Astro-nn.ru

Стройка и ремонт
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Линейный генератор своими руками

Линейный генератор

Если мы снабдим ноутбук тюнером, у нас будет радиоприемник, телевизор, интернет и прочие прибамбасы для развлечения и работы. Добавим пару светодиодных лампочек, и мы уже почти полностью независимы от чубайсиков. При низком энергопотреблении ноутбуков, 7 амперного аккумулятора хватит на 8-12 часов работы. Если снабдить аккумулятор зарядкой на линейном генераторе, который будет подзаряжать его непрерывно – проблема будет решена.

Предлагаю для энтузиастов более простую и дешевую модель, которая уже «обкатана» и работает. Собрать эту модель может любой желающий поэкспериментировать в этой области, специальных знаний не требуется, но конечно желательно.

Я имею в виду «линейный генератор». Многие видели фонарики, изготовленные на линейном генераторе. Стоит их немного потрусить и энергии хватает на несколько минут горения светодиода. http://mobipower.ru/modules.php?name=News&file=article&sid=55 пройдя по этой ссылке можно ознакомиться с линейным генератором сделанным любителями, для зарядки аккумулятора. Этот линейный генератор собранный на небольших магнитах уже обладает достаточной мощностью для зарядки аккумулятора.

Конечно, линейный генератор собранный любителями, требует усовершенствования – не трусить же вам его сутки напролет руками. Я приобрел поисковой магнит P-60-06-30-N, от всех других поисковых магнитов он отличается тем, что не имеет стального стакана и одинаково сильно работает, как на плоскостях, так и по окружности. Это довольно сильный магнит, с силой сцепления 124 кг, линейный генератор на нём должен получиться мощным.

В центре этого магнита имеется отверстие, что облегчает его применение. Представьте шпильку, в центре которой с помощью шайб и гаек закреплен этот магнит. Шпилька, через «П» образную пластину, закрепленную на концах шпильки, горизонтально подвешена на неподвижной опоре. Это позволяет ей, вместе с магнитом, горизонтально перемещаться, внутри жестко закрепленной катушки. Подвеска жесткая, поэтому магнит может перемещаться только вдоль катушки. Если мы возьмемся за конец шпильки рукой и начнем её двигать в катушке, она начнет вырабатывать ток – вот и получился генератор, осталось только его автоматизировать.

Это можно сделать с помощью электромагнита и датчика Холла. На одном конце шпильки закрепляем дисковый магнит, напротив него закрепляется электромагнит, с сердечником равным по диаметру магниту. Электромагнит подключен через исполнительный механизм, управляемый датчиком холла, к аккумулятору.

При движении шпильки в сторону электромагнита, постоянный магнит, закрепленный на конце шпильки, притягивается к сердечнику электромагнита. Но на минимальном расстоянии до электромагнита срабатывает датчик Холла, включается электромагнит, одноименным полем с постоянным магнитом, и в результате сильным толчком отбрасывает шпильку с магнитом в противоположный конец.

На другом конце, напротив шпильки можно неподвижно закрепить пружину, которая будет отбрасывать шпильку в обратную сторону. Таким образом, процесс будет длиться непрерывно. Вместо пружины можно закрепить неподвижно дисковый постоянный магнит, а на шпильке такой же дисковый магнит, одноименными полюсами друг к другу.

Если вы пробовали соединить, одноименными полюсами, два неодимовых магнита, даже не очень больших, вы представляете, как это трудно. Причем магниты, при соединении, стремятся уйти в сторону, поэтому возможно потребуется вместо одного магнита, установить 4, с небольшим наклоном, чтобы они уравновешивали друг друга. В этом случае шпилька будет получать толчок строго горизонтально, что и требуется. Таким образом, на шпильке будет один магнит, а неподвижно будут закреплены 4, может быть будет достаточно и 3, симметрично расположенных.

Когда вы соберете подобное устройство, катушку электромагнита необходимо будет настроить в резонанс, для минимального потребления тока. Для этого в разрыв катушки необходимо включить амперметр, а к самой катушке параллельно подсоединять неполярные конденсаторы, добиваясь наименьшего потребления тока электромагнитом. При входе в резонанс электромагнит будет потреблять минимальный ток, вся остальная мощность генератора будет расходоваться на подзарядку аккумулятора.

Обмотку генератора можно намотать, исходя из опыта любителей, получится две катушки в поперечном сечении 30х20 каждая. Провод толщиной 1,5-2 мм с таким расчетом, чтобы он выдавал около 20 вольт, с возможно большим током.

Удлинив шпильку её подвес можно сделать на магнитах, тогда верхний маятниковый подвес можно исключить. Еще больше удлинив шпильку можно расположить на ней два, три таких генератора, увеличив общую мощность. В общем, здесь есть над чем поэкспериментировать любителю.

Вот к каким выводам приходили любители, проводя эксперименты с катушками:

«Рассмотрите этот процесс подробнее. Если магнит не находится в катушке и начинает входить в неё одним полюсом, то до того момента, пока катушка не дойдет до середины магнита в катушке будет наведён импульс только одной полярности. А вот когда в катушку начинает входить другой полюс, вот тогда появляется импульс другой полярности. Только вначале он маленький (т.к. магнитное поле в середине магнита незначительно), но по мере продвижения магнита вглубь катушки противоимпульс становится всё больше и больше и наступает момент когда эти импульсы равны. Это и есть момент перехода напряжения через 0. Это как раз и есть тот момент, когда магнит находится полностью в катушке и расстояние от его торцов (полюсов) до края катушки равны. А соответственно равны и наведённые напряжения разноименными полюсами. При выходе одного из полюсов из катушки картина аналогичная».

«Как и ожидал — торцы магнита формируют разнополярную ЭДС. А катушка, находящаяся у «бока» магнита — мало что дает. Основной импульс формируется, когда напротив витков проходит торец магнита. А у боков МП уже значительно рассеяно.

1) Надо 2 катушки, разнонаправленные и коммутированные так, что бы ЭДС суммировались.

2) амплитуда колебаний магнита не должна быть больше, чем длина катушек, что бы торцы магнита не выходили за пределы «своей» катушки.

С магнитной подвеской такой генератор генерит практически синусоиду! В других случаях генерация тоже есть, но это всякие разные импульсы, разные как по амплитуде, так и по полярности».

Линейный генератор вертикального типа

В этом генераторе катушка будет такая же, как и в прошлом генераторе, только расположена она будет вертикально. Магнит, соответственно, будет совершать возвратно поступательные движения, внутри катушки, в вертикальной плоскости. Катушка 2 каркасная, с внутренним диаметром 62 мм, длинна 60 мм. Магнит толщиной 30 мм, будет перемещаться на 30 мм.

Внизу катушки будет неподвижно закреплен постоянный магнит, направленный одноименным полюсом к подвижному магниту. Он будет служить пружиной, отталкивающей подвижный магнит.

Сверху катушки будет закреплен металлический сердечник электромагнита. Сердечник должен быть такого размера, чтобы подвижный магнит реагировал (притягивался) на него с нижней точки. На металлический сердечник можно наклеить резину или кожу, поможет при настройке. Как и в предыдущем генераторе, управлять электромагнитом будет датчик Холла.

При окончательной сборки этого генератора, подвижный магнит будет притянут к сердечнику электромагнита. При подключении аккумулятора, сработает датчик Холла и электромагнит с силой отбросит постоянный магнит. Достигнув нижней точки, магнит получит толчок от постоянного магнита, закрепленного внизу, и начнет притягиваться сердечником электромагнита. Достигнув верхней точки, ещё до соприкосновения с сердечником электромагнита, сработает датчик Холла, включится электромагнит и последует очередной толчок.

При сравнительной простоте конструкции, не всё так просто, как выглядит. Подвижный магнит имеет массу 620 гр., это довольно большой вес. Поэтому электромагнит должен быть достаточно мощным, чтобы погасить инерцию этой массы, при движении вверх. При движении магнита к верхней точке, электромагнит должен включиться ещё на подходе магнита, к верхней точке, чтобы погасить инерцию, остановить, а потом отбросить магнит вниз. Отключиться электромагнит может только после прохождения постоянным магнитом ¾ пути вниз. Таким образом, период включения электромагнита будет достаточно продолжительный, а значит – он будет потреблять много энергии. Останется ли энергии для полезной работы?

Генератор маятник вертикальный

Компенсировать расход энергии электромагнита можно разными способами. Один из них подвесить магнит на пружину, которую подобрать такой жесткости, чтобы магнит качался в пределах 30 мм. Электромагнит можно разместить снизу, сердечник электромагнита, может быть не таким массивным. В этом случае будет достаточно одного короткого импульса, чтобы придать магниту дополнительное ускорение, для непрерывного качания.

Компенсировать силу инерции, можно и в предыдущей схеме описания генератора. Для этого на подвижный магнит можно поставить снизу дополнительную ось, на которой расположить дополнительный магнит компенсатор. Нижний отталкивающий магнит в этом случае должен иметь форму кольца, для свободного прохождения оси.

При движении постоянного магнита, в катушке будет наводиться ЭДС, и появляться свое магнитное поле, которое будет противодействовать движению магнита. Чем большую мощность мы будем снимать с катушки, тем сильней она будет тормозить движение магнита. Можно ли компенсировать эту силу?

В генераторах на постоянных магнитах эту силу компенсируют разными способами. Самый эффективный – это способ, применяемый в генераторах бесщелевого типа, как известно у них нулевое сопротивление вращению. Возможно, этот способ удастся применить и в линейных генераторах.

Тогда идеальный генератор будет выглядеть, как набор из колец. Катушки, которых может быть больше чем магнитов, могут быть расположены как снаружи, так и внутри колец. Идеальная конструкция будет в виде маятника, с двумя линейными генераторами на концах.

Линейный генератор вертикального типа можно собирать на любых дисковых неодимовых магнитах. Чем больше размер, тем большую мощность можно получить. Отверстие в центре магнита не обязательно.

Если кто-нибудь добьется заметных успехов в сборке линейного генератора, напишите о результатах – размещу на этой странице, другим будет легче идти проторенным путем. Сам успел приобрести магнит, шпильку и примерно в это же время успел потерять работу. Поэтому не до экспериментов – тут бы выжить, работу найти перед пенсией сложно.

Планета Земля: природный электрический мотор – генератор и альтернативная чистая энергетика на его основе

Генератор на неодимовых магнитах: принцип и схема работы

Неодимовые магниты – элементы, которые позволяют конструировать альтернативные источники энергии. Неважно, какими они будут: ветряными, водными или механическими. Речь идёт не о мифологических вечных двигателях, а о целиком реальных устройствах с высоким КПД. В быту они, как минимум, помогут вам зарядить гаджеты или автомобильный аккумулятор.

Внимание! Все утверждения о «реально бесплатной» или «свободной» энергии и вечных двигателях на основе неодимовых магнитов – ложь, противоречащая законам физики. Для работы любого двигателя нужна энергия. Задача генераторов на основе этих элементов – уменьшить её потребление извне, при этом максимально увеличив производительность.

В таких устройствах за основу взят обычный маятник, а давать низкопотенциальную энергию будет сила тяжести. Схема работы такова:

  1. В верхней части маятник вольно качается на паре подшипников.
  2. Внизу на конце рычага маятника находится дугообразный отрезок с парой мощных неодимовых магнитов.
  3. На неподвижной опоре в верхних точках колебания маятника установлены два электромагнита, сопоставимые по мощности с неодимовыми. По мере приближения маятника они будут кратковременно включаться и отталкивать его.
  4. По качающейся дуге располагаются менее мощные неодимовые магниты. На них возложена функция ротора.


Магниты

Принцип работы устройства

Теоретически, в полной мере, этим критериям как раз и отвечает электромагнитный генератор, возбуждение которого производится постоянными магнитами. Принцип работы основывается на законе Ампера, в котором участвует проводник и электроток в магнитном поле. Этот закон выражается формулой F=BLI, то есть сила находится в прямой пропорциональной зависимости с индукцией F, длиной проводника L и силой тока в этом проводнике I. Таким образом, мощность электромагнитного генератора может возрастать вместе с мощностью постоянных магнитов.

Можно сделать вывод, что использование постоянных магнитов, как неисчерпаемый источник энергии, позволит создать установку, с коэффициентом полезного действия более 100%. Однако, здесь не все так просто и этому есть целый ряд причин.

Плюсы и минусы конструкции

Специалисты считают, что для обеспечения электричеством загородного дома достаточно маятника с осью длиною 6 м. В таком случае электромагниты будут толкать неодимовые магниты на маятнике с силой более 100 кг. Плюсы такого устройства в том, что оно не зависит от ветра или солнца. Кроме того, такой генератор не нуждается в дорогих аккумуляторах, как другие альтернативные генераторы энергии.

Однако при использовании не исключены проблемы:

  1. В момент движения маятника в обратную сторону может смениться полярность магнитов. Решается с помощью включения в цепь тиристоров и диодов.
  2. В момент зависания маятника в верхней точке может возникнуть эффект пульсации в сети. Решается так:
  • устанавливается конденсатор, который краткосрочно собирает энергию, препятствуя скачкам;
  • монтируется аккумулятор, который будет собирать энергию долгосрочно;


Генератор на неодимовых магнитах

  • конструируется ещё один генерирующий маятник, который будет работать асинхронно с первым (когда один – в верхней точке окружности, второй – в нижней).

Внимание! С ферритовыми магнитами этот проект реализовать не удастся из-за их технических характеристик.

Преимущества

Универсальный линейный генератор на постоянных магнитах выгодно отличается от всех современных аналогов многочисленными положительными характеристиками:

  1. Небольшой вес и компактность. Такой эффект достигается за счет отсутствия кривошипно-шатунного механизма.
  2. Доступная цена.
  3. Качественная наработка на отказ из-за отсутствия системы сжигания.
  4. Технологичность. Для производства долговечных деталей используются исключительно нетрудоемкие операции.
  5. Регулировка объема камеры сгорания топлива без остановки двигателя.
  6. Базовый ток нагрузки генератора не влияет на магнитное поле, что не влечет за собой снижение характеристик оборудования.
  7. Отсутствует система зажигания.


Смотреть галерею

Ветрогенератор на неодимовых магнитах своими руками: монтаж основы

В качестве основы для таких установок выступают автомобильная ступица плюс тормозные диски. Преимущество в том, что её просто достать (в т.ч. купить б/у) и не нужно основательно переделывать или дополнять:

  • разберите;
  • почистите от ржавчины (например, стальной щёткой, насаженной на дрель);
  • смажьте детали;
  • соберите;
  • покрасьте корпус и пользуйтесь.

Неодимовые магниты будут крепиться прямо на ступицу. Их потребуется около 20 штук: примерная высота 8 мм, диаметр 25 мм. Очень важно правильно, равномерно и точно расположить магниты – по кругу, с чередованием полюсов. Крепить их лучше на клей, который стоит предварительно испытать на прочность.

Совет. Народные конструкторы рекомендуют сначала расчертить ступицу или разложить магниты на бумажном макете, чтобы разместить их на равном расстоянии друг от друга.

После того как все магниты будут приклеены, залейте поверхность диска эпоксидной смолой. По контуру намотайте борт. Материал и способ может быть разным:

  • грубый картон;
  • гибкая пластмасса;
  • пластилин;
  • тонкая полоска шпона.
Читать еще:  Велосипедный педальный генератор большой мощности для подзарядки аккумуляторов


Ветрогенератор
Для этого генератора лучше всего подходит трёхфазная модель. Она сложна в сборке, но имеет ощутимые преимущества:

  • не производит вибрацию, которая является бичом ветрогенераторов;
  • бесшумна;
  • осуществляет постоянную подачу тока;
  • генерирует стабильную мощность (фазы компенсируют друг друга).

Cамодельный генератор для ветряка

Как сделать низкооборотный генератор для ветряка из неодимовых магнитов. Самодельный генератор для ветряка, схемы, фото, видео.

Для изготовления самодельного ветряка в первую очередь требуется генератор, при чём, предпочтительней низкооборотный. В этом и заключается основная проблема, найти такой генератор достаточно сложно. Первое что приходит в голову, взять стандартный автомобильный генератор, но все автомобильные генераторы рассчитаны на высокие обороты, зарядка аккумулятора начинается от 1000 об/мин. Если установить автогенератор на ветряк, то достичь таких оборотов будет сложно, понадобится делать дополнительный шкив с ременной или цепной передачей, всё это усложняет и утяжеляет конструкцию.

Для ветряка нужен низкооборотный генератор, оптимальный вариант генератор аксиального типа на неодимовых магнитах. Поскольку таких генераторов по доступной цене в продаже практически нет, аксиальный генератор можно изготовить самостоятельно.

Самодельный генератор для ветряка из неодимовых магнитов.

Для изготовления генератора аксиального типа понадобятся:

  • Ступица от авто, тормозные диски.
  • Неодимовые магниты.
  • Медная проволока (0,7мм).
  • Эпоксидная смола.
  • Крепёжные элементы.

Генератор аксиального типа для ветряка представлен на схеме.

В данном случае в роли статора будет диск с катушками, ротором будут два диска с постоянными магнитами. При вращении ротора в катушках статора будет генерироваться ток, который нужен нам для зарядки аккумуляторов.

Самодельный генератор: изготовление статора.

Статор – неподвижная часть генератора состоит из катушек, которые размещаются напротив магнитов ротора. Внутренний размер катушек обычно равен внешнему размеру магнитов, которые используются в роторе.

Для намотки катушек можно изготовить простое приспособление.

Толщина медной проволоки для катушек примерно 0,7 мм, количество витков в катушках нужно подсчитывать индивидуально, общее количество витков во всех катушках должно быть не менее 1200.

Катушки размещаются на статоре, выводы катушек можно подключить двумя способами, в зависимости от того на сколько фаз будет генератор.

Трёхфазный генератор будет более эффективным для ветрогенератора, поэтому рекомендуется соединить катушки по типу звезда.

Чтобы катушки зафиксировать на статоре их заливают эпоксидной смолой. Для этого нужно сделать форму для заливки из куска фанеры, чтобы жидкая смола не растеклась, нужно сделать борта из пластилина или аналогичного материала. На этом этапе нужно предусмотреть проушины для крепления статора.

Важно чтобы получилась идеально ровная плоскость, поэтому перед заливкой матрицу с катушками нужно установить на ровную поверхность. Катушки перед заливкой нужно тщательно проверить мультиметром и выложить на матрицу по кругу с таким расчётом, чтобы потом магниты ротора находились напротив катушек.

В матрицу заливается жидкая эпоксидная смола по уровень края катушек, перед заливкой форму нужно смазать вазелином.

Когда смола полностью застынет, матрицу разбираем и извлекаем готовый статор с катушками.

Статор фиксируется на корпусе генератора с помощью болтов или шпилек с гайками.

Самодельный генератор: изготовление ротора.

В этой конструкции ротор будет двусторонним, статор с катушками будет посредине между вращающимися дисками с магнитами.

На каждом диске ступицы нужно по кругу расположить магниты, в последовательности поочерёдно меняя полюса.

Когда диски ротора будут установлены, магниты должны быть направлены друг к другу разными полюсами.

Магниты нужно приклеить к дискам суперклеем и залить эпоксидной смолой, верхняя часть магнитов должна остаться непокрытой.

Изготовление ротора для самодельного генератора видео.

Чтобы закрепить статор на ветрогенераторе нужно изготовить металлическое основание, статор крепится к нему с помощью болтов или шпилек.

Собираем всю конструкцию, при этом нужно оставить минимальный зазор между статором ротором, чем меньше зазор, тем эффективней генератор будет вырабатывать энергию. На выход из катушек нужно подключить диодный мост.

В итоге у вас получится аксиальный генератор на неодимовых магнитах. Самодельный генератор может работать на низких оборотах и при этом вырабатывать достаточно энергии для зарядки аккумуляторных батарей, что немаловажно при установке ветогенератора в районах, где преобладают слабые ветра.

Генератор для ветряка видео.

Самодельный генератор для ветряка на 2,5 кВт видео.

Сборка и установка ветрогенератора

После завершения сборки ротора следует подготовить детали для неподвижной части конструкции – статора. Он состоит из катушек из медного провода. Его сечение должно быть большого диаметра, чтобы снизить сопротивление. Как правило, намотку таких катушек осуществляют на глаз. Чтобы зарядить батарею в 12В при 120-150 оборотах в минуту, нужно около полутора тысяч витков (суммарно для всех катушек). Наматывается провод на готовых частях будущей конструкции или самодельных макетах.

Статоры могут быть как круглые, так и прямоугольные. Всё зависит от параметров магнитов. Если форма прямоугольная, лучше, чтобы магнитное поле располагалось вдоль большей стороны. Толщина неподвижных элементов также должна соответствовать высоте магнитов. В таком случае вы получите наибольшую эффективность устройства.


Ветряк

Генератор собран – можно приступать к монтажу мачты и сборке винта. Для вышки главное, чтобы устройство на её вершине имело доступ к свободному потоку воздуха. Если она установлена среди застройки, высота должна минимум на 1 м превышать уровень близлежащих строений или деревьев. Для открытой площадки обычно достаточно 5 м. Также мачта должна соответствовать следующим критериям:

  • прочность;
  • удобство для монтажа и обслуживания генератора на высоте;
  • устойчивость, в т.ч. – к вибрации.

Винты для генератора лучше всего изготавливать крыльчатой формы – для максимального аэродинамического эффекта. Материал – ПВХ трубы диаметром от 4 мм или металл. Лопасти крепятся к двигателю с помощи металлической головки с приваренными пластинками по числу винтов. Оптимальное количество лопастей – от 3 до 6.

Внимание! Винты крепятся на расстоянии не меньше 25 см от генератора. Это мера безопасности. При сильном порыве они могут сломаться о корпус устройства.

Не стоит отчаиваться, если генератор в собранном виде не показал того результата, на который вы рассчитывали. Проверьте расчёты, доработайте и усовершенствуйте модель.

Ограничения

Все большую популярность приобретает доступный и надежный линейный генератор. В качестве источника энергии этот агрегат можно использовать как в бытовой, так и промышленной сфере. Но каждый пользователь должен помнить о некоторых ограничениях. В процессе эксплуатации стираются кулачки приводов клапанов, в результате чего механизм не открывается, из-за чего мощность падает до критических отметок.

Из-за частой эксплуатации быстро прогорают края горячего клапана. В устройстве присутствуют вкладыши – подшипники скольжения, которые расположены на шейке коленвала. Со временем эти изделия тоже стираются. В результате образуется свободное пространство, через которое начинает проходить заправленное масло.


Смотреть галерею

Линейный генератор своими руками

в т.ч. гостей: 75
пользователей: 0

Используя физический принцип радиационного охлаждения неба, команда смогла собрать небольшое, но полезное количество энергии из холодного ночного неба, используя простое, недорогое и некритичное устройство.

Как влияет на характеристики Li-Ion аккумулятора его глубоких разряд (вплоть до нуля)? Насколько он вреден, или, наоборот, относительно безопасен? В статье попытка разобраться с этим. Не на профессиональном, конечно, уровне, но как информация к размышлению.

Продолжение описания сборки самодельного модульного накопителя на LiFePo4 аккумуляторах.


Весьма неплохая платка повышающего преобразователя, поддерживающая протоколы быстрой зарядки.

На Алиэкспрессе достаточно часто продают китайские подделки под известные бренды аккумуляторов, в частности, на фото, под Panasonic 3400мАч. Стоит ли брать такие аккумуляторы? Насколько они плохи, или, наоборот, вполне даже качественные?

Идея универсального «блока питания на батарейках» периодически возникает в головах различных разработчиков электроники. Для примера, вот еще один вариант исполнения.


Описание простой по конструкции и пониманию, но неплохой по возможностям «Гаусс-пушки», которую легко может собрать даже начинающий самодельщик.

Линейный электрический генератор

Полезная модель относится к электротехнике и может быть использована в преобразовании энергии возвратно поступательного перемещения деталей и механизмов в энергию электрического тока. Линейный электрический генератор содержит цилиндрический корпус, размещенный внутри него каркас с кольцевыми индуктивными катушками, генерирующий магнитный сердечник с размещенными внутри тонкостенного цилиндра из диамагнетика дисковых постоянных магнитов с осевой намагниченностью и встречным расположением одноименных магнитных полисов и зазором между ними. Генерирующий магнитный сердечник размещенный внутри каркаса с кольцевыми индуктивными катушками, с возможностью возвратно-поступательного перемещения вдоль оси генератора.

Полезная модель относится к электротехнике и может быть использована в качестве преобразователей возвратно-поступательного движения деталей механизмов в электрическую энергию.

Известно устройство, содержащее корпус из магнитомягкого железа, каркас из немагнитного материала с расположенными на нем в ряд кольцевыми индуктивными катушками, генерирующий магнитный сердечник с кольцевыми постоянными магнитами (см. Патент РФ на полезную модель 83373, опубликованный 27.05.2009 Бюл. 15), прототип.

Недостатком прототипа является низкий КПД, связанный с потерями энергии магнитного потока кольцевых постоянных магнитов, замыкающегося через отверстие кольцевых магнитов.

Технический результат заключается в повышении КПД преобразования за счет использования дисковых постоянных магнитов, что при равенстве магнитных потоков постоянных магнитов в предлагаемой полезной модели и прототипе приведет к уменьшению габаритов и веса генератора.

Технический результат достигается тем, что линейный электрический генератор содержит цилиндрический корпус из магнитомягкого железа, размещенный внутри него каркас из немагнитного материала, с расположенными на нем в ряд кольцевыми индуктивными катушками, разделенными щечками, генерирующий магнитный сердечник, как минимум, с двумя постоянными магнитами с осевой намагниченностью. Особенностью является то, что постоянные магниты, имеющие дисковую форму, размещены внутри тонкостенного цилиндра из диамагнетика с зазором относительно друг друга, и встречным расположение одноименных магнитных потоков, скреплены дисковыми концентраторами магнитного поля с осевыми наконечниками, спресованными или посаженными на клей по окружности стенок тонкостенного цилиндра и имеют возможность свободного возвратно-поступательного перемещения внутри каркаса с кольцевыми индуктивными катушками. Относительные размеры упомянутых составных элементов находятся в следующих пределах: высота дисковых постоянных магнитов составляет (0,3÷0,4) от их диаметра; зазор между дисковыми постоянными магнитами определяется толщиной немагнитных прокладок, и составляет (0,5÷1) от высоты дисковых постоянных магнитов; внутренний диаметр цилиндрического корпуса больше диаметра дисковых постоянных магнитов не более, чем на их высоту; длина каждой из кольцевых индуктивных катушек равна сумме высоты дисковых постоянных магнитов, и величины зазора между ними; длина хода генерирующего магнитного сердечника не более величины зазора между дисковыми постоянными магнитами; зазор между тонкостенным цилиндром с дисковыми постоянными магнитами и внутренней поверхностью каркаса с кольцевыми индуктивными катушками должен быть минимальным и обеспечивающим свободное возвратно-поступательное перемещение генерирующего магнитного сердечника.

Сущность полезной моделью поясняется графическими материалами на которых изображено: на фиг.1 — конструкция линейного электрического генератора с видом с торца сечения; на фиг.2 — схематически показаны визуализированные магнитные силовые линии, замыкающиеся через магнитопровода и кольцевые индуктивные катушки.

Линейный электрический генератор содержит цилиндрический корпус 1 из магнитомягкого железа, размещенный внутри него каркас 2 из немагнитного материала с расположенными на нем в ряд кольцевыми индуктивными катушками 3, разделенными щечками 4, генерирующий магнитный сердечник, как минимум, с двумя постоянными магнитами 5 с осевой намагниченностью. Постоянные магниты 5, имеющие дисковую форму, размещены внутри тонкостенного цилиндра 6 из диамагнетика с зазором относительно друг друга и встречным расположением одноименных магнитных полюсов, скрепленных дисковыми концентраторами 7 магнитного поля с осевыми наконечниками 8, спрессованными или посаженными на клей по окружности стенок тонкостенного цилиндра 6 и имеют возможность свободного возвратно-поступательного перемещения внутри каркаса 2 с кольцевыми индуктивными катушками 3. Относительные размеры упомянутых составных элементов находятся в следующих пределах: высота h дисковых постоянных магнитов 5 составляет (0,3÷0,4) от их диаметров Dм, h=(0,3÷0,4) Dм; зазор между дисковыми постоянными магнитами 5 определяется толщиной немагнитных прокладок 9, и составляет (0,5÷1) от высоты h дисковых постоянных магнитов 5, =(0,5÷1)h; внутренний диаметр Dk цилиндрического корпуса 1 больше диаметра Dм дисковых постоянных магнитов 5 не более, чем на половину их высоту h, (Dм+h)Dk; длина lk каждой их кольцевых индуктивных катушек 3 равна сумме высоты h дисковых постоянных магнитов 5, и величины зазора между ними lk=h+; длина lх хода генерирующего магнитного сердечника не более величины зазора между дисковыми постоянными магнитами 5, lx; зазор между тонкостенным цилиндром 6 с дисковыми постоянными магнитами 5 и внутренней поверхностью каркаса 2 с кольцевыми индуктивными катушками 3 должен быть минимальным и обеспечивающим свободное возвратно-поступательное перемещение генерирующего магнитного сердечника.

Торцевые стенки 10 цилиндрического корпуса 1 выполнены из диамагнетика, а на их внутренних сторонах расположены демпферы 11. Число дисковых постоянных магнитов 5 определяет мощность генератора. На фиг.2 схематически показаны визуализированные силовые магнитные линии 12 дисковых постоянных магнитов 5, замыкающихся по магнитопроводу и пересекающих витки кольцевых индуктивных катушек 3. При возвратно-поступательном перемещении генерирующего магнитного сердечника в кольцевых индуктивных катушках 3 наводится ЭДС.

Кольцевые индуктивные катушки 3 могут быть электрически соединены параллельно-встречно или последовательно-встречно. При отсутствии отверстий в дисковых постоянных магнитах 5 в преобразовании используется энергия магнитного поля полностью, что приводит к увеличению КПД преобразования.

1. Линейный электрический генератор, содержащий цилиндрический корпус из магнитомягкого железа, размещенный внутри него каркас из немагнитного материала с расположенными на нем в ряд кольцевыми индуктивными катушками, разделенными щечками, генерирующий магнитный сердечник как минимум с двумя постоянными магнитами с осевой намагниченностью, отличающийся тем, что постоянные магниты, имеющие дисковую форму, размещены внутри тонкостенного цилиндра из диамогнетика с зазором относительно друг друга и встречным расположением одноименных магнитных полюсов, скреплены дисковыми концентраторами магнитного поля с осевыми наконечниками, спресованными или посаженными на клей по окружности стенок тонкостенного цилиндра и имеют возможность свободного возвратно-поступательного перемещения внутри каркаса с кольцевыми индуктивными катушками.

2. Генератор по п.1, отличающийся тем, что относительные размеры упомянутых составных элементов находятся в следующих пределах: высота дисковых постоянных магнитов составляет (0,3÷0,4) от их диаметра; зазор между дисковыми постоянными магнитами определяется толщиной немагнитных прокладок и составляет (0,5÷1) от высоты дисковых постоянных магнитов; внутренний диаметр цилиндрического корпуса больше диаметра дисковых постоянных магнитов не более чем на их высоту; длина каждой из кольцевых индуктивных катушек равна сумме высоты дисковых постоянных магнитов и величины зазора между ними; длина хода генерирующего магнитного сердечника не более величины зазора между дисковыми постоянными магнитами; зазор между тонкостенным цилиндром с дисковыми постоянными магнитами и внутренней поверхностью каркаса с кольцевыми индуктивными катушками должен быть минимальным и обеспечивающим свободное возвратно-поступательное перемещение генерирующего магнитного сердечника.

Читать еще:  Aushpitzen › Блог › Асинхронный генератор из асинхронного электродвигателя

Изобретения русов — линейный генератор

Данная статья будет интересна «суровым технарям» — в ней рассказывается об альтернативной компоновке двигателя внутреннего сгорания. Это очередное подтверждение изобретательности русов: двигатели данного типа — линейные — только начинают разрабатываться за рубежом.

Исторически сложилось, что традиционные устройства для выработки электрической энергии используют вращательное движение для перемещения обмоток в магнитном поле. В движения такие устройства приводятся различными движителями: гидротурбинами, газовыми турбинами, ветром и т.д. Одним из движителей является и традиционный двигатель внутреннего сгорания. В таких движителях химическая энергия топлива проходит многократные преобразования: сначала в поступательное движение поршней, а затем – во вращательное движение коленвала и уже после только в электрический ток.

Необходимость такого преобразования приводит как к механическим потерям, так и к усложнению конструкции двигателя в целом. Мы все на опытах физики видели одну и туже картину: преподаватель берет постоянный магнит, и начинает возвратно-поступательно его двигать в катушке индуктивности. При этом на клеммах катушки появляется напряжение. Созданной конструкцией принципиально нового типа электрогенераторов, мы предоставляем возможность использования возвратно-поступательного движения для выработки электрического тока без промежуточных преобразований во вращательное движение.

В разработанном нами линейном генераторе (далее ЛГ) вместо крышек цилиндра устанавливаются два внешних поршня, которые жестко между собой закреплены. Такое технологическое решение обусловлено несколькими факторами, о которых мы поговорим ниже.

В традиционных двигателях в цилиндрах при сгорании топлива поршень, от возникающего давления газов, начинает двигаться в одну сторону, но по законам инерции сам цилиндр ведь тоже начинает двигаться в противоположную. Поэтому работу двигателей внутреннего сгорания всегда сопровождает вибрация. Для ее гашения используются сложные технологические приемы, что приводит к удорожанию производства двигателя. Например, для гашения вибрации при вращении коленвала на нем устанавливают дополнительные компенсационные грузы, что приводит к увеличению массы коленвала. На сегодняшний день приблизительно 40% массы коленвала — это компенсационные грузы.

Теперь вернемся к разработанной конструкции ЛГ. Мы напрямую используем поступательное движение поршней для генерации электрического тока. Если рассмотреть принципиальную схему, то можно определить, что два внутрених поршня соединенны между собой жесткой связью, и два внешних — так же. Что это нам дает?

Первое и самое главное — кардинальное упрощение конструкции двигателя. В данном двигателе нет таких частей как коленвал, распредвал, передаточный механизм между коленвалом и распредвалом, впускные и выпускные клапана. За счет упрощения конструкции стоимость двигателя резко снижается.

Второе. Предложенная нами связка двух внутренних поршней и двух внешних поршней дает нам почти что полное отсутствие вибрации при работе данного ЛГ. За счет чего это происходит? Допустим в одном из цилиндров происходит сгорание топлива, тогда в другом в это же время будет происходить сжатие воздуха либо топливной смеси. При этом внутренние поршни двигаются, допустим, вправо, тогда внешние поршни будут двигаться влево. Если масса внешних поршней будет равна массе внутренних поршней, то силы инерции, возникающие при движении поршней будут взаимно компенсироваться, и на корпус двигателя передаваться не будут. Это дает возможность устанавливать данный ЛГ на сверх легкий фундамент и отказаться от всяких виброгасящих устройств. Что опять таки приводит к снижению стоимости генератора.

Третье. Допустим мы взяли традиционный двигатель и запустили его в работу. У него будет определенная частота вращения коленвала, что будет обусловлено частотой хода поршня в цилиндре. Теперь мы возьмем наш ЛГ и зададим ему такую же частоту хода поршня в цилиндре, как и у традиционного двигателя. При этом скорость расширения газов в цилиндре ЛГ будет в два раза больше, как и сама камера расширения, по сравнению с традиционным двигателем, а это дает нам, если брать по простому, возможность отобрать у газов энергии больше, что приведет к увеличению общего КПД ЛГ.

Проведя теоретические расчеты, мы получили следующие показатели

Частота хода поршня = 500

Диаметр цилиндра = 372 mm

Ход поршня = 439mm

Полная длинна ЛГ = 6000mm

Полная ширина и высота ЛГ = 1000mm

Индикаторный КПД = 51.38%

Эффективный КПД = 49.85%

Расход топлива = 171.3 gr/(kWatt * hour)

Мощность = 1000 kWatt

Все расчеты проводились при давлении наддува = 0.11 Mpa (мягко говоря от бытового фена). Если дополнительно на генератор установить газовую турбину, то мощность генератора можно увеличить без увеличения геометрических размеров.

Но даже при этом КПД ЛГ получился очень внушительным. Для сравнения средний КПД современных автомобильных двигателей не превышает 40%, и только судовые длинно ходовые двигателя, у которых ход поршня в цилиндре около 2,0 — 2,5 метра. приближаются к показателю КПД 45-50%.

Как можно заметить из данных расчетов, предлагаемый ЛГ имеет вытянутую цилиндрообразную форму. Соотношение длины ЛГ к его диаметру составляет 6 к 1це. Некоторые могут сказать, что это его огромный недостаток. В некоторых случаях — да. Но давайте думать как инженеры.

Рассмотрим обычный автомобиль, а точнее его двигатель и его режимы работы. Мы едем по городу со скоростью 60 км в час (в большинстве случаев это максимальная разрешенная скорость передвижения в городе). Что мы имеем в традиционном двигателе при этом? А мы имеем то, что он работает как минимум на половину спроектированной мощности. Кто знает, хорошо, а кто не знает, тем мы сейчас расскажем одну замечательную вещь. Так как расчет процессов внутри цилиндра является довольно сложной задачей, и параметры работы на различных режимах двигателей могут отличатся довольно сильно, то в большинстве случаем конструкция двигателя (а это значит абсолютно все показатели, такие как диаметры впускных и выпускных клапанов, объем подаваемого воздуха, его температура и тд) и его КПД рассчитывается при работе на номинальном режиме. А это значит, что максимальный КПД двигателя будет достигнут лишь при работе на номинальном режиме. Во всех других случаях, таких как частичная нагрузка, либо перегрузка, КПД двигателя всегда меньше максимально возможного. Наш ЛГ тоже не лишен этого недостатка. НО. Но мы предлагаем устанавливать в автомобиль не один ЛГ, а, к примеру, два. Допустим для движения автомобиля с максимальной скоростью нам нужно 70 кВт мощности. Мы поставим на автомобиль два ЛГ по 35кВт мощности. Что это нам даст? А это нам даст то, что при движении в городе мы можем использовать лишь один ЛГ, а второй при этом будет выключен. Это приведет к тому, что ЛГ будет работать на номинальном режиме при движении в городе и будет иметь максимальный КПД. А это уменьшение расхода бензина в городском цикле. Плюс в случае выхода одного ЛГ из строя, у нас есть второй ЛГ. Да, с максимальной скоростью вы не поедете, но как минимум сможете добраться до ближайшего ТО без помощи эвакуаторов. Расписывать все преимущества такой компоновки я не буду, большинство автолюбителей сразу же поймут о чем речь. Но замечу, что традиционные двигатели не позволяют двойной компоновки из-за своих размеров и показателей массы двигателя к вырабатываемой мощности (так называемой удельной массы). А наш ЛГ позволяет.

На данный момент у нас уже есть две модели ЛГ. Первую модель мы собирали так сказать и того что под ногами нашли — из цилиндров и поршней на мопеды. В результате на топливе мы ее не запустили, но зато точно убедились в отсутствии вибрации. Тесты проводили сжатым воздухом, а в качестве синхронизаторов использовали пружины в трубках. Видео об этом можно посмотреть на этом видео:

Сейчас почти закончили вторую модель, детали к которой создавались полностью с 0 по нашим чертежам. Надеюсь к осени 2013 года мы завершим сборку и сможем продемонстрировать работающий ЛГ, а так же его реальные характеристики.

Мы пытались заинтересовать многие фирмы нашей разработкой. Обращались на различные автомобилестроительные заводы Украины и России. Но в большинстве случаем мы слышали такие слова, что идея класс, но этот двигатель не будет ломаться, мол с чего мы будем получать прибыль, если не нужно будет выпускать запчасти для него, да и производство надо переделывать, а это же деньги. Обидно за родину. Выпуская такой ЛГ, Россия могла бы стать лидером двигателестроения в течении нескольких лет. А так мы продолжаем покупать иностранные автомобили и поднимать экономику и давать работу людям не в своей стране. Могу сказать точно, что будущее двигателестроения — за линейными машинами. Сейчас в некоторых странах идут активные разработки различных линейных двигателей: в Австралии — PemPec Motors , в Англии — Libertine FPE Limited ( видео презентация ), в Чехии — Czech technical university ( сайт проекта ), в США — The Automotive Propulsion Control Laboratory (APCL) . Наступил момент, что кто первый встал, того и тапки. Сейчас мы наконец то можем стать первыми в данной области, ведь наша конструкция линейного генератора намного лучше всех вышеперечисленных как в конструктивном плане, так и в эксплуатационном.

Работы по ЛГ начаты еще в 2008 году. Но из-за огромной стоимости заказа частей в единичном экземпляре, ведутся до сегодняшнего дня. За это время конструкция была изменена несколько раз. Например мы на сегодняшний день отказались от механического синхронизатора между внешними и внутренними поршнями, и обеспечили синхронизацию лишь за счет сопротивления движению поршней, создаваемое катушками при индукции тока в них. Так же при создании деталей к ЛГ можно изначально заложить возможность изменять объем камеры сжатия, а это приведет к тому, что в течении нескольких часов, без изменения конструкции, ЛГ можно перевести с работы на бензине, например, на работу на спирт или масло (в традиционных двигателях, если двигатель был разработан для бензина, то перевести его на более вязкое топливо невозможно, в первую очередь, из-за фиксированного объема камеры сжатия). Были разработаны и некоторые другие мелочи, которые позволяют избавиться от некоторых недостатков, присущих данному ЛГ. К сожалению, в нашем мире коммерции, где любые идеи воруются в мгновение ока, мы не можем рассказать обо всех нюансах конструкции.

Если все таки кто-либо заинтересуется производством данного ЛГ, то вот контакты для связи с одним из авторов сего творения.

Skype: oleg_goodzon

ICQ: 394774068

Phone: +380966912777

С уважением, Олег Гуняков и Владимир Кузнецов.

Линейный генератор: устройство, принцип работы, плюсы и минусы

Традиционные двигатели внутреннего сгорания отличаются тем, что в качестве начального звена выступают поршни, которые выполняют слаженные возвратно-поступательные движения. После изобретения кривошипно-шатунных агрегатов специалисты смогли достичь вращательного момента. В некоторых современных моделях оба звена совершают один вид движений. Именно этот вариант считается наиболее практичным.

Например, в линейном генераторе нет необходимости воздействовать на возвратно-поступательные действия, извлекая при этом прямолинейную составляющую. Применение современных технологий позволило адаптировать для пользователя выходное напряжение агрегата, за счет этого часть замкнутого электрического контура совершает не вращательные движения в магнитном поле, а только поступательные.

Описание

Линейный генератор часто называют изделием на постоянных магнитах. Агрегат предназначен для эффективного преобразования механической энергии дизельного двигателя в выходной электрический ток. За выполнение этой задачи отвечают постоянные магниты. Качественный генератор может быть выполнен на основе разных геометрических схем. Например, стартер и ротор могут изготавливаться в виде соосных дисков, которые вращаются относительно друг друга.

Эксперты называют такие линейные генераторы дисковыми или просто аксиальными. Используемая на производстве схема позволяет создавать высококачественные агрегаты компактных размеров с наиболее плотной компоновкой. Такое изделие можно смело устанавливать в ограниченном пространстве. Самыми востребованными считаются цилиндрические и радиальные генераторы. В таких изделиях стартер и ротор выполнены в виде соосных цилиндров, вложенных друг в друга.

Характеристика

Линейный генератор относится к сфере энергомашиностроения, так как умелое его использование позволяет повысить топливную экономичность и минимизировать выбросы токсичных газов в распространенных свободнопоршневых двигателях внутреннего сгорания. В автономном изделии, в котором электричество преобразуется при помощи сцепления между постоянным магнитом и неподвижной обмоткой, спаренные с поршнями цилиндры имеют характерную коническую форкамеру. Генератор функционирует с измененными ходами сжатия. Обмотка и поисковой магнит устроен так, что итоговое соотношение между количествами механической энергии, применяемой для производства электричества, равно имеющемуся между степенями сжатия.

Конструкция

Поисковой магнит в классических генераторах отличается принципом строения, так как производители полностью исключили трущиеся детали, такие как токоснимающие щетки и коллекторы. Отсутствие таких механизмов повышает степень надежности работы дизельной электростанции. Конечному потребителю не придется тратить большие суммы на техническое обслуживание оборудования. Устройство линейного генератора на дизельном топливе с постоянными магнитами позволяет экспертам надежно обеспечивать ценной электроэнергией различные лаборатории, жилые дома, а также небольшие производственные объекты.

Высокая степень надежности, доступность и легкий запуск делают такие установки просто незаменимыми в том случае, когда нужно обеспечить наличие резервного источника питания. К негативным сторонам линейных генераторов можно отнести то, что самая надежная конструкция не позволяет получить высокого напряжения выходного тока. Если же нужно обеспечить электроэнергией мощное оборудование, тогда пользователю придется задействовать многополосные модели, стоимость которых значительно выше базовых установок.

Читать еще:  Как сделать водородный генератор своими руками

Линейные цепи

Это отдельная категория деталей, которая пользуется огромным спросом среди профессионалов. В соответствии с законом Ома ток в линейных электрических цепях пропорционален приложенному напряжению. Уровень сопротивления постоянен и абсолютно не зависит от приложенного к нему напряжения. Если ВАХ электрического элемента является прямой линией, то такой элемент называется линейным. Стоит отметить, что в реальных условиях сложно добиться высоких показателей, так как пользователю нужно создать оптимальные условия.

Для классических электрических элементов линейность носит условный характер. Например, сопротивление резистора зависит от температуры, влажности и других параметров. В жаркую погоду показатели существенно возрастают, из-за чего механизм теряет свою линейность.

Преимущества

Универсальный линейный генератор на постоянных магнитах выгодно отличается от всех современных аналогов многочисленными положительными характеристиками:

  1. Небольшой вес и компактность. Такой эффект достигается за счет отсутствия кривошипно-шатунного механизма.
  2. Доступная цена.
  3. Качественная наработка на отказ из-за отсутствия системы сжигания.
  4. Технологичность. Для производства долговечных деталей используются исключительно нетрудоемкие операции.
  5. Регулировка объема камеры сгорания топлива без остановки двигателя.
  6. Базовый ток нагрузки генератора не влияет на магнитное поле, что не влечет за собой снижение характеристик оборудования.
  7. Отсутствует система зажигания.

Недостатки

Несмотря на многочисленные положительные характеристики, многофункциональный генератор с качественными втулками рабочего цилиндра имеет некоторые отрицательные характеристики. Негативные отзывы владельцев связаны со сложностью получения выходного напряжения в виде синусоида. Но даже этот недостаток можно легко устранить, если задействовать универсальную электронную и преобразовательную технику. Новичкам нужно быть готовыми к тому, что агрегат оснащен несколькими цилиндрами внутреннего сгорания. Классическая регулировка объема топливной камеры осуществляется по тому же принципу, что и в тестовой заготовке.

Дизельные установки

Каждый мужчина может сделать своими руками линейный генератор, который будет обладать оптимальными эксплуатационными характеристиками. Главное – придерживаться основных рекомендаций и заранее подготовить все необходимые инструменты. Дизельный линейный генератор пригодится в том случае, если пользователю приходится самостоятельно вносить изменения в существующую электрическую сеть. Агрегат поможет существенно упростить осуществление профессиональных и бытовых задач. Любое изделие нуждается в периодическом техническом обслуживании. С такими манипуляциями справится любой мастер, если будет знать принцип работы механизма.

Ограничения

Все большую популярность приобретает доступный и надежный линейный генератор. В качестве источника энергии этот агрегат можно использовать как в бытовой, так и промышленной сфере. Но каждый пользователь должен помнить о некоторых ограничениях. В процессе эксплуатации стираются кулачки приводов клапанов, в результате чего механизм не открывается, из-за чего мощность падает до критических отметок.

Из-за частой эксплуатации быстро прогорают края горячего клапана. В устройстве присутствуют вкладыши – подшипники скольжения, которые расположены на шейке коленвала. Со временем эти изделия тоже стираются. В результате образуется свободное пространство, через которое начинает проходить заправленное масло.

Топливный насос

Привод этого агрегата представлен в виде кулачковой поверхности, которая прочно зажата между роликом поршня и самого корпуса. Механизм совершает возвратно-поступательные движения вместе с шатуном двигателя внутреннего сгорания. Если мастер планирует изменить количество выталкиваемого за один такт топлива, то он обязательно осуществляет аккуратный поворот кулачковой поверхности по отношению к продольной оси. В этой ситуации ролики поршня насоса и корпуса будут сдвигаться либо раздвигаться (все зависит от направления вращения). Итоговые значения напряжения и электроэнергии, вырабатываемые во время различных циклов, нельзя отнести к категории автоматически пропорциональных изменений механической энергии.

Такой подход предусматривает применение крупногабаритных аккумуляторных батарей, которые чаще всего устанавливают между частью внутреннего сгорания и электродвигателями. Использование линейного генератора позволяет сохранить благоприятную экологическую обстановку окружающей среды. Экспертам удалось минимизировать образование токсичных составов при работе агрегата, что высоко ценится в современном обществе.

Генераторы на магнитах, работающие без топлива

28 сентября 2018

Время на чтение:

Всё большую популярность набирают генераторы, которые способны вырабатывать электричество без использования бензина или дизельного топлива, так как они гораздо экономичнее. Также эти устройства не выделяют токсичных веществ и не загрязняют окружающий мир. Генераторы на магнитах, работающие без топлива, применяют не только в домашнем хозяйстве, но и в некоторых отраслях промышленности.

Бестопливные генераторы

Многие государства сейчас делают упор на разработку альтернативных источников энергии, а также на экономию полезных ископаемых. Достигается это благодаря использованию магнитных электрогенераторов. Принцип их работы заключается в элементарных законах физики. Наиболее успешными видами устройств считаются такие:

  1. Бестопливный генератор на магнитах Адамса. На сегодняшний день является наиболее популярным магнитным двигателем. У него довольно простая конструкция, но при этом очень высокий коэффициент полезного действия.
  2. Мотор Дудышева. В основе его работы применяется магнитный ток, который видоизменяется в электрический импульс.
  3. Соленоидальный мотор Дудышева. В его конструкцию включён магнитный ротор. Наибольшую эффективность показывает на малых мощностях.
  4. Двигатель Минато. КПД устройства составляет 100%. Это достигается благодаря использованию усилителей мощности.
  5. Мотор Джонсона. Это довольно популярный тип устройств, но в промышленности его не применяют из-за малой мощности.

Большинство видов агрегатов можно успешно применять в разных отраслях промышленности. Это позволит не только экономить на топливе, но и снизить уровень загрязнения окружающей среды.

Прибор Вега и его особенности

Бтг работают по схеме захвата свободной энергии, после чего идёт её преобразование в индукционный ток. Адамс и Бедини посвятили свою жизнь изучению этого физического явления. Приборы можно применять как автономное обеспечение электроснабжением для:

  • частных домов;
  • фермерских или же лесных угодий;
  • судоходства;
  • автомобилестроения;
  • самолётостроения и космонавтики.

Эффективность бестопливных генераторов на магнитах зачастую проявляется в местах, которые не получается обеспечить топливом, а силы природной энергии недостаточно для полного обеспечения электричеством. Следует понимать, что устройство Адамса не является вечным генератором электричества. При эксплуатации ему необходим периодический ремонт. Также агрегат требует постоянного обслуживания.

Бестопливный генератор на магнитах от производителя «Вега» имеет ряд преимуществ:

  1. Прибор можно использовать в любых погодных условиях, а также вдали от сетей электроснабжения.
  2. Топливом является кинетическая энергия.
  3. Ограничения по производству электричества отсутствуют.
  4. Полностью безопасен для организма человека и природы.
  5. Сделать бестопливный генератор можно своими руками.
  6. Агрегат очень компактный.
  7. Минимальный срок эксплуатации составляет 20 лет.

Основное преимущество заключается в том, что не нужно самостоятельно придавать движение валу. Весь процесс автоматизирован, благодаря преобразованию кинетической энергии в электрический импульс.

Принцип работы

Работа генератора заключается в гибридной в системе. Переменный ток получается после преобразования кинетической энергии. Ротор вращается благодаря силе магнитного поля, которое исходит от торцов электромагнитов. Таким образом, магнитные колебания позволяют создать электрический импульс. Самая простая конструкция содержит в себе:

  1. Генератор. Это цилиндрическая ёмкость, которая обязательно должна герметично закрываться. Внутри возникает электромагнитное поле, благодаря направленному воздействию катушек.
  2. Конвектор-преобразователь. Продуцирует электроэнергию из магнитных импульсов. На выходе получается переменный ток.
  3. Аккумуляторы. Необходимы для накапливания заряда. Благодаря им можно пользоваться электричеством в любое время.

Главным элементом в конструкции является многополюсный генератор прямого вращения. Снаружи располагаются магниты. Их количество зависит от необходимой мощности. Минимальный коэффициент полезного действия такого устройства составляет 90%. Из генераторов можно создать электрические сети, соединяя несколько устройств между собой. Это выгодно, если мощность аппарата составляет, например, 5 киловатт, а требуется мощность в 10 киловатт.

Создание аппарата своими руками

Получение электрической энергии в огромных количествах без затрат топлива — идея заманчивая и вполне выполнимая. Создание такого устройства можно рассмотреть на примере генератора Адамса. Для самостоятельной сборки понадобятся:

  1. Магниты. Чем больше магнит, тем сильнее он воздействует на индукционное поле, а также на количество вырабатываемой энергии. Для генератора небольшой мощности подойдут маленькие куски. Желательно, чтобы размеры были одинаковыми. Для нормальной работы достаточно 15 штук. Плюсовой полюс одного магнита должен устанавливаться напротив плюса другого. Если не соблюсти это условие, то индукционного поля не будет.
  2. Медные провода.
  3. Две катушки. Их можно достать из старых двигателей или же намотать проволоку самостоятельно.
  4. Листовая сталь для изготовления корпуса.
  5. Болты, шайбы, шурупы и гвозди. Они необходимы для крепежа небольших элементов.

Сначала магнит нужно закрепить на основании катушки. Сделать это можно, если высверлить в нём отверстие, а затем закрепить болтами. Провода на катушках должны быть толщиной в 1,25 мм и иметь слой изоляции. Катушки следует крепить на металлической раме так, чтобы между торцами были небольшие зазоры. Это требуется для свободного вращения основного элемента.

На этом этапе аппарат уже можно использовать. Проверить правильность сборки довольно просто: следует вручную прокрутить магниты. Если конструкция собрана правильно, то на концах обмотки возникнет напряжение.

Это наиболее примитивный генератор, работающий от магнитов. Но на основе такой схемы можно создать устройство, которое будет способно обеспечить электроэнергией весь дом. Также можно приобрести уже готовые аппараты от проверенных производителей.

Наиболее популярные модели

На текущий момент наиболее популярными генераторами являются модели от производителей «Энерджистем», «U-Polemag», «Вега», а также «Верано-Ко». Они занимают обширную часть рынка устройств.

«Вега» производит аппараты, которые работают исходя из принципа магнитной индукции. Эту идею смог воплотить знаменитый физик Адамс. Цена зачастую зависит от мощности и размеров аппарата. Минимальная стоимость составляет 45 тыс. руб. У этого производителя есть ряд преимуществ:

  1. Продукция от компании «Вега» очень экологична.
  2. Генераторы полностью бесшумны, что позволяет их устанавливать в любом месте.
  3. Аппараты сравнительно компактные.
  4. У производителя довольно много моделей, мощность которых начинается от 1,5 кВт и достигает до 10 кВт.

Минимальный эксплуатационный срок составляет 20 лет. Аккумуляторы необходимо заменять через каждые 3−4 года.

«Верано-Ко» — это украинский производитель, использующий для своей продукции только качественные комплектующие. Производит генераторы как для бытовых нужд, так и для промышленных целей. Принцип работы альтернативного источника энергии такой же, как и у других магнитных агрегатов. Самая дешёвая модель стоит 50 тыс. руб. Цены на устройства достигают 200 тыс. руб.

«U-Polemag» является китайским производителем. Представляет наибольшее разнообразие моделей генераторов. Стандартное КПД устройств составляет 93%. Максимальные потери энергии — 1%. Зачастую приобретается для бытового использования. Имеет компактные габариты, низкий уровень шума и небольшой вес. В комплектацию входят системы охлаждение. Максимальная длительность использования достигает 15 лет. Цены на модельный ряд начинаются от 30 тыс. руб. и достигают 90 тыс. руб.

«Энерджисистем» производит устройства вертикального типа. Однозначного мнения о качестве и мощности аппаратов у потребителей нет. Цены на генераторы немного завышены и начинаются от 50 тыс. руб.

Рекомендации по выбору

Любые подобные устройства (особенно магнитные генераторы) стоят довольно много. Зачастую потребители хотят купить качественную модель, но при этом потратить минимальное количество денег. В последнее время люди начали приобретать товары из Китая. Это обусловлено тем, что продукция стоит дешёво и имеет вполне терпимое качество. Генераторы или же элементы конструкции можно купить за границей, но есть определённые риски, которые следует учитывать:

  1. Приходится платить за товар до его получения.
  2. Часто случается, что продукция не соответствует описанию на сайте.
  3. Иногда посылка не доходит до адресата, а деньги при этом никто не вернёт.

Часто такая экономия оказывается ложной. Есть возможность покупки генератора напрямую от производителя. Но при таком варианте необходимо знать все тонкости конструкции аппарата, чтобы опытный продавец не смог «втюхать» генератор, не соответствующий требованиям, поэтому перед покупкой следует:

  1. Досконально изучить рынок таких устройств. Это позволит обнаружить лидеров среди производителей.
  2. Правильно рассчитать мощность. Так можно сэкономить, не переплачивая за ненужные характеристики.

Желательно убедиться, что к товару выписывается гарантийный талон. У каждой модели должен быть лист испытаний, который может подтвердить качество.

Как сделать генератор постоянного тока своими руками — способы изготовления в домашних условиях. 155 фото и принципиальные схемы самодельных устройств

Электричество стало неотъемлемой частью нашего существования. Времена, когда пользовались свечами для освещения, выбивали пыль, развешивая ковры на улице и стирали белье в реке уже прошли. Для получения этого ценного ресурса, который прочно вошел в повседневную жизнь, можно использовать генераторы переменного и постоянного тока, которые преобразуют механическую энергию в электрическую.

Это – наиболее простое, незамысловатое устройство. Генератор постоянного тока можно сделать своими руками, чтобы заряжать тот же мобильник или ноутбук либо приобрести в любом супермаркете электротехники.

С развитием технического прогресса теперь любое электрооборудование можно купить в интернет-магазинах, которые предоставляют на своих веб-ресурсах фото и технические характеристики современных генераторов постоянного тока.

Краткое содержимое статьи:

Устройство

Конструктивно генератор постоянного тока не так и сложен. Он – тот же двигатель, только работает иначе. Преобразует механическую энергию в электрическую, а не наоборот.

Рассматривая его снаружи и изнутри, можно выделить следующие детали:

  • Чугунный или стальной корпус;
  • Статор;
  • Катушки возбуждения;
  • Якорь;
  • Обмотка самовозбуждения;
  • Коллектор;
  • Медно-графитные щетки

Принцип действия генератора постоянного тока основан на том, что когда в магнитном поле движутся проводники, то в нем генерируется разнонаправленная ЭДС, величину и направление которого можно контролировать и изменять. Это происходит при вращении якоря. С помощью коллектора на выходе образуется постоянный ток.

Классификация генераторов постоянного тока

Устройства различаются между собой по принципу включения и подсоединения обмоток. Сейчас можно встретить такие виды генераторов постоянного тока:

  • С самовозбуждением. Внешним источником для запуска и бесперебойного питания может быть ветрогенератор или аккумулятор;
  • С независимым включением, питающимся от обмотки;
  • С параллельным (шунтовым) возбуждением;
  • Последовательным подключением обмоток.
  • Дизельные и газовые высокомощные генераторы.

В современной жизни генераторы постоянного тока используются для питания в городах электротранспорта и как инверторы для сварки. А также их можно встретить в конструкции тяговых тракторов комбайнов и прочих машин высокой мощности.

Способы изготовления

Существует множество мастер-классов, посвященных тому как правильно это сделать, и из чего лучше. При этом следует понимать, что генератору нужно бесперебойное питание для осуществления постоянного вращения и вырабатывания электричества. Для этого подойдет другой двигатель.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector