Astro-nn.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Передача энергии на расстоянии без проводов

Беспроводное электричество. Работа и применение. Особенности

Беспроводное электричество стало известно с 1831 года, когда Майкл Фарадей открыл явление электромагнитной индукции. Он экспериментально установил, что меняющееся магнитное поле, порождаемое электрическим током, может индуцировать электрический ток в ином проводнике. Проводились многочисленные опыты, благодаря чему появился первый электрический трансформатор. Однако полноценно воплотить идею передачи электричества на расстоянии в практическом применении удалось лишь Николе Тесла.

На Всемирной выставке в Чикаго в 1893-м году он показал беспроводную передачу электричества, зажигая фосфорные лампочки, которые отстояли друг от друга. Тесла продемонстрировал множество вариаций по передаче электричества без проводов, мечтая, что в будущем данная технология позволит людям передавать энергию в атмосфере на большие расстояния. Но в это время это изобретение ученого оказалось невостребованным. Лишь век спустя технологиями Николы Теслы заинтересовались компании Intel и Sony, а за тем и иные компании.

Как это работает

Беспроводное электричество в буквальном смысле представляет передачу электрической энергии без проводов. Часто эту технологию сравнивают с передачей информации, к примеру, с Wi-Fi, сотовыми телефонами и радио. Беспроводная электроэнергия – это сравнительно новая и динамично развивающаяся технология. Сегодня разрабатываются методы, как безопасно и эффективно передавать на расстоянии энергию без перебоев.

Технология основана на магнетизме и электромагнетизме и базируется на ряде простых принципов работы. В первую очередь это касается наличия в системе двух катушек.

  • Система состоит из передатчика и приемника, генерирующих вместе переменное магнитное поле непостоянного тока.
  • Это поле создает напряжение в катушке приемника, к примеру, для зарядки аккумулятора или питания мобильного устройства.
  • При направлении электрического тока через провод вокруг кабеля появляется круговое магнитное поле.
  • На мотке проволоки, куда не поступает электрический ток напрямую, начнет поступать электрический ток от первой катушки через магнитное поле, в том числе вторую катушку, обеспечивая индуктивную связь.
Принципы передачи

До последнего времени наиболее совершенной технологией передачи электроэнергии считалась магнитно-резонансная система CMRS, созданная в 2007 году в Массачусетском технологическом институте. Данная технология обеспечивала передачу тока на расстояние до 2,1 метра. Однако запустить ее в массовое производство мешали некоторые ограничения, к примеру, высокая частота передачи, большие размеры, сложная конфигурация катушек, а также высокая чувствительность к внешним помехам, в том числе к присутствию человека.

Однако ученые из Южной Кореи создали новый передатчик электроэнергии, который позволит передавать энергию до 5 метров. А все приборы в комнате будут питаться от единого хаба. Резонансная система из дипольных катушек DCRS способна работать до 5 метров. Система лишена целого ряда недостатков CMRS, в том числе применяются довольно компактные катушки размерами 10х20х300 см, их можно незаметно установить в стены квартиры.

Эксперимент позволил передать на частоте 20 кГц:
  1. 209 Вт на 5 м;
  2. 471 Вт на 4 м;
  3. 1403 Вт на 3 м.

Беспроводное электричество позволяет запитывать современные большие ЖК-телевизоры, требующих 40 Вт, на расстоянии 5 метров. Единственное из электросети будет «выкачиваться» 400 ватт, однако не будет никаких проводов. Электромагнитная индукция обеспечивает высокий КПД, но на малом расстоянии.

Существуют и иные технологии, которые позволяют передавать электроэнергию без проводов. Наиболее перспективными из них являются:
  • Лазерное излучение . Обеспечивает защищенность сетей, а также большую дальность действия. Однако требуется прямая видимость между приемником и передатчиком. Работающие установки, применяющие питание от лазерного луча, уже созданы. Lockheed Martin, американский производитель военной техники и самолетов, испытал беспилотный летательный аппарат Stalker, который питается от лазерного луча и остается в воздухе в течение 48 часов.
  • Микроволновое излучение . Обеспечивает большую дальность действия, но имеет высокую стоимость оборудования. В качестве передатчика электроэнергии применяется радиоантенна, которая создает микроволновое излучение. На устройстве-приемнике стоит ректенна, которая преобразует в электроток принимаемое микроволновое излучение.

Данная технология дает возможность существенного удаления приемника от передатчика, в том числе нет прямой нужды прямой видимости. Но с увеличением дальности пропорционально увеличивается себестоимость и размеры оборудования. В то же время микроволновое излучение большой мощности, создаваемое установкой, может наносить вред окружающей среде.

Особенности
  • Самая реалистичная из технологий — беспроводное электричество на основе электромагнитной индукции. Но существуют ограничения. Ведутся работы по масштабированию технологии, но здесь появляются вопросы безопасности для здоровья.
  • Технологии передачи электричества при помощи ультразвука, лазера и микроволнового излучения также будут развиваться и тоже найдут свои ниши.
  • Орбитальные спутники с громадными солнечными батареями нуждаются в ином подходе, потребуется прицельная передача электроэнергии. Здесь уместен лазер и СВЧ. На данный момент нет идеального решения, однако имеется много вариантов со своими плюсами и минусами.
  • В настоящее время крупнейшие производители телекоммуникационного оборудования объединились в консорциум беспроводной электромагнитной энергии с целью создания всемирного стандарта для беспроводных зарядных устройств, которые действуют по принципу электромагнитной индукции. Из крупных производителей поддержку стандарта QI на ряде своих моделей обеспечивают Sony, Samsung, Nokia, Motorola Mobility, LG Electronics, Huawei, HTC. В скором времени QI станет единым стандартом для любых подобных устройств. Благодаря этому можно будет создавать беспроводные зоны подзарядки гаджетов в кафе, на транспортных узлах и в иных общественных местах.
Применение
  • Микроволновый вертолет. Модель вертолета имела ректенну и поднималась на высоту 15 м.
  • Беспроводное электричество применяется для питания электрических зубных щеток. Зубная щетка имеет полную герметичность корпуса и не имеет разъемов, что позволяет избежать удара током.
  • Питание самолетов при помощи лазера.
  • В продаже появились системы беспроводной зарядки мобильных устройств, которые можно использовать повседневно. Они работают на базе электромагнитной индукции.
  • Универсальная зарядная площадка. Они позволяют питать энергией большую часть популярных моделей смартфонов, которые не оборудованы модулем для беспроводной зарядки, в том числе обычные телефоны. Кроме самой зарядной площадки будет нужно купить чехол-приемник для гаджета. Он соединяется со смартфоном через USB-порт и через него заряжается.
  • На текущий момент на мировом рынке продается свыше 150 устройств до 5 Ватт, которые поддерживают стандарт QI. В будущем появится оборудование средней мощности до 120 Ватт.
Перспективы

Сегодня ведутся работы над крупными проектами, которые будут использовать беспроводное электричество. Это питание электромобилей «по воздуху» и бытовые электросети:

  • Густая сеть автозарядных точек позволит уменьшить аккумуляторы и значительно снизить себестоимость электромобилей.
  • В каждой комнате будут устанавливаться источники питания, которые будут передавать электроэнергию аудио- и видеоаппаратуре, гаджетам и бытовым приборам, оборудованными соответствующими адаптерами.

Введение в беспроводную передачу электрической энергии

Основы беспроводной зарядки

Беспроводная передача электрической энергии (WPT) дает нам шанс избавиться от тирании кабелей питания. В настоящее время эта технология проникает во все виды устройств и систем. Давайте взглянем на нее!

Беспроводной путь

Большинство современных жилых домов и коммерческих зданий питаются от сетей переменного тока. Электростанции генерируют электричество переменного тока, которое доставляется в дома и офисы с помощью высоковольтных линий электропередачи и понижающих трансформаторов.

Электричество поступает в распределительный щит, а затем электропроводка доставляет электричество к оборудованию и устройствам, которые мы используем каждый день: светильники, кухонная техника, зарядные устройства и так далее.

Все компоненты стандартизованы. Любое устройство, рассчитанное на стандартные ток и напряжение, будет работать от любой розетки по всей стране. Хотя стандарты разных стран и различаются между собой, в конкретной электрической системе любое устройство будет работать при условии соблюдения стандартов данной системы.

Тут кабель, там кабель. Большинство наших электрических устройств обладает кабелем питания от сети переменного тока.

Технология беспроводной передачи электроэнергии

Беспроводная передача электрической энергии (WPT) позволяет подавать питание через воздушный зазор без необходимости использования электрических проводов. Беспроводная передача электроэнергии может обеспечить питание от источника переменного тока для совместимых аккумуляторов или устройств без физических разъемов и проводов. Беспроводная передача электрической энергии может обеспечить заряд мобильных телефонов и планшетных компьютеров, беспилотных летательных аппаратов, автомобилей и прочего транспортного оборудования. Она может даже сделать возможной беспроводную передачу в космосе электроэнергии, полученной от солнечных панелей.

Беспроводная передача электрической энергии начала свое быстрое развитие в области бытовой электроники, заменяя проводные зарядные устройства. На выставке CES 2017 будет показано множество устройств, использующих беспроводную передачу электроэнергии.

Однако концепция передачи электрической энергии бес проводов возникла примерно в 1890-х годах. Никола Тесла в своей лаборатории в Колорадо Спрингс мог без проводов зажечь электрическую лампочку, используя электродинамическую индукцию (используемой в резонансном трансформаторе).

Изображение из патента Теслы на «устройство для передачи электрической энергии», 1907 год

Были зажжены три лампочки, размещенные на расстоянии 60 футов (18 метров) от источника питания, и демонстрация была задокументирована. У Теслы были большие планы, он надеялся, что его башня Ворденклиф, расположенная на Лонг-Айленд, будет без проводов передавать электрическую энергию через Атлантический океан. Этого никогда не произошло из-за различных проблем, в том числе, и с финансированием и сроками.

Беспроводная передача электрической энергии использует поля, создаваемые заряженными частицами, для переноса энергии через воздушный зазор между передатчиками и приемниками. Воздушный зазор закорачивается с помощью преобразования электрической энергии в форму, которая может передаваться по воздуху. Электрическая энергия преобразуется в переменное поле, передается по воздуху, и затем с помощью приемника преобразуется в пригодный для использования электрический ток. В зависимости от мощности и расстояния, электрическая энергия может эффективно передаваться через электрическое поле, магнитное поле или электромагнитные волны, такие как радиоволны, СВЧ излучение или даже свет.

В следующей таблице перечислены различные технологии беспроводной передачи электрической энергии, а также формы передачи энергии.

Технологии беспроводной передачи электрической энергии (WPT)

ТехнологияПереносчик электрической энергииЧто позволяет передавать электрическую энергию
Индуктивная связьМагнитные поляВитки провода
Резонансная индуктивная связьМагнитные поляКолебательные контуры
Емкостная связьЭлектрические поляПары проводящих пластин
Магнитодинамическая связьМагнитные поляВращение постоянных магнитов
СВЧ излучениеВолны СВЧФазированные ряды параболических антенн
Оптическое излучениеВидимый свет / инфракрасное излучение / ультрафиолетовое излучениеЛазеры, фотоэлементы

Qi зарядка, открытый стандарт для беспроводной зарядки

В то время как некоторые из компаний, обещающих беспроводную передачу электрической энергии, всё еще работают над своими продуктами, уже существует стандарт Qi (произносится как «ци») зарядки, и уже доступны использующие его устройства. Консорциум беспроводной электромагнитной энергии (Wireless Power Consortium, WPC), созданный в 2008 году, разработал стандарт Qi для зарядки аккумуляторов. Данный стандарт поддерживает и индуктивные, и резонансные технологии зарядки.

При индуктивной зарядке электрическая энергия передается между катушками индуктивности в передатчике и приемнике, расположенными на близком расстоянии. Индуктивные системы требуют, чтобы катушки индуктивности находились в непосредственной близости и были выровнены друг с другом; обычно устройства находятся в непосредственном контакте с зарядной панелью. Резонансная зарядка не требует тщательного выравнивания, а зарядные устройства могут обнаружить и зарядить устройство на расстоянии до 45 мм; таким образом, резонансные зарядные устройства могут быть встроены в мебель или установлены между полками.

Логотип Qi, показанный на беспроводной зарядной панели Qimini

Наличие логотипа Qi означает, что устройство зарегистрировано и сертифицировано Консорциумом беспроводной электромагнитной энергии WPC.

В начале Qi зарядка обладала небольшой мощностью, около 5 Вт. Первые смартфоны, использующие Qi зарядку, появились в 2011 году. В 2015 году мощность Qi зарядки увеличилась до 15 Вт, что позволяет осуществлять быструю зарядку устройств.

Следующий рисунок от Texas Instruments показывает, что охватывает стандарт Qi.

Обзор технологий беспроводной передачи электрической энергии и их охват стандартом Qi

Совместимость с Qi гарантировано могут обеспечить только те устройства, которые перечислены в регистрационной базе данных Qi. В настоящее время там содержится более 700 продуктов. Важно понимать, что продукты с логотипом Qi были проверены и сертифицированы; и магнитные поля, используемые этими устройствами, не вызовут проблем для таких чувствительных устройств, как мобильные телефоны или электронные паспорта. Зарегистрированные устройства будут гарантировано работать с зарегистрированными зарядными устройствами.

Физика беспроводной передачи электрической энергии

Беспроводная передача электрической энергии для бытовых устройств является новой технологией, но принципы, лежащие в ее основе, известны давно. Там, где участвуют электричество и магнетизм, по-прежнему руководствуются уравнениями Максвелла, и передатчики посылают энергию на приемники так же, как и в других формах беспроводной связи. Однако, беспроводная передача электроэнергии отличается от них основной целью, которая заключается в передаче самой энергии, а не закодированной в ней информации.

Структурная схема передатчика и приемника беспроводной передачи электрической энергии

Электромагнитные поля, участвующие в беспроводной передаче электрической энергии, могут быть достаточно сильными, и поэтому необходимо принимать во внимание безопасность человека. Воздействие электромагнитного излучения может вызвать проблемы, а также существует возможность того, что поля, создаваемые передатчиками электрической энергии, могут помешать работе носимых или имплантированных медицинских устройств.

Передатчики и приемники встраиваются в устройства беспроводной передачи электрической энергии так же, как и аккумуляторы, которые будут ими заряжаться. Реальные схемы преобразования будут зависеть от используемой технологии. Кроме самой передачи электроэнергии, WPT система должна обеспечить связь между передатчиком и приемником. Это гарантирует, что приемник сможет уведомить зарядное устройство о том, что аккумулятор полностью заряжен. Связь также позволяет передатчику обнаружить и идентифицировать приемник, чтобы подстроить значение мощности, передаваемой на нагрузку, а также контролировать, например, температуру аккумулятора.

В беспроводной передаче электрической энергии имеет значение выбор концепции либо ближнего, либо дальнего поля. Технологии передачи, количество энергии, которое может быть передано, и требования к расстоянию влияют на то, будет ли система использовать излучение ближнего поля или излучение дальнего поля.

Точки, для которых расстояние от антенны значительно меньше одной длины волны, находятся в ближней зоне. Энергия в ближней зоне неизлучающая, и колебания магнитного и электрического полей не зависят друг от друга. Емкостная (электрическая) и индуктивная (магнитная) связи могут использоваться для передачи энергии к приемнику, расположенному в ближнем поле передатчика.

Точки, для которых расстояние от антенны больше примерно двух длин волны, находятся в дальней зоне (между ближней и дальней зонами существует переходная область). Энергия в дальней зоне передается в виде обычного электромагнитного излучения. Перенос энергии в дальней зоне также называют лучом энергии. Примерами передачи в дальней зоне являются системы, которые используют для передачи энергии на большие расстояния мощные лазеры или СВЧ излучение.

Где работает беспроводная передача электрической энергии (WPT)

Все технологии WPT в настоящее время находятся на стадии активных исследований, большая часть сосредоточена на максимизации эффективности передачи энергии и иследованию технологий для магнитной резонансной связи. Кроме того, самыми амбициозными являются идеи оснащения WPT системой помещений, в которых человек будет находиться, а носимые им устройства будут заряжаться автоматически.

В глобальном плане, электрические автобусы становятся нормой; планируется ввести беспроводную зарядку для культовых двухэтажных автобусов в Лондоне так же, как и у автобусных систем в Южной Корее, в штате Юта США и в Германии.

Используя WiTricity, изобретенную учеными MIT, электромобили можно заряжать без проводов, а эти автомобили могут без проводов заряжать ваши мобильные телефоны! (Разумеется, используя Qi зарядку.) Эта беспроводная технология более удобна, а также она может заряжать автомобили быстрее, чем подключаемая зарядка.

Беспроводная зарядка электромобиля, встроенная в парковочное место

Уже была продемонстрирована экспериментальная система для беспроводного питания дронов. И, как уже упоминалось ранее, текущие исследования и разработки сосредоточены на перспективе удовлетворении некоторых энергетических потребностей Земли путем использования беспроводной передачи энергии и солнечных панелей, расположенных в космосе.

WPT работает везде!

Заключение

В то время как мечта Теслы о беспроводной передаче энергии любому потребителю еще далека от реализации, множество устройств и систем используют ту или иную форму беспроводной передачи электроэнергии прямо сейчас. От зубных щеток до мобильных телефонов, от личных автомобилей до общественного транспорта, существует множество применений беспроводной передачи электрической энергии.

Как передается электроэнергия без проводов на расстояние

Передача электроэнергии без проводов в глобальном масштабе была предложена более 100 лет назад, когда Никола Тесла впервые начал свои эксперименты, кульминацией которых стало строительство башни на Лонг-Айленде, штат Нью-Йорк, в начале 1900-х гг.

Целью Теслы было разработать технологию передачи электроэнергии в любую точку мира без проводов. Он подал несколько патентов, описывающих беспроводные передатчики и приемники энергии. Однако его знание электрических явлений было в основном эмпирическим, и он не достиг своей цели и передача электроэнергии без проводов как он планировал не состоялась. Хотя изобретения Теслы принесли патенты в том числе и на беспроводное радио в 1940 году.

Системы передачи энергии по воздуху

Системы передачи энергии без проводов включают в себя излучающие и приемные антенны и окружающую среду между ними. Пучок волн от излучающей антенны расширяется пропорционально расстоянию распространения, а плотность мощности потока уменьшается пропорционально квадрату этого расстояния.

Однако у системы передачи энергии без проводов есть некоторые особенности, которые будут упомянуты здесь.
Полезным результатом передачи энергии без проводов является величина мощности на приемной антенне, а не величина амплитуды поля.

Эффективность этой системы определяется как отношение потока энергии, который перехватывается приемной антенной, ко всей излучаемой энергии.

Распределение поля на приемной антенне обычно равномерное, так как её размер мал по сравнению с шириной луча. Для системы это распределение не является равномерным. Оно имеет форму конуса и зависит от распределения поля на передающей антенне.
Для увеличения концентрации энергии на приемной антенне фазовое распределение на излучающей антенне обычно имеет сферическую форму с центром в точке пересечения приемной пластины и излучающей оси. Излучающая антенна системы, как правило, имеет конусность по распределению поля. Такое распределение позволяет повысить КПД и уменьшить поле выхода приемной антенны.

Разработка устройств и передача электроэнергии без проводов была эффективно продолжена до 1960-х годов, когда ВВС США финансировали разработку вертолетной платформы с микроволновой печью. Успешная демонстрация вертолета, управляемого микроволновым лучом, была проведена в 1965 году.

Эта демонстрация доказала, что передача энергии без проводов может быть построена и что эффективные микроволновые генераторы и приемники могут быть разработаны для преобразования микроволн в электричество постоянного тока.

Применение системы передачи энергии

Растущий интерес к методам преобразования солнечной энергии и применению её в 1960-х годах, а также ограничения для получения экономически эффективной мощности базовой нагрузки, вызванные неблагоприятными погодными условиями и суточными изменениями, привели к концепции получения спутником солнечной энергии. Далее спутник преобразовывал энергию солнца с помощью солнечных батарей в электричество и подавал в микроволновый генератор, являющийся частью плоской антенны с фазированной решеткой. На геосинхронной орбите антенна будет направлять микроволновый луч определенной плотности мощности точно на одну или несколько приемных антенн в желаемых местах на Земле. На приемной антенне СВЧ-энергия будет безопасно и очень эффективно преобразована в электричество, а затем передана пользователям.

Первая техническая сессия по солнечным энергетическим спутникам была проведена в 1970 году на симпозиуме Международного института СВЧ-энергии, на котором присутствовали представители Японии, европейских стран и бывшего Советского Союза. На основе предварительных исследований группа экспертов NASA подготовила план программы в 1972 году, а первое технико-экономическое обоснование было завершено для исследовательского центра NASA в 1974 году.
Вскоре после “нефтяного шока ” в октябре 1973 года Япония приступила к реализации плана Саншайн по развитию возобновляемых источников энергии. План Японии предусматривал в качестве долгосрочной цели разработку аналогичных устройств.

В этой демонстрации точка-точка 30 кВт микроволн были переданы на расстояние полутора километров к приемной антенне.

Микроволны были преобразованы непосредственно в постоянный ток со средней эффективностью 82%, сбивая с толку критиков, которые утверждали, что такие высокие эффективности преобразования не могут быть достигнуты.

Значительный объем работ, как аналитических, так и экспериментальных, позволил установить техническую осуществимость беспроводной передачи полезного количества энергии. Беспроводная передача энергии, как реализуемая беспроводная зарядка, аналогична по своей концепции передаче информации спутниками связи, но с более высокой интенсивностью. Однако, поскольку радиочастотный силовой луч спроектирован для преобразования обратно в электричество с достаточно высокой эффективностью, полезные количества энергии могут передаваться с интенсивностью меньше, чем у солнечного света.

Экспериментальные передачи мощности в количестве до 30 кВт осуществлялись на короткие расстояния (1,6 км)с эффективностью преобразования около 82% от поступающей радиочастотной мощности в электрическую.

Недавние исследования показывают, что сбор и передача энергии из космоса, разумеется без проводов, может стать экономически жизнеспособным средством использования солнечной энергии в течение следующих нескольких десятилетий. Необходимо существенное совершенствование некоторых технологий, и, что самое важное, необходимо значительно сократить расходы на запуск материалов в космос.

В космическом сообществе предпринимаются весьма активные усилия для достижения цели по передаче электроэнергии без проводов:

  1. Наземная передача энергии
  2. Космическая передача энергии

В космосе солнечная энергия получается 24 часа в день, полная мощность 7 дней в неделю без облачных дней, 52 недели в году. Ни долгих зимних ночей, ни штормов, ни пасмурных сезонов. С помощью передачи электроэнергии без проводов с космоса можно обеспечить ею проблемные районы.

При этом лучшие наземные солнечные объекты (пустыни) редко находятся вблизи пользователей.

Перспективы

Рынки, которые будут доступны с помощью передачи электроэнергии без проводов окажут глубокое влияние на глобальную деловую активность и конкурентоспособность отрасли. Ниже приведены примеры будущих коммерческих возможностей передачи энергии без проводов:

  1. Электромобили с питанием от проезжей части для зарядки электрических батарей с помощью передачи энергии без проводов от микроволновых генераторов, встроенных в проезжую часть, когда транспортное средство движется со скоростью по шоссе,что исключает остановки для обмена или перезарядки батарей, значительно расширяя диапазон движения.
  2. Высотные, долговечные самолеты, поддерживаемые в нужном месте в течение недель или месяцев на расстоянии 20 км для связи и наблюдения вместо спутников, при значительно сниженных затратах.
  3. Спутники ретрансляции мощности для доступа к удаленным источникам энергии путем отсоединения первичной выработки электроэнергии от наземных линий электропередачи. Мощность передается с удаленных объектов на геосинхронную орбиту и затем отражается на приемник на Земле в нужном месте.
  4. Спутники солнечной энергии на околоземной или геосинхронной орбите или на Луне для обеспечения потребностей в земной энергии в глобальном масштабе.

Беспроводная передача электричества по теории Тесла

Многие годы ученые бьются над вопросом минимизации электрических расходов. Есть разные способы и предложения, но все, же самой известной теорией является беспроводная передача электричества. Предлагаем рассмотреть, как она выполняется, кто является её изобретателем и почему пока что её не воплотили в жизнь.

Теория

Беспроводное электричество – это буквально передача электрической энергии без проводов. Люди часто сравнивают беспроводную передачу электрической энергии с передачей информации, например, радио, сотовые телефоны, или Wi-Fi доступ в Интернет. Основное различие заключается в том, что с радио-или СВЧ-передач – это технология, направленная на восстановление и транспортировку именно информации, а не энергии, которая изначально была затрачена на передачу.

Беспроводной электроэнергии является относительно новой областью технологии, но достаточно динамично развивающейся. Сейчас разрабатываются методы, как эффективно и безопасно передавать энергию на расстоянии без перебоев.

Как работает беспроводное электричество

Основная работа основана именно на магнетизме и электромагнетизме, как и в случае с радиовещанием. Беспроводная зарядка, также известна как индуктивная зарядка, основана на нескольких простых принципах работы, в частности технология требует наличия двух катушек. Передатчика и приемника, которые вместе генерируют переменное магнитное поле непостоянного тока. В свою очередь это поле вызывает напряжение в катушке приемника; это может быть использовано для питания мобильного устройства или зарядки аккумулятора.

Если направить электрический ток через провод, то вокруг кабеля создается круговое магнитное поле. Несмотря на то, что магнитное поле воздействует и на петлю, и на катушку сильнее всего оно проявляется именно на кабеле. Когда возьмете второй моток проволоки, на который не поступает электрический ток, проходящий через него, и место, в которое мы установим катушку в магнитном поле первой катушки, электрический ток от первой катушки будет передаваться через магнитное поле и через вторую катушку, создавая индуктивную связь.

Как пример возьмем электрическую зубную щетку. В ней зарядное устройство подключено к розетке, которая отправляет электрический ток на витой провод внутри зарядного устройства, создающего магнитное поле. Существует вторая катушка внутри зубной щетки, когда ток начинает поступать и на неё, благодаря образовавшемуся МП, начинается заряд щетки без её непосредственного подключения к сети питания 220 В.

История

Беспроводная передача энергии в качестве альтернативы передачи и распределения электрических линий, впервые была предложена и продемонстрирована Никола Тесла. В 1899 году Тесла презентовал беспроводную передачу на питание поля люминесцентных ламп, расположенных в двадцати пяти милях от источника питания без использования проводов. Но в то время было дешевле сделать проводку из медных проводов на 25 миль, а не строить специальные электрогенераторы, которых требует опыт Тесла. Патент ему так и не выдали, а изобретение осталось в закромах науки.

В то время как Тесла был первым человеком, который смог продемонстрировать практические возможности беспроводной связи еще в 1899 году, сегодня, в продаже есть совсем немного приборов, это беспроводные щетки наушники, зарядки для телефонов и прочее.

Технология беспроводной связи

Беспроводной передачи энергии включает в себя передачу электрической энергии или мощности на расстоянии без проводов. Таким образом, основная технология лежит на концепции электроэнергии, магнетизма и электромагнетизма.

Магнетизм

Это фундаментальная сила природы, которая провоцирует определенные типы материала притягивать или отталкивать друг друга. Единственными постоянными магнитами считаются полюса Земли. Ток потока в контуре генерирует магнитные поля, которые отличаются от осциллирующих магнитных полей скоростью и временем, потребным для генерации переменного тока (AC). Силы, которые при этом появляются, изображает схема ниже.

Так появляется магнетизм

Электромагнетизм – это взаимозависимость переменных электрических и магнитных полей.

Магнитная индукция

Если проводящий контур подключен к источнику питания переменного тока, он будет генерировать колебательное магнитное поле внутри и вокруг петли. Если второй проводящий контур расположен достаточно близко, он захватит часть этого колеблющегося магнитного поля, которое в свою очередь порождает или индуцирует электрический ток во второй катушке.

Видео: как происходит беспроводная передача электричества

Таким образом, происходит электрическая передача мощности от одного цикла или катушки к другой, что известно как магнитная индукция. Примеры такого явления используются в электрических трансформаторах и генератора. Это понятие основано на законах электромагнитной индукции Фарадея. Там, он утверждает, что, когда есть изменение магнитного потока, соединяющегося с катушкой ЭДС, индуцированного в катушке, то величина равна произведению числа витков катушки и скорости изменения потока.

Электрический трансформатор

Мощностная муфта

Эта деталь необходима, когда одно устройство не может передавать энергию на другой прибор.

Магнитная связь генерируется, когда магнитное поле объекта способно индуцировать электрический ток с другими устройствами в поле его досягаемости.

Два устройства, как говорят, взаимно индуктивно-связанной или магнитную связь, когда они выполнены так, что изменение тока при том, что один провод индуцирует напряжение на концах другого провода посредством электромагнитной индукции. Это связано с взаимной индуктивности

Технология

Два устройства, взаимно индуктивно-связанные или имеющие магнитную связь, выполнены так, что изменение тока при том, что один провод индуцирует напряжение на концах другого провода, производится посредством электромагнитной индукции. Это связано с взаимной индуктивностью.
Индуктивная связь является предпочтительной из-за её способности работать без проводов, а также устойчивости к ударам.

Резонансная индуктивная связь является сочетанием индуктивной связи и резонанса. Используя понятие резонанса можно заставить два объекта работать зависимо от сигналов друг друга.

Концепция резонанса индуктивной связи

Как видно из схемы выше, резонанс обеспечивает индуктивность катушки. Конденсатор подключен параллельно к обмотке. Энергия будет перемещаться назад и вперед между магнитным полем, окружающим катушку и электрическим полем вокруг конденсатора. Здесь потери на излучение будет минимальными.

Существует также концепция беспроводной ионизированной связи.

Она тоже воплотима в жизнь, но здесь необходимо приложить немного больше усилий. Эта техника уже существует в природе, но вряд ли есть целесообразность ее реализации, поскольку она нуждается в высоком магнитном поле, от 2,11 М /м [10] . Её разработал гениальный ученый Ричард Волрас, разработчик вихревого генератора, который посылает и передает энергию тепла на огромные расстояния, в частности при помощи специальных коллекторов. Самой простой пример такой связи – это молния.

Плюсы и минусы

Конечно, у этого изобретения есть свои преимущества перед проводными методиками, и недостатки. Предлагаем их рассмотреть.

К достоинствам относятся:

  1. Полное отсутствие проводов;
  2. Не нужны источники питания;
  3. Необходимость батареи упраздняется;
  4. Более эффективно передается энергия;
  5. Значительно меньше нужно технического обслуживания.

К недостаткам же можно отнести следующее:

  • Расстояние ограничено;
  • магнитные поля не так уж и безопасны для человека;
  • беспроводная передача электричества, с помощью микроволн или прочих теорий практически неосуществима в домашних условиях и своими руками;
  • высокая стоимость монтажа.

Беспроводная передача электроэнергии

Решить проблему беспроводной передачи электрической энергии на большие расстояния – давнишняя мечта человечества. Можно представить, насколько бы подешевела электроэнергия без затрат на токопроводную продукцию. Научно-техническая революция не стоит на месте. Есть надежда, что эта мечта сбудется в недалёком будущем. Тому свидетельствуют новые разработки в данной сфере.

История беспроводной передачи энергии

Великий французский физик Ампер в 1820 году путём многочисленных опытов пришёл к выводу о том, что магнитное поле может возбуждать в теле металла электрический ток. Так появился основополагающий закон Ампера.

Майкл Фарадей в 1831 открыл закон индукции, который стал базой для развития такой науки, как электромагнетизм.

Джеймс Максвелл после долгих экспериментов систематизировал свои наблюдения, квинтэссенцией которых в 1864 году стало уравнение Максвелла. Формула объясняла поведение электромагнитного поля.

Никола Тесла усовершенствовал аппарат для генерации электромагнитного поля, изобретённый Генрихом Герцем в 1888 году. На Всемирной выставке в 1893 г., состоявшейся в Чикаго, Тесла продемонстрировал свечение фосфорных лампочек без проводов.

Свой вклад в развитие беспроводной передачи энергии сделал русский учёный Александр Попов. В 1895 г. на заседании Русского физико-химического общества он показал изобретённый им детекторный радиоприёмник.

Далее вплоть до наших дней происходило патентование новых изобретений в области беспроводной передачи электрической энергии. Были произведены масса экспериментов, совершенно большое количество открытий. Последнее достижение в этой сфере – это передача электричества на большие расстояния без проводов с помощью технологии Wi-Fi. В 2017 году изобретён мобильный телефон без батареи.

Как это работает

Беспроводное электричество базируется на таком явлении, как электромагнетизм. В работе участвуют две катушки из металлических проводов. Одна из них подключена к источнику тока, вокруг которой создаётся магнитное поле. Вторая катушка, воспринимая это поле, индуцирует в своей обмотке вторичный электрический ток.

Принципы передачи

В последних разработках учёных из США и Южной Кореи применялись магнитно-резонансные системы CMRS и DCRS. Корейская технология оказалась более совершенной. Удалось передать электроэнергию на 5 метров. Благодаря компактным дипольным катушкам DCRS, можно запитать всех потребителей в помещении средних размеров без проводов.

Важно! Несовершенство современной аппаратуры существенно ограничивает длину пути электричества по воздуху.

Несмотря на это, учёные всего мира заняты получением новых технологий, задача которых – передача энергии на расстоянии в десятки и сотни километров. Уже сегодня развиваются и претворяются в жизнь новые достижения науки в области доставки электроэнергии без проводных линий электропередач.

Технологии

Наиболее перспективными направлениями в разработке новых методов и способов транспортировки электричества без материального контакта являются:

  • ультразвуковой способ;
  • метод электромагнитной индукции;
  • электростатическая индукция;
  • микроволновое излучение;
  • лазерный метод;
  • электропроводность Земли.

Ультразвуковой способ

Студентами Пенсильванского университета (США) на недавней выставке в 2011 году был продемонстрирован способ передачи электротока с помощью ультразвука. Передатчик генерировал акустические волны в ультразвуковом диапазоне, приёмник преобразовывал их в электрический ток. В качестве носителя энергии ультразвук был выбран не случайно. Его воздействие на организм человека абсолютно безвредно.

Несовершенство этого способа заключается в том, что КПД передачи очень низкий, нужны прямая видимость между абонентами и ограниченность расстояния (7-10 метров).

Метод электромагнитной индукции

Работа обыкновенного трансформатора даёт представление о том, как осуществляется передача электричества без проводов методом электромагнитной индукции. В процессе участвуют две катушки. Магнитное поле, возбуждаемое протекающим током по виткам первичной обмотки, индуцирует электрический поток во вторичной обмотке трансформатора.

Примерами использования эффекта электромагнитной индукции могут быть зарядные устройства смартфонов и электрические зубные щётки. Недостатком такого способа передачи энергии является непременная близость катушек. Даже при небольшом увеличении промежутка между обмотками большая часть энергии начинает распыляться в пространстве.

Один из видов электромагнитной индукции – это использование резонанса. Суть способа заключается в том, что приёмник и передатчик функционируют в одном частотном диапазоне. Передающее и приёмное устройства представляют собой соленоид с одним слоем витков. Генерирующий прибор оснащён конденсаторной схемой, с помощью которой он настраивается на частоту приёмника.

Электростатическая индукция

В основе метода заложен принцип прохождения энергии через тело диэлектрика. Способ называют ёмкостной связью. Генератор создаёт в ёмкости электрическое поле, которое возбуждает разницу потенциалов между двумя электродами потребителя.

Никола Тесла для демонстрации беспроводной лампы освещения использовал именно метод электростатической индукции. Лампа получала питание от переменного электрического поля высокой частоты. Она светилась ровно, независимо от её перемещения в пространстве комнаты.

Микроволновое излучение

Специалисты космотехники разработали способ передачи электроэнергии от орбитальных солнечных батарей на космические корабли с помощью радиосигнала микроволнового диапазона. Проблема этого метода состоит в том, что для приёма и передачи пучкового излучения требуются антенны с очень большой диафрагмой.

Учёные НАСА в 1978 году пришли к выводу, что для передачи микроволнового луча частотой 2,45 ГГц излучающая антенна должна иметь диаметр отражающей поверхности 1 км. Приёмная ректенна должна быть диаметром 10 км. Уменьшить эти размеры возможно путём использования сверхкоротких волн. Однако сигналы такого диапазона быстро поглощаются атмосферой или блокируются дождевыми осадками.

Обратите внимание! Безопасная плотность мощности излучаемой энергии равняется 1 мВт/см2. Этой норме отвечает антенна диаметром 10 км с передающей мощностью потенциала 750 МВт.

Лазерный метод

Передачу электроэнергии на большие расстояния без проводов с помощью лазера стали осуществлять сосем недавно. Идея состоит в том, что лазерный луч, несущий в себе энергетический потенциал, попадает на фотоэлемент приёмного устройства, где высокочастотное электромагнитное излучение преобразуется в электрический ток.

Лазерная технология передачи энергии, ранее применяемая в военной области, успешно внедряется в гражданскую сферу деятельности человека. Разработки американских учёных привели к изобретению беспилотного летательного аппарата, получающего энергетическое питание от лазерного луча. В 2006 году был продемонстрирован беспилотник, который мог летать в беспосадочном режиме, питаясь от лазерной установки.

В 2009 году был успешно осуществлён эксперимент в космосе по передаче энергии на один километр мощностью 500Вт.

Электропроводность Земли

Существует теория использования недр и океанов Земли для беспроводной передачи энергии. Электропроводимость гидросферы, залежей металлических руд может быть использована для передачи низкочастотного переменного тока. Электростатическая индукция диэлектрических тел может возникать в огромных залежах кварцевого песка и тому подобных минералов.

Передача электрического тока возможна также через воздушное пространство методом электростатической индукции. Никола Тесла в своё время выдвинул предположение, что в будущем появятся технологии, которые для передачи электроэнергии будут использовать землю, океанические воды и атмосферу планеты.

Всемирная беспроводная система

Впервые о Всемирной беспроводной системе передачи электроэнергии стало известно от великого учёного Теслы. В 1904 году он заявил, что создание ВБС, используя высокую электрическую проводимость плазмы и Земли, вполне осуществимо.

Реальные проекты в наши дни

Из всего того, что на сегодня предлагает рынок электротехники, относятся к беспроводной передаче электроэнергии зарядные устройства для смартфонов, электрические зубные щётки. В них используется принцип электромагнитной индукции.

В авиастроении началось серийное производство летательных беспилотных аппаратов, питающихся за счёт беспроводной передачи электричества. Небольшой микроволновый вертолёт с ректенной может подниматься на высоту до 15 метров над землёй. Появились беспилотники, которые могут летать в зоне видимости лазерного луча.

Китайский производитель бытовой техники Haier Group с 2010 года выпускает беспроводные LCD телевизоры.

Перспективы беспроводной передачи электричества

Сейчас ведутся исследовательские работы, и разрабатываются проекты создания электромобилей, которые будут передвигаться по дорожному покрытию с токопроводом, который индуцирует электрический ток в моторе транспорта.

Ряд передовых фирм заняты разработкой беспроводных источников питания, которые смогут снабжать электроэнергией всех потребителей в пределах одного помещения.

В перспективе появление трасс, состоящих из ряда беспроводных источников электричества, которые смогут обеспечить перемещение летательных аппаратов на большие расстояния.

С появлением новых материалов, усовершенствованных приборов и изобретений беспроводная передача электроэнергии в недалёком будущем охватит все сферы деятельности человека.

Видео

masterok

Мастерок.жж.рф

Хочу все знать

Прочитал сообщение о том, что в Новой Зеландии испытывают первую в мире дальнюю беспроводную передачу энергии и почувствовал, что где-то тут нам вешают лапшу на уши. Все это выглядит если не антинаучно, то по крайне мере абсолютно не имеет прикладного коммерческого интереса. Вот смотрите сами.

Новозеландский стартап разработал метод безопасной и беспроводной передачи электроэнергии на большие расстояния без использования медного провода и работает над его внедрением со вторым по величине в стране дистрибьютором электроэнергии.

Мечта о беспроводной передаче энергии далеко не нова. Гений Никола Тесла однажды доказал, что в уже 1890-х годах мог приводить в действие лампочки с расстояния более двух километров с помощью катушки Тесла — не говоря уже о том, что при этом он сжег динамо на местной силовой установке и погрузил весь город Колорадо-Спрингс в затемнение.

Мечта Теслы заключалась в том, чтобы разместить огромные башни по всему миру, которые могли бы передавать энергию по беспроводной связи в любую точку земного шара, питая дома, предприятия, отрасли промышленности и даже гигантские электрические корабли в океане. Инвестор Дж. П. Морган, как известно, убил эту идею одним вопросом: «где я могу поставить счетчик?».

На это ушло 120 лет, но новозеландская компания Emrod наконец-то убедила крупного дистрибьютора в возможности использовать беспроводную энергию в коммерческих целях. Powerco, второй по величине дистрибьютор в Новой Зеландии, инвестирует в Emrod, чья технология способна намного эффективнее перемещать большие объемы электроэнергии между любыми двумя точками, которые можно соединить с помощью реле прямой видимости.

«Нам интересно посмотреть, сможет ли технология Emrod дополнить устоявшиеся способы подачи электроэнергии, — сказал менеджер по трансформации сети Powerco Николас Вессио. «Мы предполагаем использовать её для доставки электроэнергии в отдаленные места или через районы с труднопроходимой местностью.».

У Emrod в настоящее время есть рабочий прототип устройства, но компания создаст еще один для Powerco с планами поставки к октябрю, затем проведет несколько месяцев в лабораторных испытаниях, прежде чем перейти к полевым испытаниям. Прототип устройства будет способен выдавать «всего несколько киловатт» мощности, но его можно легко увеличить. «Мы можем использовать точно такую ​​же технологию, чтобы передавать в 100 раз больше энергии на гораздо большие расстояния», — сказал основатель Emrod и серийный предприниматель Грег Кушнир. «Беспроводные системы, использующие технологию Emrod, могут передавать любое количество энергии».

Система использует передающую антенну, серию реле и приемную ректенну (выпрямительная антенна, способная преобразовывать микроволновую энергию в электричество). Каждый из этих компонентов выглядит просто как большие квадраты на полюсах. Её лучи используют неионизирующий промышленный, научный и медицинский диапазон радиоспектра, включая частоты, обычно используемые в Wi-Fi и Bluetooth.

В отличие от всемирной мечты о бесплатном электричестве Теслы, мощность здесь излучается непосредственно между определенными точками, без излучения вокруг луча, а «низкочастотная безопасная лазерная завеса» немедленно отключает передачу энергии до того, как какой-либо объект, такой как птица, дрон, или вертолет, может попасть в поле передачи. В этот раз не будет трудностей при определении места размещения счетчика.

Эмрод говорит, что передатчик работает в любых атмосферных условиях, включая дождь, туман и пыль, а расстояние передачи ограничено только линией прямой видимости между каждым реле, что дает ему возможность передавать электричество на тысячи километров без лишних расходов на инфраструктуру, расходы на техническое обслуживание и воздействие на окружающую среду.

Компания рассматривает беспроводную передачу, как ключевую технологию для возобновляемой энергии, которая часто генерируется далеко не там, где она необходима. Такая система может быть великолепной для доставки продуктов оффшорной и дистанционной генерации возобновляемой энергии в городские сети без необходимости использования гигантских аккумуляторных батарей, подстанций и тому подобного.

Это также будет полезно при некоторых незапланированных отключениях. Любой грузовик может быть снабжен ректенной платформой, а затем перемещен к зоне видимости реле для создания временного беспроводного подключения к сети.

Что скажете о перспективах такой технологии?

Беспроводной способ передачи электроэнергии. Новейший кейс применения разработки компании Emrod

Пока страны думают, как снизить объемы выбросов CO2 в атмосферу, увеличивая долю ВИЭ и атомной энергии, а десятки компаний ищут идеальный накопитель электроэнергии, новозеландский стартап Emrod презентовал способ беспроводной передачи электроэнергии.

Предприниматель Грег Кушнир задумался о дешевом и надежном способе электроснабжения в обход тяжеловесной инфраструктуры электрических сетей. В ходе исследований изучил работу НАСА и Японского космического агентства, которые планировали собирать солнечную энергию с помощью спутников и транслировать на Землю. Кушнир понял, что способ бесконтактной передачи электроэнергии на расстояния существует. Единичные исследования в этой области натыкались на проблему потерь большей части энергии и прекращались.

Ученый Рэй Симпкин из Callaghan Innovation по заказу Кушнира и при финансовой поддержке государства разработал прототип устройства беспроводной передачи электроэнергии.

Устройство беспроводной передачи энергии. Из чего состоит и как работает

Устройство представляет собой выполненные из метаматериалов передающую, принимающую антенны и реле между ними. Электрическая энергия в установке, проходя через передающую антенну, преобразуется в электромагнитные волны, направляется в ретранслирующие экраны, попадает в ректенну и трансформируется обратно в электроэнергию. Дальность действия устройства ограничивается видимостью.

Потеря энергии при передаче на прототипе составляет 30%. Причем эффективность принимающей антенны из радиопоглощающих метаматериалов стремится к 100%.

Прототип разработки с октября тестируется компанией Powerco — вторым по величине поставщиком электроэнергии в Новой Зеландии. Аппарат передает ток мощностью всего 2 кВт, но создатели уверяют, что мощность, как и дальность, легко нарастить.

Для передачи энергии Emrod задействует неионизирующий промышленный, научный и медицинский диапазон частот (ISM). Существуют международные правила безопасности по использованию такой частоты и долгая история применения среди людей без ущерба здоровью.

Представители Emrod утверждают, что установка не угрожает птицам и дронам, оказавшимся на пути электромагнитных волн. Сети лазерных лучей окружают электрический путь, и, если в их периметр попадает объект, передача энергии прерывается, что не сказывается на бесперебойности электроснабжения. Снег, дождь, град, взвеси пыли не приводят к отключению устройства.

Планы компании Emrod

Разработчики не планируют вытеснять привычные электрические сети, а предлагают использовать устройство в труднодоступных районах или для быстрого возобновления электроснабжения на аварийных участках сети с помощью машин с антеннами.

Кроме того, установка таких аппаратов позволит передавать энергию станций ВИЭ в регионы с неподходящим для выработки «зеленой энергии» климатом.

15 октября компания написала на официальном сайте о возможном кейсе применения своей разработки для электроснабжении острова Стьюарт. Он расположен в 30 км от Южного острова в Новой Зеландии. 85% территории, а это 1300 квадратных километров, занимает Национальный парк Ракиура. Стьюарт почти полностью покрыт лесом, на острове живут 5 видов пингвинов, коричневая птица киви, редкий вид попугая Нестор-кака.

У национального парка с сохраненной экосистемой есть скелет в шкафу, не гармонирующий с имиджем парка. Потребности в электроэнергии острова покрываются дизельной генерацией и использованием сжиженного нефтяного газа, а годовые выбросы СО2 составляют 820 тонн. Кроме того, стоимость электроэнергии за кВт-ч на полдоллара дороже, чем на территории Новой Зеландии, питающейся от национальных электрических сетей. Люди экономят слишком дорогую энергию, поэтому потребление на человека на острове Стьюарт составляет меньше половины среднего потребления по стране.

Решением проблемы дорогостоящего и неэкологичного энергоснабжения могла бы стать прокладка подводного кабеля или использование энергии солнца и ветра на острове. Однако первый вариант требует огромных затрат, а ВИЭ не покроют потребностей в электроэнергии из-за недостаточной выработки в силу климата. Более того, установки для ВИЭ могут негативно влиять на экосистему. Солнечные панели закроют собой огромную площадь национального парка, а ветряная электростанция создаст вибрацию, к которой чувствительны птицы.

Emrod предлагает передавать энергию бесконтактно от ВИЭ с Южного острова. Компания подсчитала, что беспроводная передача электроэнергии за счет экономии на инфраструктуре снизит тариф для жителей Стьюарта с 0.6$ за кВт-ч до 0,46$ за кВт-ч. Это самый бюджетный вариант за аналогичную мощность.

Если разработка Emrod докажет жизнеспособность, то станет яркой иллюстрацией прорывных технологий, когда вдруг появляется стартап и кардинально меняет отрасль, устанавливая новые недорогие способы передачи электроэнергии.

голоса
Рейтинг статьи
Читать еще:  Как прозвонить провода без мультиметра
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector