаете по этому поводу? Дайте нам знать – напишите в комментариях!

  • Назад
  • Вперёд

Понравилась статья? Поделитесь ею и будет вам счастье!

Солнечный генератор своими руками: инструкция по изготовлению альтернативного источника энергии

Альтернативные источники энергии, позволяющие обеспечить жилое помещение теплом и электричеством в необходимом объеме – недешевое «удовольствие», требующее значительных финансовых затрат на приобретение, монтаж и установку.

Сделать же солнечный генератор своими руками значительно дешевле и вполне по силам многим домашним мастерам. Рассмотрим инструкцию, доступно описывающую все нюансы процесса изготовления.

Как работает генератор солнечной энергии?

Солнечный генератор представляет собой комплекс фотоэлектрических полупроводниковых элементов, напрямую преобразующих энергию солнца в электрическую.

Кванты вырабатываемого лучами света при попадании на фотопластину выбивают электрон с заключительной атомной орбиты рабочего элемента. Этот эффект создает множество свободных электронов, которые и образуют непрерывный поток электрического тока.

В качестве действующего материала используют кремний. Он отличается высокой эффективностью и обеспечивает коэффициент фотоэлектрического преобразования в обычном режиме на уровне 20%, а при благоприятных условиях – до 25%.

На одну сторону пластины кремния наносят тонкое покрытие из пассивных химических элементов – бора или фосфора. Именно на этой поверхности в результате интенсивного воздействия солнечных лучей происходит активное высвобождение электронов. Фосфорная пленка надежно удерживает их в одном месте и не позволяет разлетаться.

На самой рабочей пластине располагаются металлические «дорожки». На них строятся свободные электроны, создавая таким образом, упорядоченное движение, то есть, электрический ток.

К минусам пластин относят только сложность и затратность процесса очистки самого кремния, и, чтобы избежать этих проблем, активно осваивают использование альтернатив в виде галлия, кадмия, индия и различных соединений меди. Однако пока что реальных конкурентов у кремниевых элементов еще нет.

Самый простой способ соорудить преобразователь солнечной энергии в электричество – купить готовую солнечную батарею и установить ее на крыше дома или гаража:

Что нужно для работы?

Для изготовления генератора, состоящего из комплекта солнечных батарей, требуются такие инструменты и материалы, как:

  • модули для преобразования солнечных лучей в энергию;
  • алюминиевые уголки;
  • деревянные рейки;
  • листы ДСП;
  • прозрачный элемент (стекло, плексиглас, оргстекло, поликарбонат) для создания защиты для пластин кремния;
  • саморезы и шурупы разных размеров;
  • плотный поролон толщиной 1,5-2,5 мм;
  • качественный герметик;
  • диоды, клеммы и провода;
  • шуруповерт либо набор отверток;
  • паяльник;
  • ножовка по дереву и металлу (либо болгарка).

В каком объеме понадобятся материалы, будет напрямую зависеть от запланированного размера генератора. Масштабная работа повлечет за собой дополнительные расходы, но в любом случае обойдется дешевле, чем покупной модуль.

Для конечного тестирования собранного агрегата используют амперметр. Он позволяет зафиксировать реальное КПД установки и помогает определить фактическую отдачу.

Выбор типа фотопреобразователя

Мероприятия по созданию своими руками солнечного генератора начинают с выбора типа фотоэлектрического кремниевого преобразователя.

Эти составляющие бывают трех видов:

  • аморфные;
  • монокристаллические;
  • поликристаллические.

Каждый вариант имеет свои достоинства и недостатки, а выбор в пользу любого из них делают, исходя из объема средств, выделенных на покупку всех компонентов системы.

Особенности аморфных разновидностей

Аморфные модули состоят не из кристаллического кремния, а из его производных (силан или кремниеводород). Путем напыления в вакууме, их тончайшим слоем наносят на высококачественную металлическую фольгу, стекло или пластик.

Готовые изделия имеют блеклый, размыто-серый оттенок. Видимые кристаллы кремния на поверхности не наблюдаются. Основным достоинством гибких солнечных батарей считается доступная цена, однако, КПД их очень невелико и колеблется в диапазоне 6-10%.

Специфика поликристаллических типов

Поликристаллические солнечные батареи производят при постепенном очень медленном охлаждении кремниевого расплава. Получившиеся изделия отличаются насыщенным синим цветом, имеют поверхность с четко выраженным рисунком, напоминающим морозный узор, и проявляют эффективность в районе 14-18%.

Дать более высокую КПД-производительность мешают наличествующие внутри материала области, отделенные от общей структуры зернистыми границами.

Характеристика монократиллических вариантов

Монокристаллические модули характеризуются плотным темным цветом и состоят из цельных кристаллов кремния. Их эффективность превышает показатели прочих элементов и составляет 18-22% (при благоприятных условиях – до 25%).

Еще одним достоинством считается впечатляющий срок службы – по заявлению производителей свыше 25 лет. Однако, при продолжительном использовании КПД монокристаллов падает и спустя 10-12 лет фотоотдача уже составляет не более 13-17%.

Для создания солнечного генератора дома своими руками преимущественно берут поли- и монокристаллические пластины различных габаритов. Их приобретают в популярных интернет-магазинах, в том числе на eBay или Алиэкспресс.

Из-за того, что фотоэлементы ценятся довольно высоко, многие поставщики предлагают покупателям продукцию группы B, то есть пригодные к полноценной эксплуатации фрагменты с небольшим дефектом. Их стоимость отличается от стандартной цены на 40-60%, благодаря чему сбор генератора обходится в разумную цену, не слишком бьющую по карману.

Как сделать каркас для пластин?

Для изготовления каркаса будущего генератора используют прочные деревянные рейки или алюминиевые уголки. Деревянный вариант считается менее практичным, так как материал требует дополнительной обработки во избежание последующего гниения и расслаивания.

Алюминий имеет гораздо более привлекательные физические характеристики и благодаря своей легкости не оказывает лишней нагрузки на крышу или другую опорную конструкцию, куда планируется установить агрегат.

Кроме того, за счет антикоррозийного покрытия металл не ржавеет, не гниет, не впитывает влагу и легко переносит воздействие любых агрессивных атмосферных проявлений.

Для создания каркасной конструкции из алюминиевых уголков сначала определяют размер будущей панели. При стандартном варианте на один блок используют 36 фотоэлементов размером 81 мм х 150 мм.

Для корректности последующей эксплуатации между фрагментами оставляют небольшой зазор (около 3-5 мм). Это пространство позволяет учесть изменение базовых параметров основы, подвергшейся воздействию атмосферных проявлений. В результате общий размер заготовки составляет 83 мм х 690 мм при ширине уголка каркаса в 35 мм.

После определения размеров из уголков выкраивают необходимые фрагменты и с помощью крепежных элементов собирают их в каркасные рамки. На внутреннюю поверхность конструкции наносят слой силиконового герметика, очень внимательно следя, чтобы не было пропусков и пустот.

От этого зависит целостность, прочность и долговечность монтируемой конструкции. Сверху укладывают защитный прозрачный материал (стекло с антибликовым покрытием, оргстекло либо поликарбонат со специальными параметрами) и надежно крепят его с помощью метизов (по 1 с короткой и по 2 с длинной части рамы и 4 по углам корпуса).

Для работы используют шуруповерт и шурупы подходящего диаметра. В конце прозрачную поверхность аккуратно очищают от пыли и мелкого мусора.

Выбор прозрачного элемента

Основные критерии выбора прозрачного элемента для создания генератора:

  • способность к поглощению ИК-излучения;
  • уровень преломления солнечного света.

Чем ниже показатель преломления, тем выше КПД продемонстрируют кремниевые пластины. Наиболее низким коэффициентом светоотражения обладают плексиглас и оргстекло. Поликарбонат тоже имеет далеко не лучшие показатели.

Для создания каркасных конструкций под домашние гелиосистемы рекомендуется по возможности использовать антибликовое прозрачное стекло или специальный вид поликарбоната с антиконденсатным покрытием, обеспечивающим необходимый уровень термической защиты.

Самыми лучшими характеристиками в плане поглощения ИК-излучения обладают прочное термопоглащающее оргстекло и стекло с опцией ИК-поглощения. У простого стекла эти показатели значительно ниже. От эффективности ИК-поглощения зависит, будут ли греться в процессе эксплуатации кремниевые пластины или нет.

Если нагрев окажется минимальным, фотоэлементы прослужат долго и обеспечат стабильную отдачу. Перегрев пластин приведет к перебоям в работе и быстрому выходу из строя отдельных фрагментов системы или всего комплекса.

Установка кремниевых фотоэлементов

Непосредственно перед установкой защитные стекла, уложенные в алюминиевые рамы, хорошо очищают от пыли и обезжиривают спиртосодержащим составом.

Купленные фотоэлементы ровно располагают на разметочной подложке на расстоянии 3-5 миллиметров друг от друга и делают маркировку углов общей конструкции. Затем приступают к пропайке элементов – самому важному и трудоемкому отрезку работы по сборке генератора.

Читать еще:  Синхронный и асинхронный генератор отличия

Пропайку действующих элементов генератора осуществляют по схеме, в которой «+» являются дорожки на внешней стороне, а «-» – каналы, расположенные на изнаночной части пластины.

Для корректного соединения контактов сначала наносят флюс (кислота для паяния) и припой, а потом осуществляют обработку в строгой последовательности сверху вниз. В конце все ряды соединяют между собой.

Следующим шагом делают проклейку фотоэлементов. Для этого в центр каждой пластины из кремния выдавливают немного герметика, образовавшиеся цепочки элементов переворачивают внешней стороной вверх и размещают в строгом соответствии с разметкой, нанесенной ранее.

Аккуратно руками прижимают пластины, фиксируя их на нужном месте. Действуют очень осторожно, стараясь не повредить и не согнуть материал.

Контакты фотоэлементов, расположенных по краям, выводят на отдельную шину (широкий серебряный проводник), как «+» и «-». Дополнительно комплекс оснащают блокирующим диодом. Соединяясь с контактами, он не дает аккумуляторам разрядиться через каркасную конструкцию в ночное время суток.

В донной части каркаса проделывают дрелью отверстия, через которые провода выводят наружу. Чтобы они не провисали, используют в работе силиконовый герметик.

С шагами сборки солнечной панели из 60ти элементов познакомит следующая фото-галерея:

МОЩНАЯ САМОДЕЛЬНАЯ СОЛНЕЧНАЯ БАТАРЕЯ

В общем от диодной солнечной панели я желал получить номинальное напряжение при нормальном солнечном освещении 9 вольт, напряжение при облачной погоде не менее 6 вольт, а при ярком солнечном освещении планировалось получить до 14-16 вольт напряжения, про силу тока поговорим потом. Итак, поскольку пиковое значение напряжение в 0,7 вольт мои кристаллы отдавали очень редко (в течении 3-х дней испытании на солнце мультиметр только один раз показал такое значение от одного кристалла), то решил для удобства проведения расчетов использовать расчетную величину тока одного кристалла 0,5 вольт. Для получения 12 вольт напряжения нужно последовательно соединить 24 кристалла полупроводниковых диодов. Теперь поясню, как достать кристалл из диода. Берем сам диод и при помощи молотка разбиваем стеклянный держатель верxнего контакта диода. Затем при помощи плоскогубцев нужно открыть диод. Там мы увидим кристалл, который припаян к основании диода. К кристаллу припаян медный многожильный провод на конце которого прикреплен верxний контакт диода. Берем нижнее основание диода на который припаян кристалл и идем к газовой плите. Держим его при помощи плоскогубцев на огне (так, что полупроводниковый кристалл наxодился сверxу). Через пол-минуты олово кристалла расплавится и уже можно спокойно взять его при помощи пинцета. Так нужно делать со всеми диодами. У меня на это ушло пару дней. Работа действительно трудная, но дело стоит того. Как уже было сказано, каждый полупроводный кристалл способен отдавать до 7 миллиампер тока на ярком солнце. Для удобства расчета использовал значение силы тока одного кристалла 5 миллиампер. То есть, если параллельно соединить 32 кристалла мы получим силу тока 160 миллиампер, почему именно 160 миллиампер? Просто у меня диодов xватило как раз только для получения такого тока. Нужно подключить 24 диода последовательно для получения 12 вольт напряжения и собрать 32 блока по 12 вольт и включить параллельно для получения желаемой емкости. В итоге когда панель была готова (после почти недели работ) я почему то получил иные параметры которые меня очень обрадовали. Максимальное напряжение при ярком солнечном освещении до 18 вольт, а сила тока достигала 200 миллиампер, иногда до 220 миллиампер.

Для корпуса панели были использованы два каркаса от советского стабилизатора напряжения. На стабилизаторе есть отверстия для вентиляции и именно в ниx были поставлены полупроводные кристаллы.

Поскольку солнечный свет не всегда будет освещать нашу панель, то было решено зарезервировать напряжение от панели в аккумулятораx. Аккумуляторы были использованы от китайскиx фонариков. Каждый аккумулятор имеет следующие параметры: напряжение 4 вольт, емкость до 1500 миллиампер.

То есть наша панель за сутки успеет зарядить такой аккумулятор, точнее три такиx аккумулятора, поскольку аккумуляторы были включены последовательно для получения 12 вольт напряжения, потом переделал панель и она также при желании могла отдавать 8 вольт 300 миллиампер. Также была изготовлена небольшая панель из стеклодиодов. Стеклодиод при ярком солнечном освещении отдавал напряжение до 0,3 вольт, а сила тока до 0,2 миллиампер.

Стеклодиодная панель у меня дает напряжение 4 вольта, сила тока до 80 миллиампер. Все напряжение от солнечныx панелей накапливалось в свинцовыx аккумулятораx от фонарей, однако желательно использовать аккумулятор с большой емкостью, даже и от автомобиля. Все напряжение от аккумуляторов тратилось с одной целью — осветить дом в ночное время. Освещение выполнялось светодиодами.

Для этого из магазина были куплены светодиодные китайские фонарики. Затем были созданы светодиодные панельки.

На каждой панельке 42 светодиода. В общей сложности были созданы три идентичные панели которые вместе потребляли всего 20 ватт. Но освещенность равна 100 ваттной лампе накаливания и даже больше.

Свет, которые дают светодиоды, более приятный и успокаивающий. К тому же светодиоды имеют ничтожные тепловые потери.

Ну в прочем думаю все отлично знают, что светодиоды более эффективны. Все светодиоды были подключены параллельно и питаются от 4-х вольт напряжения, но напряжение нужно подать через токоограничивающий резистор 10 ом — мощность резистора 1 ватт, и нагрева резистора не наблюдалась. Ака.

Обсудить статью МОЩНАЯ САМОДЕЛЬНАЯ СОЛНЕЧНАЯ БАТАРЕЯ

Солнечные генераторы

  1. Солнечный генератор: устройство и принцип работы
    1. Возможности солнечных генераторов
    2. Простейшее устройство солнечного генератора
  2. Солнечный генератор – альтернативный источник энергии
    1. Устройство и принцип работы
    2. Где применяются?
    3. Преимущества устройства
    4. Можно ли собрать устройство самостоятельно?
  3. Особенности генераторов на солнечных батареях
    1. Возможности солнечных генераторов
  4. Сферический генератор солнечной энергии
    1. Изобретение германского архитектора
    2. Как это работает?
  5. Солнечный генератор своими руками: инструкция по изготовлению альтернативного источника энергии
    1. Как работает генератор солнечной энергии
    2. Что нужно для работы
    3. Как правильно выбрать тип фотопреобразователя
    4. Как сделать каркас для пластин
    5. Выбор прозрачного элемента
    6. Установка кремниевых фотоэлементов
    7. Как протестировать смонтированный агрегат
    8. Завершающий этап работы
    9. Где и как разместить генератор

Солнечный генератор: устройство и принцип работы

Явление фотоэффекта было открыто очень давно. Однако, технические сложности и высокая стоимость фотопанелей долго не позволяли использовать в быту солнечную энергию. Однако, с развитием научно-технического прогресса, солнечный генератор в современных условиях становится в один ряд с традиционными источниками энергии. Таким образом, в ближайшей перспективе, это устройство станет одним из наиболее вероятных альтернативных источников электрической энергии.

Возможности солнечных генераторов

Конструкция солнечного генератора позволяет легко и просто осуществлять его установку и подключение. Именно эти факторы позволяют широко применять это устройство. Мощность такого генератора может регулироваться до необходимого значения. Параллельное подключение батарей позволяет увеличить мощность, а последовательное подключение повышает напряжение.

Современные генераторы могут производить напряжение от 220 вольт и выше. Однако, получаемый ток, является постоянным и не подходит для многих потребителей. Поэтому, приходится использовать специальные устройства, преобразующие постоянный ток в переменный. Электрический ток с высоким напряжением достаточно сложно преобразовывать, поэтому, диапазон работы солнечных генераторов составляет 12-48 вольт.

На продуктивную работу генератора влияют многие факторы. Прежде всего, это время года и суток, климат в той или иной местности, а также место установки оборудования. Панели должны вращаться относительно движения солнца, чтобы собрать максимальное количество солнечных лучей.

Простейшее устройство солнечного генератора

Простейшая схема солнечного генератора на 12 вольт включает в себя цепочку из 36 фотоэлектрических элементов, последовательно соединенных между собой. Параметры каждого из них могут существенно различаться из-за физических особенностей, связанных с чистотой кристаллов, толщиной элементов и другими технологическими процессами. Поэтому, величина вырабатываемого тока определяется по наименьшему значению какого-либо фотоэлемента. В связи с этим, перед началом сборки фотоэлементов в общую батарею, они тщательно проверяются и подбираются по всем параметрам.

Таким образом, солнечный генератор можно собрать на любое значение тока и напряжения с помощью последовательно-параллельных комбинаций. Особенности конструкции, делают эти устройства более эффективными в загородных домах, на больших открытых участках. Во многих случаях, они вполне успешно заменяют традиционные источники энергии.

Солнечный генератор – альтернативный источник энергии

  • Устройство и принцип работы
  • Где применяются?
  • Преимущества устройства
  • Можно ли собрать устройство самостоятельно?

В настоящее время актуальной становится обеспеченность энергоресурсами отдаленных и труднодоступных районов. Причин этому несколько. Во-первых, электричество – незаменимый элемент комфортного существования современного человека. Во-вторых, снижение затрат за пользование электричеством и постоянная бесперебойная его подача имеют большое значение в наше время. Солнечный генератор – это прибор, с помощью которого можно решить вопросы энергообеспеченности и экономии энергоресурсов.

Устройство и принцип работы

Солнечный генератор представляет собой металлический корпус-моноблок со съемной крышкой. Он состоит из нескольких несложных элементов:

  1. Фотопанели, которые создают постоянный ток.
  2. Аккумулятор для накопления энергии.
  3. Инвертор, преобразующий постоянный ток в переменный.
  4. Контроллер заряда, накапливающий энергию в аккумуляторе.

Принцип работы: солнечная панель собирает энергию от солнца и сохраняет её в аккумуляторе для использования в дальнейшем. При этом вырабатывается постоянный ток. Также батареи обеспечивают питание максимальной нагрузки, то есть ток нагрузки обеспечивает сумма токов от солнечной батареи и аккумулятора.

Если нужно получить 220В переменного тока, то следует использовать преобразователи постоянного тока в переменный. Энергия солнца в генераторе может применяться также напрямую разными нагрузками постоянного тока.

Солнечный генератор электроэнергии имеет предохранительные модули, защищающие от превышения допустимых значений тока и напряжения. Что важно – если в какое-то время нет солнечных лучей, то генератор можно подзарядить от обыкновенной электросети.

Где применяются?

Солнечные генераторы бывают разных моделей и имеют различные характеристики (а именно производительность, ёмкость аккумулятора, время, необходимое для зарядки и т.д.). Но чаще всего у них у всех выходные параметры – розетки на 220 В и выходы на 12 В, а также в наличии дисплей, отображающий работу прибора.

Несмотря на свою универсальность, генераторы на солнечных батареях зависят от погодных условий. А потому могут применяться только в качестве резервного или вспомогательного источника электроэнергии. Особую актуальность это имеет для жилых домов, тем более в отдаленных уголках страны и районах с нестабильным электроснабжением.

Солнечные батареи устанавливаются на улице в местах с наибольшим доступом солнечных лучей, ведь их эффективность напрямую зависима от освещенности. Чаще всего ставят их на крышах домов либо на других подходящих участках. При этом желательно предусмотреть возможность менять угол наклона фотоэлементов. Например, увеличив её до 75-80 градусов, получаем то, что лучи солнца в 12-00 дня практически перпендикулярны поверхности батареи. Солнечные батареи устанавливаются и подключаются очень просто, их удобно обслуживать. К генератору они подключаются с помощью специального сетевого шнура.

Солнечный генератор создан для использования в качестве основного и дополнительного (резервного, аварийного) источника тока частных домов и коттеджей, дач, объектов торговли, демонстрационных площадок, туристических баз и тому подобное. У него весьма обширный спектр использования. Можно применять для обеспечения электричеством осветительных и бытовых приборов (холодильников, телевизоров, ноутбуков, компьютеров, оргтехники), электроинструмента, дренажных и циркуляционных насосов, отопительных котлов и так далее. Время автономной работы у всех моделей разное, но практически все они довольно производительны и могут работать непрерывно до 10-12 часов.

Преимущества устройства

Солнечный генератор имеет такие преимущества:

  1. Не зависит от электросети, заряд от энергии солнца.
  2. Возможность подзарядки от сети 220 В (или даже от прикуривателя).
  3. Выходная мощность переменного тока до 1500 Вт.
  4. На выходе 220 В переменного и 12 В постоянного тока.
  5. Не боится короткого замыкания.
  6. Не зависит от топлива (бензин, дизельное топливо), так как его не потребляет.
  7. Работа без шумов.
  8. Отсутствие вредных выбросов, альтернативный источник электроэнергии.
  9. Возможность применения в помещениях без вентиляции.
  10. Эстетичный дизайн, компактность и удобство использования.
  11. Наличие светодиодного индикатора зарядки аккумулятора.
  12. Регулируемый кронштейн для крепления солнечных панелей.
  13. Легко транспортируется.
  14. Экономит электроэнергию.

Свой генератор электричества – удовольствие не из дешевых. На начальном этапе придётся понести определенные затраты на его приобретение и установку. Он дороже привычных топливных моделей. Но не стоит об этом беспокоиться, так эти первоначальные инвестиции достаточно быстро окупятся, и уже спустя несколько лет Вы будете наслаждаться бесперебойным электроснабжением, экономя при этом свои деньги.

Можно ли собрать устройство самостоятельно?

Сейчас можно приобрести любую модификацию солнечного генератора, а можно сделать его своими руками. Для этого достаточно иметь необходимые знания по его строению и принципу работы. Можно собрать генератор электрической энергии с любым напряжением и током на выходе путем соединения цепочек фотоэлементов или батарей в последовательно-параллельные комбинации. При этом важно помнить, что параллельное подключение увеличивает мощность, а последовательное – напряжение.

Ни для кого не секрет, что природные ресурсы, используемые человеком, начинают заканчиваться. А благодаря альтернативным источникам энергии, таким как солнечный генератор можно сохранить природные ресурсы и восстанавливать их запасы. В наше время появились технологии, позволяющие использовать на пользу человека щедрый источник энергии – солнечные лучи.

Солнце – это безвозмездный совершенно чистый и неиссякаемый источник энергии. Генератор электрической энергии, несомненно, будет способствовать сохранению экологии на нашей планете и жизни будущих поколений.

Особенности генераторов на солнечных батареях

Сегодня для энергообеспечения частных домов все чаще используются разного рода генераторы. Особенно это актуально для отдаленных и труднодоступных регионов и районов с нестабильным электроснабжением. Чаще всего для этих целей применяются классические топливные варианты (дизельные или бензиновые), но нередко используются и не менее эффективные альтернативные варианты. Так, во многих странах очень развита ветроэнергетика (к примеру, в Нидерландах или в Австралии), а в последние годы все более востребованными становятся и солнечные генераторы.

Работают эти устройства от привычных фотопанелей, производящих электричество. Также в обязательном порядке такой генератор имеет аккумулятор большой емкости (для накопления энергии), инвертор (для преобразования тока) и контроллер питания (для регулирования работы и зарядки батарей). Кроме того, в генераторе должны быть предохранительные модули, срабатывающие при превышении допустимых значений тока/напряжения.

Технические характеристики (параметры аккумулятора, время зарядки, производительность, выходные параметры) и коммутационные разъемы зависят от конкретной модели и производителя. Как правило, у таких солнечных генераторов имеются классические выходные розетки 220 В и выходы на 12 В. В некоторых модификациях предусмотрены даже USB-разъемы. Помимо этого обычно присутствует информативный дисплей для отображения всей рабочей информации.

Преимущества солнечных генераторов очевидны:

  • Независимость от обычного энергоснабжения;
  • Независимость от поставок топлива (бензин, дизель);
  • Отсутствие расходов на топливо;
  • Бесшумная работа (что очень актуально для частного дома);
  • Возможность подзарядки от электросети (для некоторых моделей – даже от прикуривателя);
  • Возможность использования в невентилируемых закрытых комнатах.

Сами солнечные батареи размещаются, естественно, на улице, к генератору они подсоединяются при помощи специального кабеля (он всегда входит в комплект).

Возможности солнечных генераторов

Спектр использования гелиогенераторов достаточно обширен. Их можно использовать для зарядки и питания ноутбуков, телевизоров, минихолодильников, энергосберегающих ламп и прочей бытовой техники. Время автономной работы зависит от конкретной модели, но, как правило, такие устройства достаточно производительны и способны, например, обеспечить энергией холодильник в течение суток.

Принцип же работы генераторов на солнечных батареях очень прост. Фотопанель вырабатывает постоянный ток, который поступает в генератор. Инвертор преобразует его в переменный, который и подается на бытовую нагрузку. А через контроллер заряда энергия накапливается в аккумуляторной батарее. При отсутствии солнечных лучей генератор может заряжаться от стандартной электросети.

Безусловно, такой агрегат является вспомогательным энергоисточником, так как, несмотря на все свои преимущества, все-таки зависит от погодных условий. Однако для многих частных домов он может стать идеальным решением проблем энергообеспечения. Ведь для работы ему не требуется дорогостоящее топливо, его можно установить в любой комнате, и он не создает вредных выхлопов.

Конечно, первоначальные затраты на приобретение солнечных генераторов выше, чем для классических топливных моделей. Однако эти расходы окупаются достаточно быстро за счет отсутствия необходимости постоянного приобретения топлива. Кроме того, отпадает проблема хранения топливных емкостей, заполненных пожароопасными горючими составами. А значит, минимизируется вероятность случайного возгорания.

Нередко для энергообеспечения используются комплексные установки, в которых объединяют солнечные и ветрогенераторы. Такие системы позволяют в полной мере использовать природные возможности региона и гарантируют стабильность электроснабжения.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector