Astro-nn.ru

Стройка и ремонт
8 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Задающий генератор для трехфазного инвертора

Схемы любительских частотных преобразователей

Одна из первых схем преобразователя для питания трехфазного двигателя была опубликована в журнале «Радио» №11 1999г. Разработчик схемы М. Мухин в то время был учеником 10 класса и занимался в радиокружке.

Преобразователь предназначался для питания миниатюрного трехфазного двигателя ДИД-5ТА, который использовался в станке для сверления печатных плат. При этом следует отметить, что рабочая частота этого двигателя 400Гц, а напряжение питания 27В. Кроме того, средняя точка двигателя (при соединении обмоток «звездой») выведена наружу, что позволило предельно упростить схему: понадобилось всего три выходных сигнала, а на каждую фазу потребовался всего один выходной ключ. Схема генератора показана на рисунке 1.

Как видно из схемы преобразователь состоит из трех частей: генератора-формирователя импульсов трехфазной последовательности на микросхемах DD1…DD3, трех ключей на составных транзисторах (VT1…VT6) и собственно электродвигателя M1.

На рисунке 2 показаны временные диаграммы импульсов, сформированных генератором-формирователем. Задающий генератор выполнен на микросхеме DD1. С помощью резистора R2 можно установить требуемую частоту вращения двигателя, а также изменять ее в некоторых пределах. Более подробную информацию о схеме можно узнать в указанном выше журнале. Следует отметить, что по современной терминологии подобные генераторы-формирователи называются контроллерами.

Рисунок 2. Временные диаграммы импульсов генератора.

На базе рассмотренного контроллера А. Дубровским из г. Новополоцка Витебской обл. была разработана конструкция частотно-регулируемого привода для двигателя с питанием от сети переменного тока напряжением 220В. Схема устройства была опубликована в журнале «Радио» 2001г. №4.

В этой схеме, практически без изменений, используется только что рассмотренный контроллер по схеме М. Мухина. Выходные сигналы с элементов DD3.2, DD3.3 и DD3.4 используются для управления выходными ключами A1, A2, и A3, к которым подключается электродвигатель. На схеме полностью показан ключ A1, остальные идентичны. Полностью схема устройства показана на рисунке 3.

Подключение двигателя к выходу трехфазного инвертора

Для ознакомления с подключением двигателя к выходным ключам стоит рассмотреть упрощенную схему, приведенную на рисунке 4.

На рисунке показан электродвигатель M, управляемый ключами V1…V6. Полупроводниковые элементы для упрощения схемы показаны в виде механических контактов. Питание электродвигателя осуществляется постоянным напряжением Ud получаемым от выпрямителя (на рисунке не показан). При этом, ключи V1, V3, V5 называются верхними, а ключи V2, V4, V6 нижними.

Совершенно очевидно, что открытие одновременно верхних и нижних ключей, а именно парами V1&V6, V3&V6, V5&V2 совершенно недопустимо: произойдет короткое замыкание. Поэтому, для нормальной работы такой ключевой схемы, обязательно, чтобы к моменту открытия нижнего ключа верхний ключ уже был закрыт. С этой целью контроллеры управления формируют паузу, часто называемую «мертвой зоной».

Величина этой паузы такова, чтобы обеспечить гарантированное закрытие силовых транзисторов. Если эта пауза будет недостаточна, то возможно кратковременное открытие верхнего и нижнего ключа одновременно. Это вызывает нагрев выходных транзисторов, часто приводящий к выходу их из строя. Такую ситуацию называют сквозными токами.

Вернемся к схеме, показанной на рисунке 3. В данном случае верхними ключами являются транзисторы 1VT3, а нижними 1VT6. Нетрудно заметить, что нижние ключи гальванически связаны с управляющим устройством и межу собой. Поэтому управляющий сигнал с выхода 3 элемента DD3.2 через резисторы 1R1 и 1R3 подаются непосредственно на базу составного транзистора 1VT4…1VT5. Этот составной транзистор есть не что иное, как драйвер нижнего ключа. В точности также от элементов DD3, DD4 управляются составные транзисторы драйверов нижнего ключа каналов A2 и A3. Питание всех трех каналов осуществляется от одного и того же выпрямителя на диодном мосте VD2.

Верхние же ключи гальванической связи с общим проводом и управляющим устройством не имеют, поэтому для управления ими кроме драйвера на составном транзисторе 1VT1…1VT2 пришлось в каждый канал установить дополнительный оптрон 1U1. Выходной транзистор оптрона в этой схеме также выполняет функцию дополнительного инвертора: когда на выходе 3 элемента DD3.2 высокий уровень открыт транзистор верхнего ключа 1VT3.

Для питания каждого драйвера верхнего ключа используется отдельный выпрямитель 1VD1, 1C1. Каждый выпрямитель питается от индивидуальной обмотки трансформатора, что можно рассматривать как недостаток схемы.

Конденсатор 1C2 обеспечивает задержку переключения ключей около 100 микросекунд, столько же дает оптрон 1U1, тем самым формируется вышеупомянутая «мертвая зона».

Достаточно ли только регулирования частоты?

С понижением частоты питающего переменного напряжения падает индуктивное сопротивление обмоток двигателя (достаточно вспомнить формулу индуктивного сопротивления), что приводит к увеличению тока через обмотки, и, как следствие, к перегреву обмоток. Также происходит насыщение магнитопровода статора. Чтобы избежать этих негативных последствий, при уменьшении частоты приходится снижать и эффективное значение напряжения на обмотках двигателя.

Одним из способов решения проблемы в любительских частотниках предлагалось это самое эффективное значение регулировать при помощи ЛАТРа, подвижный контакт которого имел механическую связь с переменным резистором регулятора частоты. Такой способ был рекомендован в статье С. Калугина «Доработка регулятора частоты вращения трехфазных асинхронных двигателей». Журнал «Радио» 2002, №3, стр.31.

В любительских условиях механический узел получался в изготовлении сложным, а главное ненадежным. Более простой и надежный способ использования автотрансформатора был предложен Э. Мурадханяном из Еревана в журнале «Радио» №12 2004. Схема этого устройства показана на рисунках 5 и 6.

Напряжение сети 220В подается на автотрансформатор T1, а с его подвижного контакта на выпрямительный мост VD1 с фильтром C1, L1, C2. На выходе фильтра получается изменяемое постоянное напряжение Uрег, используемое собственно для питания двигателя.

Напряжение Uрег через резистор R1 также подается на задающий генератор DA1, выполненный на микросхеме КР1006ВИ1 (импортный вариант NE555). В результате такого подключения обычный генератор прямоугольных импульсов превращается в ГУН (генератор, управляемый напряжением). Поэтому, при увеличении напряжения Uрег увеличивается и частота генератора DA1, что приводит к увеличению частоты вращения двигателя. При снижении напряжения Uрег пропорционально уменьшается и частота задающего генератора, что позволяет избежать перегрев обмоток и перенасыщение магнитопровода статора.

В той же журнальной статье автор предлагает вариант задающего генератора, который позволяет избавиться от использования автотрансформатора. Схема генератора показана на рисунке 7.

Генератор выполнен на втором триггере микросхемы DD3, на схеме обозначен как DD3.2. Частота задается конденсатором C1, регулировка частоты осуществляется переменным резистором R2. Вместе с регулировкой частоты изменяется и длительность импульса на выходе генератора: при понижении частоты длительность уменьшается, поэтому напряжение на обмотках двигателя падает. Такой принцип управления называется широтно импульсной модуляцией (ШИМ).

В рассматриваемой любительской схеме мощность двигателя невелика, питание двигателя производится прямоугольными импульсами, поэтому ШИМ достаточно примитивна. В реальных промышленных частотных преобразователях большой мощности ШИМ предназначена для формирования на выходе напряжений практически синусоидальной формы, как показано на рисунке 8, и для реализации работы с различными нагрузками: при постоянном моменте, при постоянной мощности и при вентиляторной нагрузке.

Рисунок 8. Форма выходного напряжения одной фазы трехфазного инвертора с ШИМ.

Силовая часть схемы

Современные фирменные частотники имеют на выходе мощные транзисторы структуры MOSFET или IGBT, специально предназначенные для работы в преобразователях частоты. В ряде случаев эти транзисторы объединены в модули, что в целом улучшает показатели всей конструкции. Управление этими транзисторами производится с помощью специализированных микросхем-драйверов. В некоторых моделях драйверы выпускаются встроенными в транзисторные модули.

Наиболее распространены в настоящее время микросхемы и транзисторы фирмы International Rectifier. В описываемой схеме вполне возможно применить драйверы IR2130 или IR2132. В одном корпусе такой микросхемы содержится сразу шесть драйверов: три для нижнего ключа и три для верхнего, что позволяет легко собрать трехфазный мостовой выходной каскад. Кроме основной функции эти драйверы содержат также несколько дополнительных, например защита от перегрузок и коротких замыканий. Более подробную информацию об этих драйверах можно узнать из технических описаний Data Sheet на соответствующие микросхемы.

При всех достоинствах единственный недостаток этих микросхем их высокая цена, поэтому автор конструкции пошел другим, более простым, дешевым, и в то же время работоспособным путем: специализированные микросхемы-драйверы заменены микросхемами интегрального таймера КР1006ВИ1 (NE555).

Выходные ключи на интегральных таймерах

Если вернуться к рисунку 6, то можно заметить, что схема имеет для каждой из трех фаз выходные сигналы, обозначенные как «Н» и «В». Наличие этих сигналов позволяет раздельно управлять верхними и нижними ключами. Такое разделение позволяет формировать паузу между переключением верхних и нижних ключей при помощи блока управления, а не самими ключами, как было показано в схеме на рисунке 3.

Схема выходных ключей с применением микросхем КР1006ВИ1 (NE555) показана на рисунке 9. Естественно, что для трехфазного преобразователя понадобится три экземпляра таких ключей.

В качестве драйверов верхних (VT1) и нижних (VT2) ключей используются микросхемы КР1006ВИ1, включенные по схеме триггеров Шмидта. С их помощью возможно получить импульсный ток затвора не менее 200мА, что позволяет получить достаточно надежное и быстрое управление выходными транзисторами.

Микросхемы нижних ключей DA2 имеют гальваническую связь с источником питания +12В и, соответственно, с блоком управления, поэтому их питание осуществляется от этого источника. Микросхемы верхних ключей можно запитать так же, как было показано на рисунке 3 с использованием дополнительных выпрямителей и отдельных обмоток на трансформаторе. Но в данной схеме применяется иной, так называемый, «бустрепный» метод питания, смысл которого в следующем. Микросхема DA1 получает питание от электролитического конденсатора C1, заряд которого происходит по цепи: +12В, VD1, C1, открытый транзистор VT2 (через электроды сток – исток), «общий».

Другими словами заряд конденсатора C1 происходит в то время, когда открыт транзистор нижнего ключа. В этот момент минусовой вывод конденсатора С1 оказывается практически накоротко соединен с общим проводом (сопротивление открытого участка «сток – исток» у мощных полевых транзисторов составляет тысячные доли Ома!), что и обеспечивает возможность его заряда.

При закрытом транзисторе VT2 также закроется и диод VD1, заряд конденсатора C1 прекратится до следующего открытия транзистора VT2. Но заряд конденсатора C1 достаточен для питания микросхемы DA1 на время, пока закрыт транзистор VT2. Естественно, что в этот момент транзистор верхнего ключа находится в закрытом состоянии. Данная схема силовых ключей оказалась настолько хороша, что без изменений применяется и в других любительских конструкциях.

В данной статье рассмотрены лишь самые простые схемы любительских трехфазных инверторов на микросхемах малой и средней степени интеграции, с которых все начиналось, и где можно даже по схеме рассмотреть все «изнутри». Более современные конструкции выполнены с применением микроконтроллеров, чаще всего серии PIC, схемы которых также неоднократно публиковались в журналах «Радио».

Микроконтроллерные блоки управления по схеме более просты, чем на микросхемах средней степени интеграции, имеют такие нужные функции, как плавный пуск двигателя, защита от перегрузок и коротких замыканий и некоторые другие. В этих блоках все реализовано за счет управляющих программ или как их принято называть «прошивок». Именно от этих программ и зависит насколько хорошо или плохо будет работать блок управления трехфазного инвертора.

Достаточно простые схемы контроллеров трехфазного инвертора опубликованы в журнале «Радио» 2008 №12. Статья называется «Задающий генератор для трехфазного инвертора». Автор статьи А. Долгий является также автором цикла статей о микроконтроллерах и многих других конструкций. В статье приведены две простых схемы на микроконтроллерах PIC12F629 и PIC16F628.

Частота вращения в обеих схемах изменяется ступенчато с помощью однополюсных переключателей, что вполне достаточно во многих практических случаях. Там же дается ссылка где можно скачать готовые «прошивки», и, более того, специальную программу, с помощью которой можно изменять параметры «прошивок» по своему усмотрению. Возможна также работа генераторов режиме «демо». В этом режиме частота генератора уменьшена в 32 раза, что позволяет визуально с помощью светодиодов наблюдать работу генераторов. Также даются рекомендации по подключению силовой части.

Но, если не хочется заниматься программированием микроконтроллера фирма Motorola выпустила специализированный интеллектуальный контроллер MC3PHAC, предназначенный для систем управления 3-фазным двигателем. На его базе возможно создание недорогих систем регулируемого трехфазного привода, содержащего все необходимые функции для управления и защиты. Подобные микроконтроллеры находят все более широкое применение в различной бытовой технике, например, в посудомоечных машинах или холодильниках.

Читать еще:  Как сделать генератор Тесла своими руками в домашних условиях

В комплекте с контроллером MC3PHAC возможно использование готовых силовых модулей, например IRAMS10UP60A разработанных фирмой International Rectifier. Модули содержат шесть силовых ключей и схему управления. Более подробно с этими элементами можно в их документации Data Sheet, которую достаточно просто найти в интернете.

ТРЕХФАЗНЫЙ ИНВЕРТОР

В. ПЫШКИН, г. Харьков, Украина

Схема инвертора показана на рисунке. Его выходное напряжение — 3×42 В, частота — 200 Гц. Мощность нагрузки —не более 400 Вт. КПД при максимальной выходной мощности — не менее 90 %. Переменное напряжение однофазной сети поступает на мостовой выпрямитель VD2 — VD5. Выпрямленным напряжением 42 В питают собственно инвертор, выполненный по известной «схеме Ларионова» на транзисторах VT2 — VT10 с защитными диодами VD6 — VD11. Нагрузку, соединенную «треугольником» или «звездой», можно подключать через разделительный трансформатор или без него.

Элементы DD1.1 и DD1.2 образуют задающий генератор, а микросхемы DD2 — DD4 вместе с элементами DDI.3 — DD1.5 — распределитель импульсов, управляющих силовыми ключами. Микросхемы питают через стабилизатор напряжения, состоящий из резистора R1, стабилитрона VD1 и транзистора VT1. Для защиты инвертора от перегрузки служит подключенный параллельно стабилитрону тринистор VS1 — На его управляющий электрод поступает часть пропорционального току нагрузки напряжения, падающего на резисторе R2. Если она превысит порог открывания тринистора, последний «замкнет» стабилитрон и напряжение питания микросхем уменьшится почти до нуля.

Задающий генератор и распределитель импульсов прекратят работу, причем все силовые ключи окажутся закрытыми. О срабатывании защиты сигнализирует погасший светодиод HL1. Чтобы вновь запустить инвертор, необходимо нажать на кнопку SB 1.

Налаживание устройства следует начинать с установки порога срабатывания защиты. Для этого следует, установив движок подстроечного резистора R3 в крайнее левое (по схеме) положение, разорвать цепь в точке А. Затем подать на крайние выводы резистора R3 от внешнего источника напряжение 1.2 В (плюс — к правому по схеме выводу), соответствующее падению напряжения на резисторе R2 при протекании через него тока силой 12 А. Медленно вращая движок резистора R3, добиваются срабатывания защиты. После этого внешний источник напряжения отключают и цепь в точке А восстанавливают. В заключение следует установить подстроечным резистором R5 частоту выходного напряжения инвертора равной 200 Гц. Частота повторения импульсов на выходе элемента D1.2 должна быть в шесть раз больше — 1200 Гц.

От редакции. Транзисторы VTI. VT3. VT4, VT6. VT7. VT9. VT10 необходимо снабдить теплоотводами площадью по 100. 200 см2. Различные экземпляры тринистора КУЮ1А открываются при напряжении на управляющем электроде от 0.25 до 10 В. Не все из них смогут работать в предлагаемом устройстве.
Для надежной работы устройства рекомендуем увеличить сопротивление резисторов R4. R12. R17 примерно вдвое.

Задающий генератор для трехфазного инвертора

Автор: DC-AC, k-d-n-electronics@yandex.ru
Опубликовано 29.07.2014
Создано при помощи КотоРед.

Всем здравствуйте. Вот решил написать статейку про асинхронный привод и преобразователь частоты, который я изготавливал. Моему товарищу надо было крутить пилораму, и крутить хорошо. А сам я занимался импульсной электроникой и сразу предложил ему частотник. Да, можно было купить фирмовый преобразователь, и мне приходилось с ними сталкиваться, параметрировать, но захотелось своего, САМОДЕЛАШНОГО! Да и привод циркулярки к качеству регулирования скорости не критичен, только вот к ударным нагрузкам и к работе в перегрузе должен быть готов. Также максимально-простое управление с помощью пары кнопок и никаких там параметров.

Основные достоинства частотнорегулируемого привода (может для кого-то повторюсь):

Формируем из одной фазы 220В полноценные 3 фазы 220В со сдвигом 120 град., и имеем полный вращающий момент и мощность на валу.

Увеличенный пусковой момент и плавный пуск без большого пускового тока

Отсутствует замагничивание и лишний нагрев двигателя, как при использовании конденсаторов.

Возможность легко регулировать скорость и направление, если необходимо.

Вот какая схемка собралась:

3-фазный мост на IGBT транзисторах c обратными диодами (использовал имеющиеся G4PH50UD) управляется через оптодрайвера HCPL 3120 (бутстрепная схема запитки) микроконтроллером PIC16F628A. На входе гасящий конденсатор для плавного заряда электролитов DC звена. Затем его шунтирует реле и на микроконтроллер одновременно приходит логический уровень готовности. Также имеется триггер токовой защиты от к.з. и сильной перегрузки двигателя. Управление осуществляют 2 кнопки и тумблер изменения направления вращения.

Силовая часть мною была собрана навесным монтажом. Плата контроллера отутюжина вот в таком виде:

Параллельные резисторы по 270к на проходных затворных конденсаторах (забыл под них места нарисовать) припаял сзади платы, потом хотел заменить на смд но так и оставил.

Есть внешний вид этой платы, когда уже спаивал:

С другой стороны

Для питания управления был собран типовой импульсный обратноходовой (FLAYBACK) блок питания.

Можно использовать любой блок питания на 24В, но стабилизированный и с запаздыванием пропадания выходного напряжения от момента пропажи сетевого на пару тройку секунд. Это необходимо чтобы привод успел отключиться по ошибке DC. Добивался установкой электролита С1 большей ёмкости.

Теперь о самом главном. о програме микроконтроллера. Программирование простых моргалок для меня сложности не представляло, но тут надо было поднатужить мозги. Порыскав в нете, я не нашёл на то время подходящей информации. Мне предлагали поставить и специализированные контроллеры, например контроллер фирмы MOTOROLA MC3PHAC. Но хотелось, повторюсь, своего. Принялся детально разбираться с ШИМ модуляцией, как и когда нужно открыть какой транзистор. Открылись некие закономерности и вышел шаблон самой простой программы отработки задержек, с помощью которой можно выдать удовлетворительно синусовую ШИМ и регулировать напряжение. Считать ничего контроллер конечно не успевал, прерывания не давали что надо и поэтому я идею крутого обсчёта ШИМ на PIC16F628A сразу отбросил. В итоге получилась матрица констант, которую отрабатывал контроллер. Они задавали и частоту и напряжение. Возился честно скажу, долго. Пилорама уже во всю пилила конденсаторами, когда вышла первая версия прошивки. Проверял всю схему сначала на 180 ватном движке вентиляторе. Вот как выглядела «экспериментальная установка»:

Первые эксперименты показали, что у этого проекта точно есть будущее.

Программа дорабатывалась и в итоге после раскрутки 4кВТ-ного движка её можно было собирать и идти на лесопилку.

Товарищ был приятно удивлён, хоть и с самого начала относился скептически. Я тоже был удивлён, т.к. проверилась защита от к.з. (случайно произошло в борно двигателя). Всё осталось живо. Двигатель на 1,5кВт 1440об/мин легко грыз брусы диском на 300мм. Шкивы один к одному. При ударах и сучках свет слегка пригасал, но двигатель не останавливался. Ещё пришлось сильно подтягивать ремень, т.к. скользил при сильной нагрузке. Потом поставили двойную передачу.

Сейчас ещё дорабатываю программу она станет еще лучше, алгоритм работы шим чуть сложнее, режимов больше, возможность раскручиваться выше номинала. а тут снизу та самая простая версия которая работает на пиле уже около года.

Выходная Частота: 2,5-50Гц, шаг 1,25Гц; Частота ШИМ синхронная, изменяющаяся. Диапазон примерно 1700-3300Гц.; Скалярный режим управления U/F, мощность двигателя до 4кВт.

Минимальная рабочая частота после однократного нажатия на кнопку ПУСК(RUN) — 10Гц.

При удержании кнопки RUN происходит разгон, при отпускании частота остаётся та, до которой успел разогнаться. Максимальная 50Гц- сигнализируется светодиодом. Время разгона около 2с.

Светодиод «готовность» сигнализирует о готовности к запуску привода.

Реверс опрашивается в состоянии готовности.

Режимов торможения и регулирования частоты вниз нет, но они в данном случае и не нужны.

При нажатии Стоп или СБРОС происходит остановка выбегом.

На этом пока всё. Спасибо, кто дочитал до конца.

Задающий генератор регулятора частоты для трёхфазного асинхронного двигателя

Трёхфазные асинхронные двигатели находят широкое применение в промышленности и в быту благодаря своей простоте и надёжности. Отсутствие искрящего и греющегося коллекторнощёточного узла, а также простая конструкция ротора обуславливают долгий срок их эксплуатации, упрощают профилактику и обслуживание. Однако при необходимости регулировать частоту вращения вала такого двигателя возникают сложности. Для этого обычно применяют специальные преобразователи, называемые частотными регуляторами, изменяющие частоту питающего двигатель напряжения. Такие регуляторы нередко позволяют питать трёхфазный двигатель от однофазной сети, что особенно актуально при их применении в быту.

Частотным регуляторам посвящено довольно много статей, например, [1-3]. К сожалению, большинство описанных конструкций не очень подходят для повторения, поскольку они либо слишком сложны [1], либо (как регулятор, описанный в [2]) построены из дорогих деталей, стоимость которых достигает половины стоимости регулятора промышленного изготовления. Дополнительные функции регулятора [2] необходимы далеко не всегда. Поэтому для многих простых применений такой регулятор невыгоден. Устройство, описанное в [3], несложно по схеме, но организовать плавное регулирование частоты вращения с его помощью затруднительно.

Оптимальным для повторения можно считать устройство, описанное в [1], если его немного упростить. Оно построено на дешёвых широко распространённых микросхемах, поэтому нет нужды покупать дорогостоящие микроконтроллеры или специализированные модули. В описываемом в настоящей статье устройстве из [1] оставлен только формирователь импульсов управления. Остальное изменено с целью упрощения.

Как известно, при уменьшении частоты питающего двигатель напряжения необходимо пропорционально снижать и его амплитуду. Проще всего это делать с помощью широтно-импульсной модуляции формируемого напряжения. В [1] для этого использованы отдельный генератор и пять микросхем. Это не очень удобно, поскольку требует применять для управления двигателем сдвоенный переменный резистор и налаживать два генератора, да и число микросхем можно сократить.

Я использовал другой способ реализации широтно-импульсной модуляции, позволяющий упростить устройство и его налаживание. Теперь оно состоит из регулируемого по частоте генератора импульсов постоянной длительности, счётчика-делителя частоты следования импульсов генератора на три, формирователя импульсов управления и оптронов, управляющих силовыми ключами инвертора постоянного напряжения в трёхфазное переменное.

Формирователь импульсов управления делит частоту поступающих на него импульсов на шесть. Излучающие диоды оптронов включены так, что ток через них течёт только в отрезки времени, когда на выходе генератора установлен высокий логический уровень напряжения, а на соответствующем выходе формирователя импульсов управления — низкий. Поэтому каждый полу-период напряжения, подаваемого на обмотку двигателя, состоит из девяти импульсов постоянной длительности, но с регулируемыми паузами между ними. При этом снижение эффективного значения напряжения, подаваемого на обмотки, происходит автоматически по нужному закону за счёт увеличения скважности при понижении его частоты.

Принципиальная схема задающего генератора частотного регулятора, использующего такой принцип, изображена на рис. 1. Он разработан для системы питания осевого вентилятора с трёхфазным двигателем мощностью 0,37 кВт. На триггере Шмитта DD3.4 и транзисторе VT1 построен генератор импульсов. Рассмотрим его работу с момента, когда конденсатор C9 разряжен и на выходе триггера DD3.4 установлен высокий логический уровень, а на выходах параллельно соединённых триггеров DD3.5 и DD3.6 — низкий.

Рис. 1. Принципиальная схема задающего генератора частотного регулятора

Конденсатор C9 начинает заряжаться через резистор R12 и сопротивление сток-исток транзистора VT1, зависящее от напряжения на его затворе. В некоторый момент времени напряжение на конденсаторе превысит верхний порог переключения триггера, уровень на выходе которого станет низким. Далее начнётся разрядка конденсатора C9. После того как напряжение на конденсаторе достигнет нижнего порога переключения триггера, всё повторится сначала.

Длительность импульса низкого уровня на выходе триггера DD3.4 и высокого уровня на выходах триггеров DD3.5 и DD3.6 неизменна и определяется постоянной времени цепи C9R13. А продолжительность пауз между импульсами зависит от напряжения на затворе полевого транзистора VT1, которое устанавливают переменным резистором R3. Чем оно выше, тем меньше сопротивление сток-исток транзистора, следовательно, короче паузы между импульсами и выше частота их следования. При максимальной частоте паузы между импульсами минимальны, поэтому напряжение, подаваемое на обмотки двигателя, близко к напряжению силовых ключей.

Читать еще:  Стабилизатор напряжения для генератора как выбрать

При понижении частоты длительность пауз увеличивается, что ведёт к уменьшению среднего значения напряжения на обмотке двигателя.

Переменным резистором R3 и регулируют частоту вращения двигателя, а подстроечным резистором R4 устанавливают её минимальное значение. Резистор R12 определяет минимальную длительность пауз между импульсами.

Такой генератор сложнее, чем в [1], но применён по нескольким причинам. Во-первых, он позволяет получить широкий интервал регулирования частоты при небольшом сопротивлении переменного резистора R3. У большинства переменных резисторов при переходе подвижного контакта с металлического контакта на резистивное покрытие (или наоборот) происходит резкое изменение сопротивления. Причём, чем больше номинальное сопротивление резистора, тем ярче это свойство проявляется. А в обычном генераторе для получения широкого интервала регулирования требуются именно высокоомные переменные резисторы. На практике этот эффект проявляется как резкий рывок вала двигателя и бросок потребляемого им тока при приближении движка переменного резистора к крайнему положению.

Во-вторых, стало возможным реализовать плавный запуск двигателя без существенного усложнения устройства. Это актуально для вентиляторов, особенно центробежных, поскольку момент инерции рабочего колеса у них, как правило, довольно велик, что способствует длительной работе двигателя в пусковом режиме со значительным превышением номинального потребляемого тока.

В-третьих, благодаря тому что частотой генератора управляют изменением постоянного напряжения, при необходимости легко организовать дистанционное регулирование частоты вращения вала двигателя.

Для реализации плавного пуска служат элементы C2, R1, R2, VD1, а также реле K2. В момент включения питания цепь обмотки реле K2 разорвана, излучающие диоды оптронов U1-U6 отключены от генератора импульсов, конденсатор C2 разряжен. В этом состоянии подстроечным резистором R2 устанавливают минимальную частоту следования импульсов генератора, с которой начнётся запуск двигателя. Следует отметить, что минимальная частота зависит в некоторой степени и от положения движка переменного резистора R3.

При нажатии на кнопку SB1 «Пуск» реле K2 своими контактами K2.2 подключит оптроны к генератору. Конденсатор C2 начнёт заряжаться в основном через резистор R2. Напряжение на затворе транзистора, а следовательно, и частота генератора плавно увеличиваются. Подбирая ёмкость конденсатора C2, можно изменять скорость разгона двигателя. Когда частота генератора достигнет значения, установленного переменным резистором R3, диод VD1 закроется. Конденсатор C2, заряжаясь до напряжения питания через резистор R2, на дальнейшую работу генератора не влияет.

При нажатии на кнопку SB2 «Стоп» реле K2 отключает оптроны, а контактами K2.1 разряжает конденсатор C2. Реле K1 управляет узел токовой защиты частотного регулятора. При перегрузке оно размыкает цепь питания обмотки реле K2. Для дополнительной защиты частотный регулятор подключён к сети через автоматический выключатель с током отключения 3 А.

Если плавный пуск и управление частотным регулятором с помощью кнопок не требуются, все элементы, находящиеся на схеме внутри штрих-пунктирной рамки, можно не устанавливать. Вместо участка сток-исток транзистора VT1 следует включить по схеме реостата переменный резистор сопротивлением 100 кОм. Ёмкость конденсатора C9 лучше увеличить до 470 нФ, а сопротивление резисторов R12 и R13 выбрать соответственно
200 Ом и 1,6 кОм. Аноды излучающих диодов оптронов U1-U6 следует соединить с выходами триггеров DD3.5 и DD3.6 напрямую.

С выхода триггера DD3.4 импульсы поступают на вход счётчика DD4, коэффициент деления которого установлен равным трём. Формирователь импульсов управления построен на счётчике DD1, элементах 3ИЛИ-НЕ микросхемы DD2 и триггерах Шмитта DD3.1-DD3.3. Его работа достаточно подробно описана в [1] и [2].

Работу узла управления поясняют временные диаграммы сигналов в некоторых его точках, показанные на рис. 2. В качестве выходных сигналов фазы А показаны токи, протекающие через излучающие диоды оптронов U1 и U4. Поскольку, в отличие от [1], в рассматриваемом устройстве все процессы синхронизированы с частотой генератора, так называемое мёртвое время At между открытыми состояниями разных силовых ключей, равное по длительности паузе между импульсами генератора, обеспечивается автоматически. При указанных на схеме номиналах резистора R12 и конденсатора C9 и максимальной частоте импульсов её длительность — не менее 30 мкс.

Рис. 2. Временные диаграммы сигналов

Полевой транзистор КП501А можно заменить на BSN304 или серии КП505. Вместо микросхемы 74НСТ14 лучше установить один из её функциональных аналогов КР1554ТЛ2, 74АС14, отличающихся повышенной нагрузочной способностью. Применять здесь микросхемы серии К561, а тем более К176 не следует.

1. Нарыжный В. Источник питания трёхфазного электродвигателя от однофазной сети с регулировкой частоты вращения. — Радио, 2003, № 12, с. 35-37.

2. Галичанин А. Система частотного управления асинхронным двигателем. — Радио, 2016, № 6, с. 35-41.

3. Хиценко В. Три фазы из одной. — Радио, 2015, № 9, с. 42, 43.

Автор: Е. Герасимов, станица Выселки Краснодарского края

Мнения читателей
  • Валерий / 16.02.2020 — 16:39

https://photos.google.com/share/AF1QipNAMSZR1wSu8LzLQbCn6mOPIALbW730e__AVpbmDk43JE1IoAJNz66Ov0nm8r59ng/photo/AF1QipM_moLoFg5Ur3tBIq3li8MDSElh9yTPJpb885v6?key=UEdCeldFdTVMM2Q3ZFB0dDJaOW1zRXRQMm9VZ0pRЭто ссылка на фото и схему инвертора, как подключить Ваше устройство к этому инвертору для вращения двигателя. Ответ пришлите на почту:perm.pvu@mail.ru

Валерий / 10.02.2020 — 15:39

https://photos.app.goo.gl/dVMkBT4pjrMy5VHZ7Как подключить Ваше устройство к инвертору (ссылка на инвертор)?

Валерий / 10.02.2020 — 15:08

Подскажите, пожалуйста, как подключить это устройство к инвертору для вращения двигателя.

петр / 10.09.2018 — 17:16

Номера выводов кр1561ле10 не соответствуют справочнику

Александр / 24.05.2017 — 19:40

В качестве выходных сигналов фазы А показаны токи, протекающие через излучающие диоды оптронов U1 и U4Через U1 и U2Зачем инвертировать сигнал для драйверов -(А, В, С)

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Частотник своими руками — любительская схема преобразователя

    10 commentsПринцип работы Январь 27, 2020

Зачем нужно делать самому преобразователь для 3-фазного электромотора, и как смастерить его своими руками? Чтобы защитить окружающую природу повсюду создаются правила, которые рекомендуют изготовителям электрических устройств делать продукцию, которая будет экономить электрическую энергию. Часто это бывает достигнуто правильным управлением частотой вращения электромотора. Преобразователь частоты легко решает эту задачу.

Частотник электромотора с тремя фазами по-разному называют: инвертор, частотный изменитель тока, приводной механизм, регулируемый частотой. Сегодня такие устройства делают разные заводы, но многие умельцы своими руками изготавливают не хуже.

Как я сам изготовил частотный преобразователь

Я изготовил преобразователь частоты и асинхронный привод для моего товарища. Ему нужен был привод для пилорамы, мощный и хороший. Так как я любил заниматься электроникой, то сразу предложил ему такую схему:

Трехфазный мост на транзисторах с диодами обратной связи я использовал, которые имелись. Управление осуществил через оптодрайвер HCPL 3120 микроконтроллером PIC16F628A. У входа припаял гасящую емкость, чтобы электролиты заряжались плавно. Затем припаял шунтовое реле. Еще установил триггер защиты тока от замыкания и перегрузки. Для управления установил две кнопки и выключатель для обратного вращения.

Силовую часть я собрал на навесном монтаже.

Резисторы, соединил параллельно по 270 кОм с помощью затворных проходных конденсаторов, позади платы их напаял. Моя плата показана на внешнем виде:

Вид этой моей платы с другой стороны:

Для подключения питающего напряжения я собрал блок питания, работающий на импульсах, обратноходовой. Вот привожу схему этого блока питания:

Как я запрограммировал микроконтроллер? Простые моргалки для меня не представляли какой-то проблемы. Получились константы в виде матрицы, над которой работал мой контроллер. Частота и напряжение были заданы этими величинами. Всю схему работы проверил на моторчике вентилятора небольшой мощности, 200 Вт. Эта моя конструкция выглядела так:

Начальные эксперименты дали хороший результат. Затем доработал программу. Раскрутил двигатель на 4 кВт, и пошел собирать управление пилорамой.

При монтаже у нас с товарищем случайно произошло замыкание и сработала защита, проверили ее работу. Мотор на 2 кВт 1500 оборотов с легкостью пилил доски. Сейчас программа еще дорабатывается для раскрутки двигателя выше номинала. Характеристики: частота от 2 до 50 герц с шагом 1,5 герц, синхронная частота, постоянно меняется, разбег от 1500 до 3500 герц, управление скалярного типа U/F, мощность мотора до 5 кВт.

Удерживаем кнопку RUN и разгоняем двигатель. Отпускаем, частота держится на уровне. Когда загорается светодиод, то привод готов к запуску.

Как сделать инвертор самому своими руками?

Вместе с производством заводских инверторов любители делают их сами, своими руками. Здесь нет ничего сложного. Такой преобразователь частоты преобразовывает одну фазу, делает из нее три фазы. Электродвигатель с похожим частотником используют в домашних условиях, мощность его не будет теряться.

Блок выпрямления в схеме расположен в начале. Далее идут фильтры, которые отсекают токовые переменные. Чтобы изготовить данные инверторы применяют транзисторы IGBT.

За тиристорами стоит будущее, хотя и в настоящем они уже применяются давно. Купленный частотник на биполярных транзисторах стоит дорого и мало где применяется (сервоприводы, металлорежущие станки с векторным управлением). Эти приводы как транспортеры и конвейеры, карусельные станки, станции подкачки воды, климатические системы управления — это большая часть от всего применения устройств заводов, где лучше использовать частотники для управления электромоторами с короткозамкнутыми якорями и можно делать управление оборотами двигателя, если подать потенциал, изменяя частоту до 50 герц.

Приведем простые примеры частотных преобразователей, которые тянули мощные электродвигатели тепловозов и электричек, имеющих в своем составе много вагонов товарных платформ, большие станции с насосами напряжением 600 вольт, обеспечивающие городские районы питьевой водой. Очевидно, что данные сильные электродвигатели не подойдут на биполярных транзисторах. Поэтому применяют активные тиристоры типа GTO, GCT, IGCT и SGCT. Они преобразуют из постоянного тока токовую сеть с тремя фазами с хорошей мощностью. Однако, имеются простые схемы на тиристорах простого типа, закрывающиеся током катода обратного. Такие тиристоры не будут действовать в режиме ШИМ, их хорошо применяют в прямой регулировке электромоторов, без тока постоянного размера. Преобразователи частоты на тиристорах в застойные времена были задействованы для моторов на постоянном токе. Фирма Сименс изобрела векторные частотники, преобразившие промышленность до неузнаваемости.

Стоимость всех деталей самодельного инвертора существенно ниже цены заводского устройства.

Такие самодельные устройства хорошо подходят для электромоторов мощностью до 0,75 кВт.

Для чего предназначен инвертор — его принцип действия

Инвертор действует на частоту вращения асинхронных моторов. Моторы переделывают электроэнергию в механическое движение. Вращательное движение преобразуется в движения механические. Это создает большое удобство. Асинхронные моторы очень популярны во многих сторонах жизни людей.

Обороты электродвигателя можно изменять и другими устройствами. Но, у них много недостатков. Они сложны в пользовании, дорого стоят, работают с плохим качеством, разбег регулировки маленький.

Частотный преобразователь для мотора с тремя фазами легко решает эту проблему. Все знают, что пользование частотниками для изменения частоты вращения есть самый хороший и правильный метод. Такой аппарат дает мягкий пуск и торможение, а также контролирует многие процессы, происходящие в моторе. Аварийные ситуации при этом сводятся на нет.

Чтобы плавно и быстро регулировать работу двигателя, специалисты разработали специальную электрическую схему. Использование в работе частотника дает возможность работать двигателю без перерыва, экономично. Коэффициент полезного действия его достигает 98%. Это происходит за счет повышения частоты коммутации. Механические устройства не могут выполнить такие функции.

Как регулировать скорость инвертором?

Как частотник может изменять частоту вращения трехфазного электромотора? Сначала он меняет напряжение сетевое. Далее, из него получается нужная амплитуда и частота напряжения, поступает на электромотор.

Разбег интервала регулирования скорости преобразователем большой. Можно изменять вращение мотора в другую сторону. Чтобы двигатель не вышел из строя, нужно брать во внимание данные из его характеристики, допускаемые обороты, мощность.

Из чего состоит привод регулирования?

Он имеет в составе три звена:

  1. выпрямитель, дающий потенциал постоянного тока при включении к питанию электрической сети. Сеть может быть управляемой или нет;
  2. фильтрующий элемент, который сглаживает выходное напряжение (применяется емкость);
  3. инвертор, который производит нужную частоту потенциала, крайнего звена возле электромотора.

Режим управления частотников

Их делят на виды управления оборотами двигателя:

  1. скалярное управление (нет связи с обратной стороны);
  2. режим векторного управления (связь с обратной стороны имеется, или отсутствует).
Читать еще:  Проект Заряд

В первом случае управляется статор с его магнитным полем. Управление вектором учитывает действие полей магнита ротора и статора, улучшается крутящий момент при разных скоростях вращения. Это и есть основное различие их режимов управления.

Способ векторов точнее и эффективнее. Обслуживать его дороже. Он больше подходит для специалистов с хорошими профессиональными умениями и знаниями. Метод управления скалярного типа наиболее прост в работе. Применяется он с выходными параметрами, не требующими регулировки особой точности.

Как подключить инвертор треугольником и звездой?

Когда мы купили инвертор по недорогой цене, то возникает необходимость: подключение его к электромотору самому без специалистов. Сначала надо установить для безопасности автоматический выключатель для обесточивания. Если возникнет короткое замыкание на фазах, то отключится вся система.

Подключить частотник к мотору можно звездой или треугольником.

Когда привод регулирования с одной фазой, то контакты электромотора присоединяют треугольником. Тогда мощность не потеряется. Мощность этого преобразователя частоты будет не более 3 кВт.

Инверторы с тремя фазами технически наиболее современны. Они питаются от заводских трехфазных сетей, подключаются звездой.

Для ограничения тока пуска и уменьшения момента пуска при пуске электромотора свыше 5 кВт можно использовать способ включения треугольник и звезда.

При включении статора применяется схема звезды, а если обороты двигателя нормальные, то переходят на вариант треугольника. Но это используется при существовании возможности соединения по двум схемам.

Отмечаем, что в варианте звезда-треугольник большие перепады тока будут всегда. При переключении на вторую схему обороты двигателя сильно снизятся. Для восстановления скорости вращения надо повысить силу тока.

Большой применяемостью оказывают пользу частотники для моторов мощностью до 8 кВт.

Применение инверторов нового поколения

Современные частотные преобразователи делаются с применением таких устройств как микроконтроллеры. Это значительно повышает функции инверторов в алгоритмах управления и контролирования с точки зрения безопасности работ.

Частотники имеют успешное применение в областях производства:

  • в водоснабжении, снабжении теплом при изменении скорости подачи помпы холодного и горячего водоснабжения;
  • в заводских условиях машиностроения;
  • в легкой и текстильной промышленности;
  • в энергетике и производстве топлива;
  • для насосов канализации и скважин;
  • в технологических процессах для автоматики управления.

Чтобы управлять и контролировать частотники изготовитель прибора предлагает созданную программу, которая будет всегда иметь связь с контроллером посредством порта, будет показывать на мониторе состояние и позволит производить управление. Данные документируются протоколом обмена и используются пользователями, создающими программы управления для электронной техники и контроллеров.

Данные обмениваются в три этапа:

  1. Идентификация.
  2. Инициализация.
  3. Управление и контроль.

Стоимость блоков питания бесперебойного напряжения имеет зависимость от того, есть ли в нем частотный преобразователь. За такими устройствами будущее. Отрасли экономики и энергетики будут быстрее развиваться благодаря новым современным устройствам.

Цифровые формирователи трехфазного напряжения с ШИМ-управлением

Texas Instruments CD4017B CD4070B CD4093B

Михаил Шустов, г. Томск

Рассмотрены схемы цифровых формирователей трехфазного напряжения регулируемой частоты с возможностью плавного управления шириной заполняющих выходной импульс высокочастотных сигналов в пределах от 1 до 99%.

Формирователи трехфазных сигналов с возможностью регулирования частоты выходных сигналов и их интеграла мощности с использованием широтно-импульсной модуляции (ШИМ) известны из монографий и журнальных статей последних лет [1–3]. Несмотря на очевидный прогресс в совершенствовании схем устройств подобного назначения, они остаются избыточно сложными для повторения. Ниже приводятся две схемы относительно простых цифровых формирователей трехфазного напряжения регулируемой частоты с возможностью управления шириной заполняющих выходной импульс высокочастотных сигналов.

Формирователи трехфазных сигналов (Рисунки 1 и 2) построены по аналогичной структурной схеме и включают генератор импульсов повышенной частоты с независимой регулировкой частоты и скважности [4], делитель частоты, формирователь трехфазных сигналов и выходные каскады.

Рисунок 1.Формирователь трехфазного напряжения с мультиступенчатым переключением
частоты выходных импульсов и независимым управлением ширины заполняющих
выходной импульс высокочастотных сигналов.

Формирователь, Рисунок 1, содержит собственно генератор прямоугольных импульсов на элементе DD1.1 микросхемы CD4093 (КР1561ТЛ1) с коэффициентом заполнения, близким к 99%, работающий на частоте порядка 20 кГц. На элементе DD1.2 выполнен узел плавной регулировки ширины сигналов задающего генератора. Регулировка ширины импульсов (коэффициента заполнения D) в пределах от 1 до 99% производится потенциометром R2.

Рисунок 2.Формирователь трехфазного напряжения с плавной перестройкой частоты
выходных импульсов и независимым управлением ширины заполняющих
выходной импульс высокочастотных сигналов.

На элементах DD2.1 и DD2.2 микросхемы CD4070 (К561ЛП2) выполнен целочисленный делитель частоты входного сигнала, имеющий коэффициент деления примерно от 13 до 267. Этот коэффициент деления ступенчато задается плавной регулировкой потенциометра R4 и зависит от RC-постоянной времени (R3+R4)C2. Несмотря на то, что коэффициент деления меняется ступенчато, при больших значениях этого коэффициента ступенчатая перестройка частоты выходного сигнала несущественно отличается от плавной перестройки.

На микросхеме DD3 CD4017 (К561ИЕ8) выполнен делитель частоты входного сигнала на 3 и, одновременно, формирователь трехфазного напряжения.

Выходные каскады на каждую из фаз выполнены по идентичным схемам (блоки A, B и С). На вход каждого из этих каскадов поступает сигнал соответствующей фазы (A, B и С) частотой 25…500 Гц и, одновременно, сигнал частотой порядка 20 кГц, плавно регулируемый по коэффициенту заполнения от 1 до 99%. В итоге на выходах (A, B и С) устройства формируются серии высокочастотных (

20 кГц) импульсов регулируемой ширины (от 1 до 99%) в пределах длительности низкочастотных (25…500 Гц) трехфазных сигналов.

Второй формирователь трехфазного напряжения, Рисунок 2, имеет генератор импульсов с независимой регулировкой частоты и скважности [4], выполненный на элементах DD1.1 и DD1.2 микросхемы CD4093 (КР1561ТЛ1). Генератор работает на частоте 1.5…12 кГц (перестройка потенциометром R2). Регулировка коэффициента заполнения D производится потенциометром R4 в пределах от 1 до 99% и совершенно не зависит от частоты генерации.

Сигнал с выхода задающего генератора поступает на вход двухступенчатого делителя частоты, выполненного на микросхемах DD2 и DD3 CD4017 (К561ИЕ8). Второй каскад делителя (микросхема DD3) одновременно выполняет функции формирователя трехфазного напряжения. Итоговый коэффициент деления частоты равен 30 (10×3).

Выходные каскады устройства, Рисунок 2, выполнены по схеме, идентичной приведенной ранее на Рисунке 1.

В итоге на выходе формирователя трехфазного напряжения, Рисунок 2, формируются серии из 30 высокочастотных (1.5…12 кГц) импульсов регулируемой ширины (от 1 до 99%) в пределах длительности низкочастотных (50…400 Гц) трехфазных сигналов.

Разрабатываем частотник. Часть первая, силовая часть.

Самостоятельная разработка частотника для трехфазного электродвигателя, дело достаточно затратное и хлопотное. Но если есть желание и интерес к данной теме огромен, то можно попробовать. Данный пост не
претендует на оригинальность и писатель из меня честно говоря плохой. Итак обо всем по порядку.

Начнем с общей структурной схемы.

Данная структурная схема построена по так называемой схеме двойного преобразования. Трехфазное напряжение 380В частотой 50 Гц поступает на вход неуправляемого выпрямителя. На выходе выпрямителя напряжение составляет около 540 В. Это и есть первый этап преобразования. На втором этапе напряжение при помощи инвертора преобразуется в широтно-модулированные импульсы, которые и поступают на обмотки электродвигателя. Статорные обмотки имеют активно-индуктивный характер сопротивления и являются фильтрами, сглаживающими ток. Среднее значение тока будет зависеть от среднего значения приложенного напряжения, то есть от соотношения длительностей внутри периода ШИМ. Блок управления реализует основные алгоритмы управления инвертором. Обеспечивает диагностику силового модуля, а также выполняет функции противоаварийной защиты. Блок питания предназначен для питания цепей управления.

Выпрямитель.
Схема выпрямителя предельно проста.

На вход силового блока поступает трехфазное напряжение сети амплитудой 380 В, и частотой 50 Гц. Для защиты от перенапряжения в схеме используются варисторы VR1- VR3. Далее входное напряжение поступает на выпрямитель с промежуточным звеном постоянного тока. Выпрямитель 36МТ160 представляет собой трехфазную мостовую схему (т.н схема Ларионова) конструктивно выполненную в одном модуле.
Во время зарядки конденсатора промежуточного контура протекает очень большой кратковременный ток. Это может вывести из строя выпрямитель. Ток зарядки ограничивается включением балластного резистора R4 последовательно с конденсаторами DC-звена, который активизируется только при включении преобразователя. После зарядки конденсаторов резистор шунтируется, контактными реле К1. Большая емкость конденсаторов требуется для сглаживания напряжения промежуточного звена. После выключения инвертора из сети, конденсаторы сохраняют высокое напряжение в течение определенного времени.

Вот что получилось в итоге.

Блок питания.
Собран на микросхеме UC3843. Вообще, что касается блока питания, то вовсе не важно какой будет использован.
Хоть самодельный хоть купленный. Главное, на мой взгляд, по возможности питание драйвера IGBT и питания блока управления было от отдельных обмоток трансформатора.

Инвертор.
Схема инвертора.

IGBT-драйвер собран на транзисторах FGA25N120 и связке оптопары TLP250 и микросхемы TC4420. Что касается микросхемы TC4420 то ее мне посоветовал использовать один мой друг который занимается усилителями «класса D».

Подопытный кролик Электродвигатель.
Двигатель взял для начала малой мощности. Закрепил на нем инкрементальный энкодер «RO6345» фирмы «IFM».

Все это протестировано, проверено и ждет изготовления блока управления. Будем надеется что у меня хватит терпения, времени и сил довести этот проект до работающего прототипа.

Трехфазный инвертор

В промышленности, особенно при работе в помещениях повышенной категории опасности, электроинструменты обычно питают от трехфазных электросетей 36 В 400 Гц или 42 В 200 Гц. Предлагаемый инвертор позволит пользоваться таким электроинструментом в местах, где имеется только однофазная сеть 36 В 50 Гц. В нем предусмотрено защитное отключение прибора при перегрузке по току. Схема инвертора показана на рис. 4.52. Его выходное напряжение — 3×42 В, частота — 200 Гц.

Мощность нагрузки — не более 400 Вт. КПД при максимальной выходной мощности — не менее 90%. Переменное напряжение однофазной сети поступает на мостовой выпрямитель VD2. VD5. Выпрямленным напряжением 42 В питают собственно инвертор, выполненный по известной «схеме Ларионова» на транзисторах VT2. VT10 с защитными диодами VD6. VD11. Нагрузку, соединенную «треугольником» или «звездой», можно подключать через разделительный трансформатор или без него.

Элементы DD1.,1 и DD1.2 образуют задающий генератор, а микросхемы DD2. DD4 вместе с элементами DD1.3. DD1.5 представляют собой распределитель импульсов, управляющий силовыми ключами. Микросхемы питают через стабилизатор напряжения, состоящий из резистора R1, стабилитрона VD1 и транзистора VT1.

Для защиты инвертора от перегрузки служит подключенный параллельно стабилитрону тринистор VS1. На его управляющий электрод поступает часть пропорционального току нагрузки напряжения, падающего на резисторе R2. Если она превысит порог открывания тринистора, последний «замкнет» стабилитрон и напряжение питания микросхем уменьшится почти до нуля. Задающий генератор и распределитель импульсов прекратят работу, причем все силовые ключи окажутся закрытыми. О срабатывании защиты сигнализирует погасший светодиод HL1. Чтобы вновь запустить инвертор, необходимо нажать на кнопку SB1.

Налаживание устройства следует начинать с установки порога срабатывания защиты. Для этого следует, установив движок подстроечного резистора R3 в крайнее левое (по схеме) положение, разорвать цепь в точке А.

Затем подать на крайние выводы резистора R3 от внешнего источника напряжение 1,2 В (плюс — к правому по схеме выводу), соответствующее падению напряжения на резисторе R2 при протекании через него тока силой 12 А. Медленно вращая движок резистора R3, добиваются срабатывания защиты. После этого внешний источник напряжения отключают и цепь в точке А восстанавливают.

В заключение следует установить подстроечным резистором R5 частоту выходного напряжения инвертора равной 200 Гц. Частота повторения импульсов на выходе элемента D1.2 должна быть в шесть раз больше — 1200 Гц. Транзисторы VT1, VT3, VT4, VT6, VT7, VT9, VT10 необходимо снабдить теплоотводами площадью по 100. 200 см2. Следует иметь в виду, что различные экземпляры тринистора КУ101А открываются при напряжении на управляющем электроде от 0,25 до 10 В, поэтому не все из них смогут работать в предлагаемом устройстве. Для более надежной работы устройства рекомендуется увеличить сопротивление резисторов R4, R12, R17 до 2 кОм.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector