Astro-nn.ru

Стройка и ремонт
243 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Генератор для поиска места повреждения кабелей

Генератор для поиска места повреждения кабелей

На первой схеме самое оптимальное включение генератора для трассировки кабеля. Ток проходит по одной или нескольким жилам кабеля и возвращается через экран того же кабеля и землю.

Как вариант для кабелей без экрана обратный ток может идти и просто через заземление, и именно так чаще всего подключают к генератору кабеля связи. Однако подключение через «землю» всё же хуже и более подвержено ошибкам в трассировке из-за паразитных наводок на трубопроводы и прочие коммуникации (подробней → Подключение и использование частот генератора).

Неправильное включение генератора кабелеискателя

На следующей схеме неправильное подключение генератора. При этом ток в кабеле будет течь и индикатор прибора будет показывать его правильные значения, но кабелеискатель трассу не увидит. Связано это явление с симметричностью линии и соответственно с её защищённостью. Наводка от подключенной жилы кабеля будет равна и противоположна по знаку наводке на другой жиле с проходящим обратным током. В результате за пределы кабеля электромагнитное поле не выйдет. Тот же самый эффект может возникнуть в коаксиальных кабелях при отсутствии заземления экрана на противоположном от генератора конце.

Чтобы как-то снизить это явление надо нарушить симметрию линии увеличив количество проводящих элементов (жил) в плече обратного тока.

Подобным включением можно искать место разбитости пар. Но практически это неосуществимо: катушкой кабелеискателя нужно проводить по поверхности кабеля, а он в свою очередь на поверхности бывает крайне редко. Битость же, как правило, происходит в муфтах, которые в свою очередь и так создадут увеличенный фон сигнала (Поиск кабелеискателем разбитости пар).

Включение генератора через электрическую ёмкость кабеля

Следующая схема, скорее вынужденная и применяется в тех случаях когда сложно или невозможно заземлить дальний конец кабеля. Иногда её называют ёмкостной или «через ёмкость». Цепь по постоянному току оказывается не замкнутой, и всевозможные автоматические измерения импеданса показывают бесконечное сопротивление линии. Выходное напряжение прибора выставляется максимальным, частоту то же предпочтительно повысить до 1000 Гц и более.

Трассировка при таком включении никогда не доводит до конца кабеля и удовлетворительно работает на длинных, от 500 метров, линиях. Уровень сигнала при прохождении трассы постоянно падает от генератора к противоположному концу, что обусловлено особенностью ёмкостной связи.

Включение генератора для поиска повреждений

Далее представлена схема включения генератора для поиска повреждения. Она такая же, как и предыдущая, но из-за сопротивления повреждения (R), и соответственно тока утечки сопротивление (импеданс) не будет бесконечным. «Умные» современные приборы при автоматическом измерении импеданса это сопротивление будут видеть и соответственно станут настраиваться.

При большом сопротивлении повреждения подобная схема используется для поиска места повреждения щупами (контактный метод). И именно такой вариант использования наиболее характерен для кабелей связи.

В силовых кабелях часто используется методы преобразования (прожига) повреждения. Сопротивление при прожиге доводится до минимальных, близких к нулю значений. В этом случае место повреждения ищут одним кабелеискателем методом минимума. Из-за изменения направления тока в кабеле в месте повреждения изменяется направление электромагнитного поля (фиолетовые стрелки). Место повреждения определяется по отсутствию фиксации минимума в месте повреждения.

Здесь, конечно же есть свои нюансы, например мест с изменением направления электромагнитного поля вблизи повреждения несколько и связано это с особенностями повива силовых кабелей.

Включение генератора на экран

Ну и наконец, следующие две схемы скорее для примера того, что к делу подключения генератора к кабелю надо относиться творчески. Экран, броня, жила — всё условно. Экран изолированный с обоих концов это та же жила. А на оптоволоконных кабелях из токопроводящих материалов есть только броня.

Схема иллюстрирует подключение прибора и прохождение тока при трассировке и использовании экрана кабеля.

Обе схемы могут использоваться на оптоволоконных кабелях.

Определение места повреждения кабеля

Как правило, соединения потребителей с источниками электроэнергии (трансформаторными и распределительными подстанциями) осуществляется при помощи кабельных линий (КЛ). Это связано с тем, что у данного способа есть масса преимуществ перед воздушными линиями (ВЛ). Но, если случилась авария на КЛ, то поиск места повреждения кабеля без специальных приборов, практически невозможен. Сегодня мы рассмотрим несколько способов, позволяющих локализовать аварийный участок кабельной трассы, проложенной в земле.

Причины и виды повреждений кабельных линий

Существует много факторов, негативно влияющих на целостность силовых кабелей, к наиболее распространенным из них можно отнести следующие:

  • Подвижка грунта, может быть вызвана аварией водопроводных, канализационных или тепловых сетей, а также сезонными явлениями, например, весенним оттаиванием.
  • Превышение допустимых норм эксплуатации КЛ, что может привести к термической перегрузки линии, вызванной увеличением токовой нагрузки.
  • Образование в КЛ высокого уровня электрического тока от транзитного КЗ.
  • Механическое повреждение при земляных работах без учета прохождения подземных коммуникаций и глубины трассы.
  • Ошибки при прокладке КЛ. В качестве примера можно привести нарушения технологии соединения жил кабельными муфтами.
  • Заводской брак.

Заметим, что при открытой прокладке кабельных трасс некоторые перечисленные выше причины повреждений встречаются крайне редко. В частности, снижается вероятность влияния подвижки грунта и механические воздействия вследствие земляных работ. Помимо этого зоны повреждения открытых КЛ, в большинстве случаев, можно обнаружить при визуальном осмотре, без задействования спецметодов.

Разобравшись с причинами, перейдем к видам повреждений, поскольку от этого напрямую зависит, каким методом будет локализирован аварийный участок КЛ.

Чаще всего ремонтным бригадам приходится сталкиваться со следующими видами неисправностей:

  • Дефект, вызванный полным или частичным обрывом КЛ. Чаще всего причиной аварии является проведение земляных работ без определения прохождения кабельных трасс. Несколько реже причиной данного повреждения может стать КЗ в соединительных муфтах.
  • В силовых кабелях (более 1кВ), часто встречается пробой одной из жил на землю (однофазное замыкание). Ток утечки, как правило, это вызвано снижением качества изоляции в процессе эксплуатации КЛ.
  • Межфазные повреждения, а также виды металлических замыканий, могут возникнуть в любых линиях, причина повреждений такая же, как и в предыдущем пункте.
  • Плановое испытание кабеля, при котором задействуется высокий уровень напряжения, показывают низкую надежность изоляции, и приводит к возникновению пробоя. При определенных обстоятельствах такая линия может продолжать эксплуатироваться, но из-за низкого уровня ее надежности, авария может проявиться в любое время.

Кратко о ремонте кабельной линии

Ремонтные работы на кабельных линиях принято классифицировать на плановые и аварийные. Что касается объема таких работ, то у первых он, как правило, капитальный, у вторых – текущий.

При капитальных работах производится плановая замена КЛ, прокладка новых трасс и т.д. При необходимости также выполняется ремонт и/или модернизация сопутствующего оборудования. К последним относятся вентиляционные системы и освещение кабельных туннелей, а также насосы для откачки грунтовых вод. Учитывая специфику плановых работ, при их проведении не требуется локализация дефектных участков.

Совсем иначе обстоит дело при аварийном ремонте. Чтобы не раскапывать всю трассу, следует точно определить место обрыва провода, пробоя изоляции и т.д. Для этой цели применяются различные способы, для которых задействуется спецоборудование. Подробно об этом будет рассказано ниже.

Методики определения повреждения кабеля в земле

Как правило, дефектоскопия кабеля осуществляется в два этапа:

  1. Устанавливаются границы зоны, в пределах которой находится аварийный участок.
  2. Производится поиск точного места повреждения в определенной зоне.

Соответственно на первом этапе применяются относительные способы, а на втором широко используются технологии с повышенной точностью поиска повреждений. Перечислим основные методики дефектоскопии и особенности их применения.

Индукционный метод

Эта технология позволяет определить локацию, где произошел пробой изоляционного слоя токопроводящих элементов кабеля. Для этого при помощи специального генератора в КЛ подается переменный ток с силой до 20,0 ампер и частотой от 800,0 до 1200,0 герц. В результате, вокруг КЛ формируется электромагнитное поле определенной интенсивности. Если поместить в него антенную рамку подключенную к наушникам через усилитель, то можно услышать звук определенной частоты над неповрежденными токопроводящими элементами.

По характеру звукового сигнала можно определить не локацию дефекта, позиции муфт для соединения, топографию трассы (трассировку), включая наличие защитных труб. Ниже представлен рисунок, где показан уровень изменения сигнала над различными участками КЛ.

Поиск повреждений кабеля индукционным методом

Обозначения:

  1. Задающий генератор.
  2. Расположение соединительных элементов.
  3. Защита кабеля.
  4. Дефектное место.

Импульсный метод

Как уже упоминалось выше, данный способ относится к относительным, то есть, позволяющим установить дефектную зону повреждения (как правило, межфазное КЗ). Принцип работы заключается в подаче специальным прибором эталонного высоковольтного импульса в КЛ и последующим определением удаленности аварийного участка по отраженному сигналу импульсных токов.

Экран прибора ИКЛ с отображением отраженного импульса в случае замыкания (а) и обрыва (b) кабеля

В приведенном на рисунке примере расстояние до дефектного участка определяется следующим образом:

tx – интервал времени между посланным и отраженным электрическим сигналом, измеряется в микросекундах. Как видно из рисунка, он равен 3,5 мкс. Учитывая, что скорость распространения импульса (v) примерно равна 160,0 м/мкс, то для решения необходимо применить следующую формулу: lx = ( tx*v ) / 2, где lx – расстояние от генератора импульсов до поврежденного участка кабеля. В результате мы получим ( 3.5 * 160 ) / 2, то есть, 280,0 метров.

Обратим внимание, что в некоторых приборах по форме отраженного сигнала можно судить о характере дефекта.

Акустический метод

Технология основана на формировании в дефектном участке искровых разрядов, сопровождающимися звуковыми импульсами. Зафиксировать их можно используя обычный стетоскоп, прикладывая акустическую головку к земле, либо применяя специальный акустический приемник. Над дефектным участком разряды звуковых частот будут максимально громкими.

Различные схемы, применяемые при акустическом методе поиска повреждений кабеля

Обозначения:

  1. Поиск устойчивого короткого замыкания между токоведущей жилой и оболочкой кабеля.
  2. Схема для поиска заплывающих пробоев.
  3. Применение работоспособных токопроводящих элементов (задействована емкость жил).
  4. Схема для поиска обрыва.
Читать еще:  Проверка работоспособности генератора без снятия с автомобиля

Видео по теме:

Емкостной метод

Технология данного метода позволяет проводить поиск повреждения, в частности обрыва токоведущих элементов кабеля, путем измерения емкости жил. Как известно данный параметр напрямую зависит от длины кабеля. С упрощенной схемой высоковольтных колебаний для такого устройства можно ознакомиться ниже.

Мост переменного тока, используемый в емкостном методе обнаружения повреждения кабеля

Обозначения:

  • R1, R2, R3 – регулируемые резисторы.
  • Cэ – эталонный высоковольтный конденсатор.
  • L – расстояние до места обрыва.
  • Lк – общая длина КЛ.
  • 1 – токоведущие элементы кабеля.
  • 2 – защитная оболочка.
  • 3 – место обрыва.

Подбирая сопротивление переменных резисторов, добиваются минимального отклонения стрелки прибора Г, что указывает на равновесие между плечами моста, что говорит о следующем соотношении R1 / R2 = Сx / Сэ , это позволяет установить емкость поврежденной жилы Сx = Сэ* (R1 / R2) .

Подобным способом производим определение емкости на другом конце КЛ, то есть, подключаем к нему генератор и повторяем измерения. В результате, вычисляем расстояние до поврежденной зоны: L = Lk * С1 / ( C1 + C2 ), где С1 и С2 – емкости поврежденных токоведущих элементов кабеля, измеренные в начале и конце КЛ.

Метод колебательного разряда

Данный способ позволяет более эффективно определить расстояние до дефекта кабеля, известного, как заплывающий пробой. Для этой цели в поврежденную линию подаются импульсные колебательные разряды, после чего на экран спецприбора (например, ЭМКС58) выводятся данные о расстоянии до дефектного места.

Экран прибора РЕЙС-305 с указанием расстояния до поврежденного участка кабеля

Принципа работы данного метода во многом напоминает импульсный способ дефектоскопии.

Метод петли

Данный способ хорошо работает в тех случаях, когда в месте нарушения изоляции нет обрыва токоведущих элементов кабеля, а переходное сопротивление в месте дефекта не более 5,0 кОм. При несоответствии последнего условия может быть выполнен прожиг кабеля (прожигание изоляции для уменьшения переходного сопротивления). Упрощенный пример электрической схемы для метода петли показан ниже.

Устройство для поиска повреждения кабеля методом петли

Обозначения:

  • Г – гальванометр.
  • R1 и R2 – переменные резисторы, измерение сопротивления которых осуществляется после уравновешивания моста.
  • Lk – длина КЛ.
  • L – расстояние до дефектного участка.
  • 1 – токопроводящие элементы кабеля.
  • 2 – перемычка между целой и дефектной жилой.

После уравновешивания моста, расстояние до обрыва вычисляется по формуле: .

Метод накладной рамки

Данный вариант поиска повреждения в КЛ можно рассматривать в качестве одной из разновидностей индукционного способа, когда необходимо найти пробой между токоведущим элементом кабеля и его металлической оболочкой (броней). Данная технология рассчитана на поиск дефектных мест при открытой прокладке кабельных трасс, но ее можно успешно использовать и КЛ уложенных в грунт. В последнем случае требуется выкопать шурфы в зоне локализации дефекта.

Локализация повреждения кабеля методом накладной рамки

Обозначения:

  1. Накладные рамки.
  2. Место пробоя изоляции.

Поиск обрыва кабеля в бетонной стене и под гипсокартоном с помощью трассоискателя

Генератор высоковольтных импульсов для поиска обрыва в линии электропередачи

Прибор, описание которого представлено в данной статье, позволяет определить место разрыва линии электропроводки,например, в доме. В основе его работы используется метод, который в электротехнике называют акустическим. Он основан на прослушивании в месте повреждения звуковых колебаний (хлопков), вызванных искровым разрядом.

Обычно разрыв в электропроводке колеблется в пределах 0,5. 2 мм. Такой разрыв легко пробивает напряжение 1 . 3 кВ постоянного тока. Упрощенная схема устройства приведена на рис. 1, где Uu — источник повышающего напряжения до пробоя, Ru — внутреннее сопротивление источника напряжения.

Рис. 1. Упрощенная схема устройства.

Если в месте пробоя будет низкое сопротивление, хлопка не будет. Источник будет разряжаться, и напряжение не повысится. Во избежание этого нужно в цепь схемы поставить разрядник (искусственный разрыв около 1 мм). А для того, чтобы пробой был хорошо слышен и виден, необходимо добавить высоковольтный конденсатор.

Рис. 2. Структурная схема устройства.

Структурная схема устройства приведена на рис. 2. Обычно обрыв проводки находится на глубине 1 . 2 см в штукатурке или в соединительной коробке. Место повреждения легко обнаруживается по световой вспышке и по звуку хлопка разряда. Перед поиском места обрыва на участке электросети нужно отключить все электропотребители.

Принципиальная схема

Высоким напряжением аппарата можно повредить изоляцию обмоток электродвигателей и других электронных устройств. И обязательно нужно соблюдать технику электробезопасности [1]. Полезно перед этим воспользоваться генератором высокой частоты и искателем и приблизительно определить место повреждения [2, 3].

Рис. 3. Принципиальная схема генератора высоковольтного напряжения.

Также надо замерить ёмкость проводки до места повреждения кабеля, ёмкость 1 м провода АППВ 2*2,5 примерно равна 80. 100 пФ. Для поиска места обрыва необходимо подключить к высоковольтному прибору (см.схему устройства на рис. 3) питание -220 Вик выходным клеммам “0” и “1” или “2” — линию с обрывом. Затем нажать кнопку SA1 и держать около 3 сек. до разряда.

Если кнопку держать дольше, разряды будут повторяться по мере накопления напряжения на конденсаторе С2. Само устройство прибора не содержит дефицитных деталей.

Трансформатор Тр1 — от строчной развертки чёрно-белого телевизора. Разрядник Р35 можно заменить самодельным. Он изготовлен из кусочка фольгированного стеклотекстолита размерами 30*30 с круглым отверстием в центре диаметром 15 мм. По середине фольга удалена, по краям предусмотрены два отверстия для подключения проводов, см. рис. 4.

Рис. 4. Самодельный разрядник для замены Р35.

С каждой площадки навстречу друг другу припаяны два кусочка медного провода диаметром 1 мм с зазором 3 мм. В зазоре будет происходить пробой, с расчетом 1 мм = 1 кВ.

Такой разрядник Р1 установлен в схеме для предохранения высоковольтного трансформатор Тр1. При разряде в заводском разряднике Р35 звук очень слабый и не мешает слушать разряд в электропроводке в доме.

Конденсатор С2 К75-53 1 мФ на напряжение 5 кВ. Его можно заменить несколькими конденсаторами меньшей ёмкости, но сумма всех ёмкостей должна быть около 1 мФ, рабочее напряжение — не меньше 5 кВ.

Схема управления симистором ST1 взята из [4]. Номиналы деталей устройства указаны на принципиальной схеме. Неоновая лампа Л1 нужна для сигнализации напряжения сети 220 В на питание прибора.

Прибор собран в небольшом пластиковом кейсе. Теперь приведу два примера применения прибора из моей практики:

  1. Снижение кабеля от УКВ антенны. Сопротивление между экраном и центральной жилой по показанием тестера 100 Ом. Должно быть около 5. 10 Ом. При подключении прибора к кабелю один человек нажимал на кнопку SA1, а я наблюдал за антенной и кабелем вечером. Под правым болтом подключения кабеля к шлейфу антенны были видны искры. Правый болт был сильнее подтянут. Переходное сопротивление упало до 8 Ом.
  2. Потухла электролампа освещения в комнате. Лампа цела и исправна. Лампу вывернул. Концы в патроне закоротил. К отдельной линии, идущей к патрону лампы, подключил провода, отходящие от клемм “0” и “1” прибора. При нажатии на кнопку SA1 прибора в месте разрыва в проводке, выходящей с потолка, раздавались разряды. Ликвидация разрыва была легко устранена.

Б. Марченко. Приморский край, п.Кавалерово. РМ-02-17.

  1. Осторожно! Электрический ток! — Радио, 2015, №5, стр. 54.
  2. Б.Марченко. Приборы для определения места повреждения кабеля. — Радиолюбитель, 1997, №2, стр. 24-25.
  3. Б.Марченко. Приборы для измерения малых емкостей. — Радиомир, 2014, №7, стр. 27; Радиомир, 2014, №9, стр. 32.
  4. А. Просянов. Блок питания и киловольтметр для “люстры Чижевского”. — Радио, 2008, №1, стр. 27-28.

Искатель кабелей под землей самодельный. Методы локации подземных кабелей и труб. Поиск электромагнитного излучения проводки

Достаточно часто при прокладке, ремонте и модернизации электронных кабельных трасс наблюдается отсутствие профессиональных схем либо плохая видимость данных, имеющихся в документах. Это приводит к возникновению определенных проблем. Последние связаны прежде всего с временными затратами. Поиск кабеля

, сетей и зоны расположения шкафа и определенного типа коммутационных приспособлений, где находится их подключение – целый комплекс задач. Даже если удается увидеть провод, то определить его путь в большом пучке иных узлов – сложная работа. Такие же проблемы возникают в той ситуации, если нужно проложить новую линию в кабельные каналы, которые были проложены ранее. Затратным по времени является и поиск необходимой пары проводников, контроль работоспособности цепей и прочее.

Порядок выполнения измерений

Для начала стоит измерить длину кабеля с помощью импульсного рефлектометра. Импульсные рефлектометры “ЭРСТЕД” различного ценового диапазона способны облегчить задачу поиска повреждения кабеля. Определение места повреждения кабеля осуществляется с точностью до 12,5 см для топ-моделей класса РИ-307, а также для нижнего ценового диапазона – модели РИ-303Т.

Надёжные приборы, проверенные временем и заслужившие положительные отзывы – рефлектометры РИ-10М1 и РИ-10М2 – находятся в среднем ценовом диапазоне, позволяя проводить поиск повреждения кабеля с точностью до 1 м.

С помощью рефлектометра можно определить следующие типы повреждений:

  • обрыв кабеля;
  • межфазный пробой;
  • короткое замыкание.

Кроме этого, импульсный рефлектометр используется для определения длины кабеля на барабане. Так же с его помощью удаётся вычислить место несанкционированной врезки в кабель. Импульсный рефлектометр — современный прибор, используемый для диагностики состояния систем ОДК.

Измерение сопротивления изоляции

Измерение сопротивления изоляции кабеля – следующий этап в поиске повреждения кабеля. В качестве прибора для измерения сопротивления изоляции можно использовать мегомметр либо кабельный мост. Современный кабельный мост может не только заменить мегомметр, но и значительно расширить возможности поиска повреждения кабеля за счёт использования методики мостового измерения.

Кабельный мост позволяет не только оценить качество изоляции кабеля, но и рассчитать расстояние до места утечки, оценить ёмкость кабеля, измерить сопротивление шлейфа и омическую асимметрию. Именно поиск утечки, наряду с поиском обрыва кабеля, являются наиболее частыми повреждениями кабельной линии. Таким образом, импульсный рефлектометр и кабельный мост, объединённые в единый прибор, значительно повышают шансы найти место повреждения кабеля. РИ-10М2 – лёгкий, портативный и простой в использовании прибор сочетает в себе методики мостовых измерений и импульсного локатора неоднородностей. Сочетание цены и функциональности делает этот прибор для поиска повреждений кабеля популярным у потребителей.

Читать еще:  Выбираем генератор — как рассчитать мощность

Определение участка повреждения

После того, как дистанционными методами удалось выяснить тип повреждения кабеля и оценить расстояние до места повреждения, наступает следующий этап — указать место повреждения кабеля на местности. Эта задача разбивается на два этапа: поиск трассы и поиск дефекта на кабеле.

Задача поиска трассы решается с помощью трассоискателя. Трассоискатель — прибор для обнаружения проложенной в земле трассы. К трассам относятся:

  • силовой кабель;
  • связной кабель;
  • трубопровод;
  • оптический бронированный кабель.

Кабелеискатель фиксирует электромагнитное поле, исходящее от тока, протекающего в кабельной линии. Трассоискатель кабельных линий позволяет не только указать местоположения кабеля, но и оценить глубину его залегания.

Поиск повреждения кабеля на местности выполняется трассодефектоискателем. Определение места повреждения кабеля с помощью трассодефектоискателя выполняется индукционным методом или контактным методом. Индукционный метод кабелеискателя позволяет найти обрыв кабеля и межфазный пробой типа жила — жила, либо жила — броня. Контактный метод трассодефектоискателя позволяет найти утечку в кабеле. Таким образом на местности решается задача поиска повреждения кабеля.

Дистанционный поиск кабеля под землей

Поиск кабелей и кабельных трасс, в особенности, находящихся под высоким электрическим напряжением – ответственный вид изысканий. Выведение из строя высоковольтных проводов в ходе земляных работ может привести к авариям на промышленных предприятиях, перебоям с энергоснабжением жилых районов, несчастным случаям, в том числе со смертельными исходами. В процессе поисковых обследований с целью выявления электрокабелей мы используем трассоискатели, позволяющие устанавливать направление, глубину прохождения проводника, по которому пропускается электрический ток. Принцип действия таких приборов заключается в улавливании электрического и магнитного поля, создающихся в районе действующего проводника потоком электронов, переносящим электроэнергию. Наш оператор настраивает оборудование на соответствующий искомой трассе частотный диапазон электромагнитных волн и выполняет серию замеров в месте предполагаемого ее нахождения. Руководствуясь показаниями индикаторов, реагирующих на мощность и направление силовых линий поля, мы с высокой точностью отображаем на плане обнаруженную трассу. Этот метод, позволяющий нам вести поиск кабеля под землей, принимая излученные сигналы, называется пассивным.

Если трасса, схему которой нам поручено составить, на момент проведения изысканий отключена от источника электрического тока, пассивный способ не сработает. В этом случае мы будем вынуждены использовать более сложную в реализации методику, вследствие чего цена поиска подземных коммуникаций может возрасти.

Технические параметры трассоискателей и трассодефектоискателей

Трассоискатель и трассодефектоискатель может иметь различную форму, вес и стоимость. Погоня за миниатюризацией трассоискателя приводит к существенным проблемам в чувствительности и помехозащищённости прибора. Поэтому трассоискатели и трассодефектоискатели фирмы “ЭРСТЕД” сбалансированы по форме, весу и стоимости. Трассоискатель ТИ-05-3 и трассодефектоискатель ТДИ-05М3 нижнего ценового диапазона заслужили положительные отзывы на протяжении всего периода выпуска их серии. Однако наибольшей популярностью пользуется трассодефектоискатель ТДИ-МА среднего ценового диапазона, который осуществляет поиск повреждения кабеля даже в условиях аномальных помех от ЛЭП или железной дороги.

И конечно, поиск повреждения кабеля с помощью трассодефектоискателя затруднён без использования генератора. Генераторы подают в кабель ток согласованной с трассоискателем частоты. Именно поэтому, кабелеискатель может отличать свой кабель от другой трассы. По своей структуре, генераторы делятся на два типа, что удобно показать на примере генераторов :

  • портативные генераторы ИЗИ;
  • условно портативные генераторы ИЗИ-100.

Преимущества генераторов ИЗИ

Генератор ИЗИ является переносным прибором, которым легко автономно работать в полевых условиях. Генератор развивает мощность до 6 Вт, что является достаточным условием для поиска повреждения кабеля на расстоянии до 5 км. Генератор ИЗИ-100 является также переносным прибором, но он предназначен для работы только от сети 220 В. Развивая мощность до 100 Вт, этот генератор прекрасно подходит для определения места межфазного пробоя и короткого замыкания. Стоит упомянуть, что эти генераторы представлены в нижнем и среднем ценовом сегменте.

В заключении хочется пожелать удачи в поиске повреждения кабеля, поскольку грамотно подобранные приборы способны только облегчить эту задачу, в которой основную роль играет опыт.

Как ведется поиск скрытых труб и обесточенных кабелей?

В отличие от случаев выявления нами проводов, находящихся под напряжением, поиск скрытых труб или отключенных кабельных трасс – задача более сложная. Для ее решения мы применяем другие методики. Выбор наиболее подходящего способа проведения исследований делается нами после анализа природных и техногенных условий обследуемой территории, а также уточнения у заказчика сведений о типе искомой линии, материала, из которого она изготовлена.

Конструкцией некоторых трубопроводных магистралей предусматривается прокладка вдоль них специальных сигнальных проводов, наличие которых позволяет нам отыскивать такие трубы с поверхности пассивным способом (так же, как мы ведем поиск кабеля в земле).

Георадарный поиск подземных коммуникаций и кабелей

Один из способов, которым мы можем вести поиск труб под землей – георадарный. Георадары, помимо того, что они эффективно используются в некоторых инженерно-геологических изысканиях, которыми также занимается наша компания, применяются нами и в целях картирования подземных коммуникационных трасс.

Целесообразность применения георадарной методики определяется нами с учетом физических характеристик жидкостей или газообразных веществ, транспортируемых по обнаруживаемой линии, имеющейся у нас информации о геологическом строении грунтов земельного участка.

Трассопоисковые работы с активированием электрического тока

Метод, связанный с активированием электрического тока хорошо зарекомендовал себя при трассировании нами обесточенных проводов, труб, изготовленных из металлических материалов. Принцип этого метода – таков же, как при выявлении действующих сетей. Но только в данном случае электрический ток мы активируем самостоятельно. Для этого наши специалисты подсоединяют к выходящим на поверхность участкам кабельных или трубопроводных линий переносной электрогенератор.

Проводя трассопоисковые работы этим методом, мы даем заказчикам гарантию электробезопасности их земельных участков на все время выполнения исследований. Применяемое нами электрооборудование сертифицировано и не представляет угрозы для людей, находящихся или работающих на обследуемой территории.

Поиск труб под землей путем внутреннего зондирования

Это наиболее сложный в исполнении способ трассопоиска, который используется нами, если возбудить ток в теле обнаруживаемого трубопровода не представляется возможным (например, поиск пластиковых труб под землей), а условия проведения изысканий не позволяют эффективно использовать георадар. Зондирование заключается в том, что нами, на специальном гибком проводе, запускается в трубу излучатель электромагнитных импульсов (зонд). Зонд медленно перемещается, а наш сотрудник, вооруженный локатором-трассоискателем, настроенным на частоту сигналов, испускаемых зондом, фиксирует его геодезические координаты. Такое зондирование, проводимое нами, заказчик может совместить с внутренней телевизионной инспекцией. При этом будут выявлены проблемные участки (свищи, деформации, коррозия, места засорения), что намного упростит организацию необходимого ремонта и обслуживания магистрали.

С помощью зондирования невозможно вести поиск кабеля в земле. В основном, мы применяем его для трубопроводов из полимерных материалов, асбоцемента, железобетона, керамики (веществ, не обладающих электропроводностью).

Приборы для определения места повреждения кабеля

Лидеры продаж

  • Электроизмерительные приборы
  • Генераторы шума
  • Принадлежности для многофункциональных тестеров
  • Мобильные установки предварительной локации повреждений
  • Тестеры высоковольтных выключателей
  • Измерители коэффициента трансформации
  • Кабелерезы
  • Тепловизоры
  • Трассопоисковые комплекты
  • Течеискатели воды
  • Корреляционные течеискатели
  • Ручные устройства для прочистки труб
  • Промывочные насосы
  • Оборудование для алмазного бурения
  • Установки алмазного бурения
  • Клуппы ручные
  • Видеоэндоскопы
  • Люксметры
  • Трубогибы
  • Резьбонарезной инструмент
  • Генераторы НЧ
  • Принажлежности для анализаторов качества электроэнергии
  • Испытательное оборудование
  • Прожигающие установки
  • Прогрузка первичным током
  • Измерения оммического сопротивления обмоток
  • Инструмент для снятия изоляции
  • Пиромерты
  • Локаторы трассопоисковые
  • Акустические течеискатели
  • Телеинспекция и видеодиагностика
  • Механические прочистные машины
  • Реагенты для очистки отопительного оборудования
  • Алмазные коронки
  • Клуппы электрические
  • Труборезы
  • Толщиномер ЛКП
  • Шумомеры
  • Опрессовочные насосы
  • Приборы для определения места повреждения кабеля
  • Генераторы трассопоисковые
  • Генераторы ВЧ
  • Принадлежности для приборов САТУРН
  • Рефлектометры
  • Тестирование высоковольтных выключателей
  • Инструмент для опресовки наконечников
  • Ультрафиолетовые камеры
  • Трассировка не металлических труб
  • Системы контроля утечек воды
  • Оборудование для прочистки труб
  • Гидродинамические прочистные машины
  • Реагенты для очистки и защиты инженерных сетей
  • Резьбонарезные станки
  • Камнерезное оборудование
  • Ультразвуковые толщиномеры
  • Генераторы импульсов
  • Принадлежности к измерительным приборам
  • Точная локализация мест повреждения
  • Измерители параметров трансформаторов
  • Ручной слесарно-монтажный инструмент
  • Георадары
  • Герметик для устранения течей
  • Желобонакатчики
  • Электрогенераторы
  • Твердомеры
  • Генераторы сигналов специальной формы
  • Генераторы звуковой частоты
  • Электромонтажный инструмент
  • Аксессуары для трассоискателей
  • Промывка систем отопления и водоснабжения
  • Реагент для прочистки канализационных засоров
  • Сварочные генераторы
  • Генераторы векторных сигналов
  • Определение мест повреждений в оболочке
  • Дополнительные принадлежности
  • Насосные агрегаты (Мотопомпы)
  • Генераторы высоковольтных импульсов
  • Компрессорное оборудование
  • Определение кабеля в пучке
  • Дальномеры лазерные
  • Мотобуры
  • Электротехника
  • СНЧ-установки высоковольтные
  • Мегаомметры (измерители сопротивления изоляции)
  • Испытательные высоковольтные установки
  • Трассоискатели, кабелеискатели, георадары
  • Миллиомметры
  • Испытания средств защиты
  • Оборудование для обслуживания труб
  • Измерители сопротивления заземления
  • Оборудование для диагностики кабельных линий
  • Строительная техника и инструмент
  • Измерители параметров высоковольтной изоляции
  • Тестеры УЗО
  • Теcтеры трансформаторного масла
  • Неразрушающий контроль
  • Измерители параметров цепей
  • Дополнительные принадлежности к приборам
  • Измерители параметров окружающей среды
  • Мультиметры
  • Электроизмерительные клещи
  • Проверка чередования фаз. Индикаторы напряжения
  • Вольтамперфазометры
  • Megger
  • Metrel
  • Sonel
  • Генераторы сигналов
  • GW Instek
  • АКИП
  • Портативные осциллографы
  • Измерители тангенса диэлектрических потерь
  • Fluke
  • Строительные
  • Трассоискатели Radiodetection
  • Трассоискатели RIDGID
  • Трассоискатели Сталкер
  • Трассоискатели ТЕХНО-АС
  • RIDGID
  • Прочистные машины барабанного типа
  • Прочистные машины секционного типа
  • Дополнительные принадлежности
  • Осциллографы
  • Источники напряжения и тока
  • Приборы контроля состояния электрических машин
  • Тестирование аккумуляторных батарей
  • Киловольтметры
  • Дополнительные принадлежности для приборов
  • Посейдон
  • Принадлежности для гидродинамических аппаратов
  • О магазине
  • Доставка
  • Оплата
  • Гарантия

©Tectron: Оборудование для энергетики, ЖКХ и строительства.

г. Москва, ул.
Лобненская, д.21
8(495)118-22-92

Поиск трассы и мест повреждений кабельных линий

Назначение: определение мест повреждений, глубины залегания подземных кабелей, обследование местности, поиск трассы коммуникаций, выбор кабеля из пучка.

Читать еще:  Как выбрать бензогенератор? В поисках альтернативного источника энергии

Длина кабельной линии: до 50 км.

Глубина залегания кабеля: до 12 м.

Выходная мощность генератора: 500 Вт

Максимальный выходной ток: 39,5 А

Назначение: определение мест повреждений и глубины залегания подземных кабелей, обследование местности и поиск трассы коммуникаций, выбор кабеля из пучка.

Количество каналов поиска: 10

Методы поиска: индукционный, акустический, потенциальный.

Назначение: определение мест повреждений, глубины залегания подземных кабелей, обследование местности, поиск трассы коммуникаций, выбор кабеля из пучка.

Длина кабельной линии: до 50 км.

Глубина залегания кабеля: до 12 м.

Выходная мощность генератора: 500 Вт

Максимальный выходной ток: 39,5 А

Назначение: определение мест повреждений, глубины залегания подземных кабелей, обследование местности, поиск трассы коммуникаций, выбор кабеля из пучка.

Длина кабельной линии: до 50 км.

Глубина залегания кабеля: до 12 м.

Выходная мощность генератора: 500 Вт

Максимальный выходной ток: 39,5 А

Назначение: определение мест повреждений, глубины залегания подземных кабелей, обследование местности, поиск трассы коммуникаций, выбор кабеля из пучка.

Длина кабельной линии: до 30 км

Глубина залегания кабеля: до 10 м.

Выходная мощность генератора: 250 Вт

Максимальный выходной ток: 31,5 А

Назначение: определение мест повреждений, глубины залегания подземных кабелей, обследование местности, поиск трассы коммуникаций, выбор кабеля из пучка.

Длина кабельной линии: до 20 км

Глубина залегания кабеля: до 8 м.

Выходная мощность генератора: 100 Вт

Максимальный выходной ток: 19,2 А

Назначение: определение мест повреждений и глубины залегания подземных кабелей, обследование местности и поиск трассы коммуникаций, выбор кабеля из пучка.

Количество каналов поиска: 6

Методы поиска: индукционный, акустический, потенциальный.

Назначение: подача электрического сигнала звуковой частоты для определения мест повреждения силовых кабелей индукционным или потенциальным методом.

Выходная мощность генератора: 500 Вт

Общий диапазон согласования: от 0,35 до 362 Ом

Максимальный выходной ток: 39,5 А

Назначение: подача электрического сигнала звуковой частоты для определения мест повреждения силовых кабелей индукционным или потенциальным методом.

Выходная мощность генератора: 500 Вт

Общий диапазон согласования: от 0,35 до 362 Ом

Максимальный выходной ток: 39,5 А

Назначение: подача электрического сигнала звуковой частоты для определения мест повреждения силовых кабелей индукционным или потенциальным методом.

Выходная мощность генератора: 250 Вт

Общий диапазон согласования: от 0,25 до 256 Ом

Максимальный выходной ток: 31,5 А

Назначение: подача электрического сигнала звуковой частоты для определения мест повреждения силовых кабелей индукционным или потенциальным методом.

Выходная мощность генератора: 100 Вт

Общий диапазон согласования: от 0,25 до 256 Ом

Максимальный выходной ток: 19,2 А

Приборы для поиска трассы и мест повреждения кабеля

Оборудование производства компании «АНГСТРЕМ» позволяет осуществлять трассировку кабеля и поиск мест его повреждений.

Все трассодефектоискатели предприятие выпускает под наименованием «Комплекты поисковые». Они состоят из звукового генератора и высокочувствительного приемника. Данное оборудование реализует несколько методов поиска:

  • индукционный,
  • акустический,
  • потенциальный,
  • акустико-электромагнитный.

Поисковые комплекты – это универсальное оборудование для поиска обрыва кабельных линий, заплывающих пробоев, замыканий (короткое, междуфазное, однофазное, оболочки на землю). Компания «АНГСТРЕМ» выпускает КП трех типов, отличие между которыми заключается в выходной мощности генератора:

  • КП-500К (500 Вт),
  • КП-250К (250 Вт),
  • КП-100К (100 Вт).

КП-500К — самый востребованный прибор для поиска повреждения кабеля под землей. Именно ему отдают предпочтение специалисты крупных энергетических организаций, средних и малых электротехнических предприятий. В течение более двух десятилетий своего существования этот комплект получил множество положительных отзывов. Его качество и надежность подтверждались практически опытом профессионалов.

Чем уникально данное оборудование?

Генератор ГП-500К — мощный источник высоковольтных импульсов напряжения, изготовленный в специально разработанном корпусе, защищающем устройство от попадания посторонних элементов и позволяющем эксплуатировать прибор в суровых условиях работы.

Приемник ПП-500К не имеет аналогов российского производства. Он позволяет:

  • определять МП индукционным, акустическим и потенциальным методом,
  • показывает расстояние до места повреждения и направление дальнейшего движения оператора,
  • проводить трассировку подземного кабеля и коммуникаций,
  • определять глубину залегания подземных коммуникаций,
  • выбирать кабель из пучка,
  • локализовать повреждения оболочки кабелей, в том числе с изоляцией из сшитого полиэтилена,
  • находить места утечки жидкости из трубопровода.

Обладая таким уникальным функционалом Поисковые комплекты выгодны для приобретения. Цена трассодефектоискателя КП-500К (КП-250К, КП-100К) в несколько раз ниже стоимости импортных аналогов, а срок гарантии в 2 раза дольше.

Генератор для поиска места повреждения кабелей

JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/quote

_________________
Ничто так не укрепляет взаимное доверие, как 100% предоплата! Дмитрий, RK3AOR.

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Приглашаем на вебинар, посвященный экосистеме безопасности и возможностях, которые появились у разработчиков благодаря новой технологии TrustZone в микроконтроллерах STM32L5. Программа рассчитана на технических специалистов и тех, кто уже знаком с основами защиты ПО в STM32.

650 В карбид-кремниевые (SiC) MOSFET компании Wolfspeed имеют самый низкий в отрасли показатель сопротивления открытого канала и наименьшую его зависимость от температуры, что дает им преимущество не только перед обычными кремниевыми (Si) 650 В MOSFET, но и перед нитрид-галлиевыми транзисторами.

_________________
пути ТОКА неисповедимы.
Злословец есть самый лютый из диких зверей,
а льстец — самый опасный из ручных животных. (ДИОГЕН)

_________________
Ничто так не укрепляет взаимное доверие, как 100% предоплата! Дмитрий, RK3AOR.

ПРИСТ расширяет ассортимент

_________________
пути ТОКА неисповедимы.
Злословец есть самый лютый из диких зверей,
а льстец — самый опасный из ручных животных. (ДИОГЕН)

_________________
пути ТОКА неисповедимы.
Злословец есть самый лютый из диких зверей,
а льстец — самый опасный из ручных животных. (ДИОГЕН)

_________________
Пишите громче, я вас не слышу! RG9Y 73.

_________________
пути ТОКА неисповедимы.
Злословец есть самый лютый из диких зверей,
а льстец — самый опасный из ручных животных. (ДИОГЕН)

_________________
пути ТОКА неисповедимы.
Злословец есть самый лютый из диких зверей,
а льстец — самый опасный из ручных животных. (ДИОГЕН)

_________________
пути ТОКА неисповедимы.
Злословец есть самый лютый из диких зверей,
а льстец — самый опасный из ручных животных. (ДИОГЕН)

_________________
Ничто так не укрепляет взаимное доверие, как 100% предоплата! Дмитрий, RK3AOR.

_________________
пути ТОКА неисповедимы.
Злословец есть самый лютый из диких зверей,
а льстец — самый опасный из ручных животных. (ДИОГЕН)

_________________
Ничто так не укрепляет взаимное доверие, как 100% предоплата! Дмитрий, RK3AOR.

Как найти место повреждения кабеля?

В процессе эксплуатации и на этапе монтажа кабельных линий, проложенных под землей, возникают непредвиденные механические повреждения изоляции и токоведущих жил. Это может быть связано с нарушением нормальных режимов работы, неаккуратным ведением монтажных работ на других коммуникациях, расположенных в нескольких метрах от места прокладки и не относящихся к линии электроснабжения.
Как выполнить поиск места повреждения кабеля под землей и в стене, мы расскажем далее, предоставив существующие методики и приборы для обнаружения аварийного участка.

Чтобы найти место повреждения кабельной линии, необходимо понимать специфику и методику ведения поиска. Процесс необходимо разделить на два этапа:

  1. Поиск проблемной зоны на всей протяженности линии.
  2. Поиск места аварии на установленном участке трассы.

Существует несколько методов отыскания поврежденной зоны:

  1. Импульсный метод;
  2. Петлевой метод;
  3. Акустический метод;
  4. Индукционный метод;
  5. Метод шагового напряжения.

Импульсный метод.

Данный способ подразумевает поиск повреждения с помощью рефлектометра. Работа прибора основывается на посылании зондирующих импульсов определенной частоты, которые встречая на своем пути препятствие, отражаются и возвращаются обратно к прибору. То есть, прибор располагается с одного конца силового кабеля, что очень удобно и практично. Испытания следует проводить на полностью отключенной линии.

Метод петли.

Данный способ применим при условии, что хотя бы один провод в кабеле остался цел, или рядом пролегает еще один проводник с целыми жилами. Чтобы узнать расстояние до места повреждения петлевым методом, нужно измерить сопротивление жил постоянному току прибором Р333. Это измерительный мост постоянного тока. Это один из первых придуманных методов, применяемых для отыскания места повреждения, и используется он исключительно при однофазном и двухфазном замыкании. Постепенно им перестают пользоваться, ввиду его трудоемкости и большой погрешности в измерениях.

Акустический метод.

Найти обрыв в кабеле акустическим методом можно, создав в месте повреждения разряд с помощью генератора высоковольтных импульсов. В месте обрыва или замыкания появятся колебания звука определенной частоты. Качество прослушивания зависит от вида грунта, расстояния от поверхности до кабельной линии и типа повреждения. Обязательным условием для работы способа является превышение значения переходного сопротивления в 40 Ом.

Метод шагового напряжения.

Метод основан на пропускании по кабелю тока, вырабатываемого генератором. Он создает между двумя расположенными в земле точками разность потенциалов, о которой можно судить по утечке тока в месте аварии. Чтобы найти точку с пониженным сопротивлением изоляции, контактные штыри-зонды устанавливаются так – первый ровно над пролегающим проводником, второй под углом 90 в метре от первого.

Индукционный метод.

Способ очень точно определяет места обрыва, однако его применение связано с прожигом кабеля. При большом переходном сопротивлении необходимо уменьшить его величину путем прожига, используя специальные устройства. Метод основан на пропускании по жиле тока с высокой частотой, который образует электромагнитное поле над кабельной линии. В местах механических повреждений трассы, проводя приемной рамкой, звук будет изменяться. Таким образом, отсутствие звука говорит об обрыве жилы.

Место обрыва провода в бетонной стене поможет найти специальный прибор – трассоискатель. Он представляет собой сочетание приемника и генератора. Данный способ можно ассоциировать с индукционным методом в поиске повреждений кабелей под землей.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector