Astro-nn.ru

Стройка и ремонт
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Поиск обрыва кабеля под землей

Поиск обрыва кабеля под землей

Группа: New
Сообщений: 6
Регистрация: 21.5.2013
Пользователь №: 193181

Добрый день, уважаемые коллеги!
Прошу Вас помочь в следующем вопросе.
Есть насосная станция 3-го подъема. Она запитывается от КТП, от КТП брошен по воздуху кабель на опору №2, с опоры кабель уходит в землю и выходит в насосной. Кабель алюминиевый 4х25. Пропала одна фаза. Измеряли на опоре. С опоры уходит. А вот в насосную не приходит. Подскажите, пожалуйста, какими методами можно обнаружить пропажу. Хотел применить прибор ГКИ-4+ИПК4, но прибор оказался не рабочим. Да и вряд ли он поможет. Ведь кабель 4-жильный, с наружной изоляцией, поэтому мала вероятность что перегоревшая фаза будет на земле. Кто-нибудь сталкивался с такими вопросами?
Заранее благодарен!

практикующий инженер со стажем.

Группа: Участники форума
Сообщений: 860
Регистрация: 1.12.2009
Из: Сибирь-матушка
Пользователь №: 41581

Как раз вероятнее что отрыв где-то в земле (поскольку по ПУЭ (и здравому смылсу тоже) в земле мощность рассеяния тепла от кабеля меньше). Насчёт того как искать. Вы бы для начала написали кабель одинаковый по воздуху и в земле? по пути нет распаечных коробок? Если кабель без разрывов (т.е. без распаечных коробок/сочленений и т.п.) и имеет существенную длину (сотни метров и более), то самый лучший вариант на мой взгляд замерить с обоих концов погонную ёмкость по всем жилам. По идее она должна быть практически одинаковой для всех целых жил кабеля и различаться для пробитой жилы с разных её концов. Далее путём простейших математических вычислений определяем приблизительное место точки обрыва жилы. Как-то так. Удачи!
P/S: перед замерами разумеется нужно заземлить все жилы кабеля кроме замеряемой + заземлить экран ежели таковой имеется

Сообщение отредактировал kdu — 3.6.2015, 6:07

Группа: Участники форума
Сообщений: 2659
Регистрация: 16.2.2012
Пользователь №: 140571

Группа: New
Сообщений: 6
Регистрация: 21.5.2013
Пользователь №: 193181

Прошу прощения, действительно, не написал про сам кабель. С КТП до опоры №2 уходит провод а-35, а к нему рядом с опрой подмотан АВВГ-25, который и уходит в землю.

Группа: Участники форума
Сообщений: 2659
Регистрация: 16.2.2012
Пользователь №: 140571

Как найти место повреждения кабеля под землей?

Эксплуатация подземных силовых и телекоммуникационных кабелей связана с проведением плановых и ремонтно-восстановительных измерений, а также локализации повреждений в кабельных линиях.

В ходе плановых измерений зачастую проверяют первичные параметры: сопротивление изоляции, шлейфа, асимметрию. Зачастую для этих работ достаточно мостового измерителя.

Ремонтно-восстановительные работы – это более трудоемкий процесс, требующий хорошей подготовки специалистов и широкого спектра оборудования. Локализация дефекта требует выполнения следующих действий:

Определение наличия дефекта и его идентификация (вода в кабеле, обрыв пары или жилы, повреждение изоляции, короткое замыкание, переходные наводки, шумы, перепутанные пары, параллельные отводы и др.)

Определение расстояния до дефекта (при помощи мостового или рефлектометрического метода).

Локализация повреждения на местности при помощи трассодефектоискателей или кабельных локаторов.

Определение наличия дефекта в кабеле и его идентификация

Чаще всего для определения наличия повреждения и идентификации его типа применяются те же измерения, что и в ходе плановых измерений. Для проведения таких измерений используются кабельные мосты, мегомметры, измерители сопротивления заземления.

Однако в ряде случаев имеют место множественные дефекты (несколько разнотипных дефектов одновременно). В этом случае сложно определить, какое из них вносит наибольший вклад, так как они маскируют друг друга. Для определения таких неисправностей требуется не только измерение первичных параметров кабеля, но и вторичных: перекрестных наводок, наведенных шумов, затухания и т.д. В таких случаях ремонтная бригада должна быть оснащена несколькими приборами: кабельный мост, мегомметр, анализатор шумов и помех, измеритель затухания. Существуют, конечно, и комплексные анализаторы, которые совмещают в одном корпусе множество функций. Так, для работы с абонентскими телефонными линиями в последнее время часто используются кабельные анализаторы Greenlee SideKick Plus, Riser Bond 6000DSL и др.

Они позволяют измерить все первичные и вторичные параметры кабельной линии, подать тональный сигнал для идентификации пары на обратном конце, локализовать повреждение рефлектометрическим и мостовым методом и даже проанализировать качество ADSL/VDSL канала, сымитировав абонентский модем.

Определение расстояния до места повреждения кабеля под землей

Определение расстояния до дефекта производится одним из двух методов – рефлектометрическим (при помощи рефлектометров) и мостовым (при помощи кабельных мостов). Эти методы имеют существенные различия.

Кабельные мосты выполняют локализацию повреждения по сопротивлению и емкости кабеля. В ходе измерения они используют вспомогательные (заведомо исправные) жилы или пары кабеля, что позволяет измерить сопротивление (емкость) исправной пары, сравнить эти показания с аналогичными значениями на поврежденной паре и определить расстояние до дефекта. В ходе измерений они чаще всего используют напряжение 180В — 500В, что позволяет определить даже незначительные повреждения изоляции кабеля.

Кабельные рефлектометры посылают в пару импульс амплитудой примерно 20В (ширина импульса регулируется в зависимости от длины линии) и по форме и задержке отраженных от неоднородностей (дефектов) импульсов определяется тип повреждения и расстояние до него. Этот метод не позволит определить незначительные повреждения изоляции, зато с легкостью обнаружит перепутанные пары, параллельные отводы, пупиновские катушки и др.

Для повышения эффективности эти методы все чаще совмещают в одном корпусе прибора. В таком исполнении, например, представлены приборы ИРК-ПРО Альфа и КБ Связь Сова. Такие функции имеют и описанные выше анализаторы SideKick Plus и Riser Bond 6000DSL.

Следует заметить, что точность определения расстояния до дефекта прибором и точность локализации повреждения в кабеле – это разные вещи. Ведь измеренное расстояние еще нужно точно отмерять, а это весьма непростая задача, учитывая запасы кабеля на муфтах, неравномерность глубины залегания кабеля и др. Кроме того, большую погрешность вносят неточно введенные погонные значения сопротивления и емкости или коэффициент распространения (а они постоянно изменяются в ходе эксплуатации).

Локализация повреждения на местности

После того, как приблизительное расстояние до повреждения известно, к поврежденной паре подключается генератор трассоискателя или кабельного локатора и начинается трассировка кабеля. Трассировать и искать дефект поврежденного кабеля лучше начинать на расстоянии 200-300 метров от определенного кабельным мостом или рефлектометром места дефекта, от ближайшей муфты, кабельного ящика или другого места, расположение которого точно известно. Причем если трассировка начинается от кабельного шкафа или ящика, генератор нужно установить в этом месте.

Трассировку и локализацию дефектов можно производить параллельно или последовательно. В первом случае сначала «отбивается» трасса при помощи трассоискателя, после этого производится локация повреждения при помощи кабельного локатора. Во втором случае трассировка и локализация повреждений ведется одновременно: один специалист производит трассировку линии, другой – локализацию повреждений. Для таких случаев существуют приборы с одним генератором, но двумя приемниками, например Поиск-310Д-2М (2). Существуют также приборы, совмещающие не только средства поиска и локализации повреждений, но и средства предварительной диагностики и определение расстояния до повреждения. Среди них можно выделить прибор ToneRanger от компании Greenlee. К его преимуществам можно отнести:

Высокая точность локализации повреждения

Отсутствие зависимости результатов диагностики от длины и температуры кабеля, разности сечения жил различных участков, количества участков, наличие воды в кабеле и муфтах

Как найти место повреждения кабеля?

В процессе эксплуатации и на этапе монтажа кабельных линий, проложенных под землей, возникают непредвиденные механические повреждения изоляции и токоведущих жил. Это может быть связано с нарушением нормальных режимов работы, неаккуратным ведением монтажных работ на других коммуникациях, расположенных в нескольких метрах от места прокладки и не относящихся к линии электроснабжения.
Как выполнить поиск места повреждения кабеля под землей и в стене, мы расскажем далее, предоставив существующие методики и приборы для обнаружения аварийного участка.

Чтобы найти место повреждения кабельной линии, необходимо понимать специфику и методику ведения поиска. Процесс необходимо разделить на два этапа:

  1. Поиск проблемной зоны на всей протяженности линии.
  2. Поиск места аварии на установленном участке трассы.

Существует несколько методов отыскания поврежденной зоны:

  1. Импульсный метод;
  2. Петлевой метод;
  3. Акустический метод;
  4. Индукционный метод;
  5. Метод шагового напряжения.

Импульсный метод.

Данный способ подразумевает поиск повреждения с помощью рефлектометра. Работа прибора основывается на посылании зондирующих импульсов определенной частоты, которые встречая на своем пути препятствие, отражаются и возвращаются обратно к прибору. То есть, прибор располагается с одного конца силового кабеля, что очень удобно и практично. Испытания следует проводить на полностью отключенной линии.

Метод петли.

Данный способ применим при условии, что хотя бы один провод в кабеле остался цел, или рядом пролегает еще один проводник с целыми жилами. Чтобы узнать расстояние до места повреждения петлевым методом, нужно измерить сопротивление жил постоянному току прибором Р333. Это измерительный мост постоянного тока. Это один из первых придуманных методов, применяемых для отыскания места повреждения, и используется он исключительно при однофазном и двухфазном замыкании. Постепенно им перестают пользоваться, ввиду его трудоемкости и большой погрешности в измерениях.

Читать еще:  Негорючий кабель для проводки в деревянном доме

Акустический метод.

Найти обрыв в кабеле акустическим методом можно, создав в месте повреждения разряд с помощью генератора высоковольтных импульсов. В месте обрыва или замыкания появятся колебания звука определенной частоты. Качество прослушивания зависит от вида грунта, расстояния от поверхности до кабельной линии и типа повреждения. Обязательным условием для работы способа является превышение значения переходного сопротивления в 40 Ом.

Метод шагового напряжения.

Метод основан на пропускании по кабелю тока, вырабатываемого генератором. Он создает между двумя расположенными в земле точками разность потенциалов, о которой можно судить по утечке тока в месте аварии. Чтобы найти точку с пониженным сопротивлением изоляции, контактные штыри-зонды устанавливаются так – первый ровно над пролегающим проводником, второй под углом 90 в метре от первого.

Индукционный метод.

Способ очень точно определяет места обрыва, однако его применение связано с прожигом кабеля. При большом переходном сопротивлении необходимо уменьшить его величину путем прожига, используя специальные устройства. Метод основан на пропускании по жиле тока с высокой частотой, который образует электромагнитное поле над кабельной линии. В местах механических повреждений трассы, проводя приемной рамкой, звук будет изменяться. Таким образом, отсутствие звука говорит об обрыве жилы.

Место обрыва провода в бетонной стене поможет найти специальный прибор – трассоискатель. Он представляет собой сочетание приемника и генератора. Данный способ можно ассоциировать с индукционным методом в поиске повреждений кабелей под землей.

Поиск силового кабеля под землей

Пассивный метод:

В случае, если силовой кабель находится под нагрузкой, к нему приложено напряжение и по нему протекает электрический ток – допускается применение пассивного метода локации.

Электрический ток, протекая по жилам силового кабеля, создает вокруг него электро магнитное поле частотой 50 Гц. Это поле и может быть обнаружено приемником трассоискателя. При этом генератор трассоискателя – не используется вообще.

Этот метод прост, но не всегда эффективен. С его помощью определить, что под землей есть кабель — легко, но не возможно отличить кабель один от другого. Сигнал от всех силовых кабелей будет иметь одинаковую частоту.

Активный метод:

Для точной идентификации «своего» кабеля и трассировки его под землей применяется активный способ поиска, в котором генератор подключается к кабелю при помощи крокодилов, индукционной клипсы или антенны. Если кабель обесточен и к нему есть доступ – проще всего воспользоваться непосредственным методом подключения (крокодилы). В случае, если кабель под напряжением, подать сигнал в него можно только при помощи индукционной антенны или клещей. (к примеру, BLL-200 допускает подключение к кабелю с напряжением до 600В при использовании индукционных клещей).

Генератор наводит в кабеле сигнал на частоте отличной от 50 Гц. Соответственно, кабель легко идентифицировать и трассировать.

Идентификация и трассировка силового кабеля посредством пассивных маркеров

Для точной маркировки, идентификации и трассировки силового кабеля, или его ключевых точек (изменение направления, муфты) используются пассивные маркеры.

Пассивный маркер представляет собой резонансный контур, который запаян в пластиковый корпус. Он не требует питания и обслуживания и рассчитан на срок эксплуатации более 25-ти лет.

Резонансная частота и цвет маркеров силовых кабельных линий – стандартизирован:

  • Частота F = 169,8 кГц
  • Цвет = красный

Поиск маркеров производится при помощи специального прибора – маркеро искателя. Он излучает сигнал в широком диапазоне частот и определяет, на какой частоте произошел резонанс. Таким образом, если пассивные маркеры закладывать вместе с кабелем, то маркероискатель позволит однозначно определить положение последнего.

Стоит сказать, что пассивные маркеры можно классифицировать по нескольким параметрам:

Классификация по типу диаграммы направленности:

  • Дипольная – отражает сигнал только вверх и вниз. Такие маркеры более сложные в монтаже и локации.
  • Сферическая – отражает сигнал в двух плоскостях. Такие маркеры более простые в монтаже и локации

Классификация по мощности (глубине закладывания)

  • 60 см
  • 1,5м

Определение места повреждения кабеля

Как правило, соединения потребителей с источниками электроэнергии (трансформаторными и распределительными подстанциями) осуществляется при помощи кабельных линий (КЛ). Это связано с тем, что у данного способа есть масса преимуществ перед воздушными линиями (ВЛ). Но, если случилась авария на КЛ, то поиск места повреждения кабеля без специальных приборов, практически невозможен. Сегодня мы рассмотрим несколько способов, позволяющих локализовать аварийный участок кабельной трассы, проложенной в земле.

Причины и виды повреждений кабельных линий

Существует много факторов, негативно влияющих на целостность силовых кабелей, к наиболее распространенным из них можно отнести следующие:

  • Подвижка грунта, может быть вызвана аварией водопроводных, канализационных или тепловых сетей, а также сезонными явлениями, например, весенним оттаиванием.
  • Превышение допустимых норм эксплуатации КЛ, что может привести к термической перегрузки линии, вызванной увеличением токовой нагрузки.
  • Образование в КЛ высокого уровня электрического тока от транзитного КЗ.
  • Механическое повреждение при земляных работах без учета прохождения подземных коммуникаций и глубины трассы.
  • Ошибки при прокладке КЛ. В качестве примера можно привести нарушения технологии соединения жил кабельными муфтами.
  • Заводской брак.

Заметим, что при открытой прокладке кабельных трасс некоторые перечисленные выше причины повреждений встречаются крайне редко. В частности, снижается вероятность влияния подвижки грунта и механические воздействия вследствие земляных работ. Помимо этого зоны повреждения открытых КЛ, в большинстве случаев, можно обнаружить при визуальном осмотре, без задействования спецметодов.

Разобравшись с причинами, перейдем к видам повреждений, поскольку от этого напрямую зависит, каким методом будет локализирован аварийный участок КЛ.

Чаще всего ремонтным бригадам приходится сталкиваться со следующими видами неисправностей:

  • Дефект, вызванный полным или частичным обрывом КЛ. Чаще всего причиной аварии является проведение земляных работ без определения прохождения кабельных трасс. Несколько реже причиной данного повреждения может стать КЗ в соединительных муфтах.
  • В силовых кабелях (более 1кВ), часто встречается пробой одной из жил на землю (однофазное замыкание). Ток утечки, как правило, это вызвано снижением качества изоляции в процессе эксплуатации КЛ.
  • Межфазные повреждения, а также виды металлических замыканий, могут возникнуть в любых линиях, причина повреждений такая же, как и в предыдущем пункте.
  • Плановое испытание кабеля, при котором задействуется высокий уровень напряжения, показывают низкую надежность изоляции, и приводит к возникновению пробоя. При определенных обстоятельствах такая линия может продолжать эксплуатироваться, но из-за низкого уровня ее надежности, авария может проявиться в любое время.

Кратко о ремонте кабельной линии

Ремонтные работы на кабельных линиях принято классифицировать на плановые и аварийные. Что касается объема таких работ, то у первых он, как правило, капитальный, у вторых – текущий.

При капитальных работах производится плановая замена КЛ, прокладка новых трасс и т.д. При необходимости также выполняется ремонт и/или модернизация сопутствующего оборудования. К последним относятся вентиляционные системы и освещение кабельных туннелей, а также насосы для откачки грунтовых вод. Учитывая специфику плановых работ, при их проведении не требуется локализация дефектных участков.

Совсем иначе обстоит дело при аварийном ремонте. Чтобы не раскапывать всю трассу, следует точно определить место обрыва провода, пробоя изоляции и т.д. Для этой цели применяются различные способы, для которых задействуется спецоборудование. Подробно об этом будет рассказано ниже.

Методики определения повреждения кабеля в земле

Как правило, дефектоскопия кабеля осуществляется в два этапа:

  1. Устанавливаются границы зоны, в пределах которой находится аварийный участок.
  2. Производится поиск точного места повреждения в определенной зоне.

Соответственно на первом этапе применяются относительные способы, а на втором широко используются технологии с повышенной точностью поиска повреждений. Перечислим основные методики дефектоскопии и особенности их применения.

Индукционный метод

Эта технология позволяет определить локацию, где произошел пробой изоляционного слоя токопроводящих элементов кабеля. Для этого при помощи специального генератора в КЛ подается переменный ток с силой до 20,0 ампер и частотой от 800,0 до 1200,0 герц. В результате, вокруг КЛ формируется электромагнитное поле определенной интенсивности. Если поместить в него антенную рамку подключенную к наушникам через усилитель, то можно услышать звук определенной частоты над неповрежденными токопроводящими элементами.

По характеру звукового сигнала можно определить не локацию дефекта, позиции муфт для соединения, топографию трассы (трассировку), включая наличие защитных труб. Ниже представлен рисунок, где показан уровень изменения сигнала над различными участками КЛ.

Поиск повреждений кабеля индукционным методом

Обозначения:

  1. Задающий генератор.
  2. Расположение соединительных элементов.
  3. Защита кабеля.
  4. Дефектное место.

Импульсный метод

Как уже упоминалось выше, данный способ относится к относительным, то есть, позволяющим установить дефектную зону повреждения (как правило, межфазное КЗ). Принцип работы заключается в подаче специальным прибором эталонного высоковольтного импульса в КЛ и последующим определением удаленности аварийного участка по отраженному сигналу импульсных токов.

Экран прибора ИКЛ с отображением отраженного импульса в случае замыкания (а) и обрыва (b) кабеля

В приведенном на рисунке примере расстояние до дефектного участка определяется следующим образом:

tx – интервал времени между посланным и отраженным электрическим сигналом, измеряется в микросекундах. Как видно из рисунка, он равен 3,5 мкс. Учитывая, что скорость распространения импульса (v) примерно равна 160,0 м/мкс, то для решения необходимо применить следующую формулу: lx = ( tx*v ) / 2, где lx – расстояние от генератора импульсов до поврежденного участка кабеля. В результате мы получим ( 3.5 * 160 ) / 2, то есть, 280,0 метров.

Читать еще:  Монтаж СИП кабеля от столба к дому

Обратим внимание, что в некоторых приборах по форме отраженного сигнала можно судить о характере дефекта.

Акустический метод

Технология основана на формировании в дефектном участке искровых разрядов, сопровождающимися звуковыми импульсами. Зафиксировать их можно используя обычный стетоскоп, прикладывая акустическую головку к земле, либо применяя специальный акустический приемник. Над дефектным участком разряды звуковых частот будут максимально громкими.

Различные схемы, применяемые при акустическом методе поиска повреждений кабеля

Обозначения:

  1. Поиск устойчивого короткого замыкания между токоведущей жилой и оболочкой кабеля.
  2. Схема для поиска заплывающих пробоев.
  3. Применение работоспособных токопроводящих элементов (задействована емкость жил).
  4. Схема для поиска обрыва.

Видео по теме:

Емкостной метод

Технология данного метода позволяет проводить поиск повреждения, в частности обрыва токоведущих элементов кабеля, путем измерения емкости жил. Как известно данный параметр напрямую зависит от длины кабеля. С упрощенной схемой высоковольтных колебаний для такого устройства можно ознакомиться ниже.

Мост переменного тока, используемый в емкостном методе обнаружения повреждения кабеля

Обозначения:

  • R1, R2, R3 – регулируемые резисторы.
  • Cэ – эталонный высоковольтный конденсатор.
  • L – расстояние до места обрыва.
  • Lк – общая длина КЛ.
  • 1 – токоведущие элементы кабеля.
  • 2 – защитная оболочка.
  • 3 – место обрыва.

Подбирая сопротивление переменных резисторов, добиваются минимального отклонения стрелки прибора Г, что указывает на равновесие между плечами моста, что говорит о следующем соотношении R1 / R2 = Сx / Сэ , это позволяет установить емкость поврежденной жилы Сx = Сэ* (R1 / R2) .

Подобным способом производим определение емкости на другом конце КЛ, то есть, подключаем к нему генератор и повторяем измерения. В результате, вычисляем расстояние до поврежденной зоны: L = Lk * С1 / ( C1 + C2 ), где С1 и С2 – емкости поврежденных токоведущих элементов кабеля, измеренные в начале и конце КЛ.

Метод колебательного разряда

Данный способ позволяет более эффективно определить расстояние до дефекта кабеля, известного, как заплывающий пробой. Для этой цели в поврежденную линию подаются импульсные колебательные разряды, после чего на экран спецприбора (например, ЭМКС58) выводятся данные о расстоянии до дефектного места.

Экран прибора РЕЙС-305 с указанием расстояния до поврежденного участка кабеля

Принципа работы данного метода во многом напоминает импульсный способ дефектоскопии.

Метод петли

Данный способ хорошо работает в тех случаях, когда в месте нарушения изоляции нет обрыва токоведущих элементов кабеля, а переходное сопротивление в месте дефекта не более 5,0 кОм. При несоответствии последнего условия может быть выполнен прожиг кабеля (прожигание изоляции для уменьшения переходного сопротивления). Упрощенный пример электрической схемы для метода петли показан ниже.

Устройство для поиска повреждения кабеля методом петли

Обозначения:

  • Г – гальванометр.
  • R1 и R2 – переменные резисторы, измерение сопротивления которых осуществляется после уравновешивания моста.
  • Lk – длина КЛ.
  • L – расстояние до дефектного участка.
  • 1 – токопроводящие элементы кабеля.
  • 2 – перемычка между целой и дефектной жилой.

После уравновешивания моста, расстояние до обрыва вычисляется по формуле: .

Метод накладной рамки

Данный вариант поиска повреждения в КЛ можно рассматривать в качестве одной из разновидностей индукционного способа, когда необходимо найти пробой между токоведущим элементом кабеля и его металлической оболочкой (броней). Данная технология рассчитана на поиск дефектных мест при открытой прокладке кабельных трасс, но ее можно успешно использовать и КЛ уложенных в грунт. В последнем случае требуется выкопать шурфы в зоне локализации дефекта.

Локализация повреждения кабеля методом накладной рамки

Обозначения:

  1. Накладные рамки.
  2. Место пробоя изоляции.

Поиск обрыва кабеля в бетонной стене и под гипсокартоном с помощью трассоискателя

Как найти место повреждения кабеля — обзор методик

Нарушения в работе электросети требуют принятия оперативных мер, но чаще всего сложные и действительно аварийные ситуации случаются в условиях скрытого проводника.

К таким условиям относятся: разводка трансформаторных подстанций, скрытая проводка в жилом помещении, производственные электросети, спрятанные под землей. Про поиск места повреждения кабеля с прожигом мы узнаем в этой статье.

Причины возникновения

Подобная ситуация может возникнуть не только в условиях непосредственной эксплуатации, но и на этапе монтажных работ. В процессе рабочие могут непринужденно повредить несколько линий, может быть выявлен производственный брак, работы на других коммуникациях, не относящихся к целевой сети и еще множество печальных вариантов, которые приведут к неработоспособности линии.

В домашних же электросетях проводка, аккуратно спрятанная под любимый ремонт, может дать сбой в самый неподходящий момент. Самыми частыми причинами являются производственный брак и микроповреждения, нанесенные проводу в процессе монтажа.

Какой бы не была причина, а задача состоит в том, чтобы точно определить место разрыва, не руша при этом дорогой ремонт и не перекапывая сотни метров земли. Данный вопрос и существующие методики решения проблемы мы и рассмотрим.

Методики обнаружения повреждения

Для выполнения постеленной задачи необходимо знать техническую часть поисков и физические принципы, на которых они основаны.

Сам процесс делится на две составляющих:

  1. Поиски зоны повреждения.
  2. Поиски точки в установленной зоне.

Но отличными являются не только этапы работ, но и методы, используемые в них, по этому принципу они делятся на:

  • относительные – петлевой и импульсный;
  • абсолютные – методы шагового напряжения, индукционный и акустический.

Каждый представленный метод обладает своей спецификой, но при этом не является решением в абсолютном смысле этого слова. В большинстве случаев будет достаточно выбрать один из подходов, но комбинирование методик всегда даст более точный результат.

Импульсный метод

Эта методика подразумевает использование рефлектометра. Инструкцию рассмотрим на примере РЕЙС-305, который является достаточно распространенным прибором.

Сам прибор основан на принципах зондирующих импульсов. Двигаясь на определенных частотах по проводнику, они встречаются с препятствием, после чего возвращаются назад. Расположив аппарат на одном из концов, можно определить точное расстояние до разрыва, воспользовавшись формулой: L=(tx/2)*υ, где L – искомое расстояние, tx время потраченное импульсом на дорогу в два конца, а υ – скорость с которой двигается импульс.

Этот способ отлично подходит как для поиска разрывов, так и для определения КЗ между жилами, суть проблемы при этом будет отображаться на дисплее прибора.

Скорость движения импульса можно подсмотреть как в инструкциях в интернете, так и бумагах к прибору, а для наиболее распространенных 0,4-10 кВ линий она составляет 160 м/мкс.

Методика петли

Не самый совершенный метод, его можно использовать только тогда, когда присутствует хотя бы одна целая жила, или рядом находится хотя бы один заведомо целый проводник. Петлевой метод предполагает измерение сопротивления постоянному току в искусственно замкнутой петле, длина которой известна выполняющему процедуру. Примером аппаратуры может служить Р333 – специальный измерительный мост.

Концы проводников сматывают, а другие подключают к устройству и считают результат по формуле: L=(2Lk*R2)/(R1+R2), в которой R1 – результат целой жилы, R2 – жилы с обрывом, а Lk – длина всего поврежденного проводника.

Не смотря на неудобство в использовании и относительную ограниченность, данный метод весьма значим как первый из придуманных методик точного измерения расстояния до обрыва.

Акустическая методика

Данный подход не содержит в себе сложных физических вычислений, все намного проще:

  • к поврежденному силовому кабелю подключают высоковольтный ток, используя для этого генератор высоковольтных разрядов;
  • после чего берут прибор для прослушивания и идут по линии сети, для того, чтобы найти шум, соответствующий месту разрыва.

При всей видимой простоте у данного подхода есть три существенных недостатка:

  • особенности грунта могут сделать выполнение работ невозможным;
  • абсолютно не применим на глубоко пролегающих электросетях;
  • переходное сопротивление не должно падать ниже 40 Ом.

Шаговое напряжение

Данное исследование основано на измерении разности потенциалов. При помощи генератора сквозь проводник пропускается ток, в месте разрыва он создает соответствующую разницу. Для нахождения конкретной точки два измерительных штыря устанавливают перпендикулярно друг другу: один ровно над проводником, а второй через метр от него.

Метод индукции

Этим способом можно быстро и надежно найти механическое повреждение, но у него есть один существенный недостаток – прожиг кабеля. Если этот момент вас не останавливает, то можно приступать. В качестве устройства можно взять ВУПК-03-25.

Через жилу пропускают ток высокой частоты, он образует электромагнитное поле, которое фиксирует приемная рама. На участке где измерения становятся нулевыми, произошел разрыв.

Стоит знать, что приемная рама фиксирует не само поле, а звук исходящий от него, потому грунты могут повлиять на чувствительность аппаратуры, также как и в акустическом методе.

Поиск обрыва в бетоне

Бетонная стена обладает весьма специфическими физическими характеристиками, потому большинство методов пригодных на земле тут будут бесполезными. Для таких поисков применяют трассоискатель. Он совмещает в себе функции генератора и приемника.

Технология выполнения следующая:

  • подключить генератор к концу провода и подготовить специальную рамку;
  • провести рамкой по стене, там, где исчезает звук — находится разрыв.
Читать еще:  Беспроводная передача электричества по теории Тесла

Этот метод, по своей сути, является усовершенствованной версией индукционного подхода, при этом с аппаратурой, уменьшенной до комнатных масштабов.

Полезное видео

Дополнительную информацию по некоторым методикам вы можете получить из видео ниже:

Определение места повреждения кабеля индукционным методом

С помощью индукционного метода поиска локализуются обрывы жил, замыкания жила-жила, жила-оболочка, двух- и трехфазные замыкания устойчивого характера при различных значениях переходного сопротивления в месте дефекта. Основные принципы поиска индукционным методом, изложенные в статье реализуются с применением специализированного оборудования. Указанные в статье конкретные величины параметров получены при использовании поискового оборудования семейства КП-100К, КП-250К и КП-500К производства компании «АНГСТРЕМ» (применение иного оборудования с использованием указанных в статье величин параметров может оказаться безуспешным). Для всех видов повреждений перед началом ОМП (определение места повреждения) определяют и размечают трассу кабеля.

Поиск обрыва жилы

Генератор поисковый подключается к кабельной линии по схеме «оборванная жила-броня» — Рис. 1 (а)

Рис.1 — Непосредственное подключение генератора по схеме «оборванная жила — броня»

Этот вариант поиска использует наличие распределенной емкости кабельной линии. Сигнальный ток генератора протекает через подключенную к нему поврежденную жилу, распределенную емкость кабеля и броню кабельной линии. При удалении от начала кабеля ток в подключенной жиле постепенно убывает из-за ответвления на распределенную по длине емкость. Соответственно интенсивность поля, вокруг кабеля, при удалении от точки подключения к генератору также убывает. Напряженность магнитного поля над кабелем в месте обрыва становится нулевой. Характер изменения магнитного поля вдоль кабельной линии показано на Рис. 1 (б).

Как видно из графика точность определения места обрыва невысока. Чтобы уменьшить погрешность определения места обрыва целесообразно подключать генератор поочередно к разным концам поврежденной жилы, проводя поиск на участке, к которому подключен генератор.

Для увеличения напряженности магнитного поля над кабельной линией, необходимо увеличить ток, протекающий по кабелю. Это позволит более четко отслеживать сигнал. Увеличения тока можно добиться уменьшением емкостного сопротивления, либо увеличением частоты генератора. Уменьшить емкостное сопротивление можно увеличив погонную емкость кабеля параллельным соединением нескольких жил кабеля.

Для повышения точности определения места повреждения можно рекомендовать следующую последовательность действий. Генератор подключают к одному концу кабеля. Следуют вдоль трассы, контролируя уровень сигнала на приемнике. При уменьшении сигнала до определенного уровня, например, до 5 ед. отмечают на трассе эту точку. Затем генератор подключают к другому концу кабеля и повторяют процедуру. Расстояние между двумя отмеченными точками с одинаковым уровнем сигнала делят пополам. Это и будет наиболее вероятная точка обрыва.

Поиск междуфазного повреждения

При стандартной по глубине прокладке кабеля этот вид повреждения как правило не вызывает затруднений в его локализации.Генератор для поиска повреждений кабеля подключается к двум замкнутым в месте повреждения жилам кабельной линии по схеме, показанной на Рис. 2.

Рис.2 — Схема подключения генератора к двум поврежденным жилам кабельной линии в случае их короткого замыкания.

Сигнальный ток генератора протекает непосредственно по поврежденным жилам кабельной линии во встречных направлениях. Как известно в этом случае магнитное поле, создаваемое током обратно пропорционально квадрату расстояния от кабеля. Генератор при поиске включен в режиме непрерывной генерации. Поиск производится на минимальной частоте — 480 Гц. Эта частота оптимальна с точки зрения минимизации потерь и наводок на соседние коммуникации и позволяет локализовать междуфазные повреждения на расстояниях в несколько километров.

Перед началом поиска повреждения необходимо выбрать и задать минимальный ток генератора, при котором приемник уверенно принимает сигнал генератора на максимальной чувствительности. Реализация этого правила требует наличия двух операторов. Один из операторов регулирует уровень сигнального тока, пошагово повышая его и одновременно фиксируя его стабильность. Второй оператор, находящийся над трассой кабеля в зоне повреждения с приемником ПП-500А или ПП-500К, фиксирует момент появления сигнала достаточного для уверенного поиска. На практике достаточно сигнального тока, обеспечивающего при максимальной чувствительности приемника уровень сигнала в 25…50% полной шкалы его индикатора. Хотя решающим в выборе может быть личный опыт оператора. Например, для кабеля ААБ сечением 50 кв.см, проложенного на глубине 70 см при частоте генератора 480 Гц и небольшом расстоянии от места подключения генератора до повреждения достаточно тока 100…200 мА. Работа на частоте 9796 Гц требует существенно большего тока.

Если выбранный сигнальный ток остается стабильным, значит, сопротивление в точке повреждения кабеля не изменяется под воздействием протекающего тока. Это гарантирует успех поиска не зависимо от величины переходного сопротивления в точке повреждения — стабильность сопротивления дефекта здесь ключевой фактор. В случаях, когда замыкание произошло в результате аварии его сопротивление, как правило, близко к нулю и достаточно стабильно. Повреждения обнаруженные в процессе испытания могут иметь очень большие сопротивления. Если это сопротивление не меняет свою величину при протекании тока от поискового генератора и приемник обладает достаточной чувствительностью, то для локализации места повреждения можно применять индукционный метод поиска (без прожига). Однако элементарный расчет показывает, что такая ситуация возможна только для достаточно низких переходных сопротивлений.

Кроме того, минимальный сигнальный ток позволяет минимизировать сигнал, наведенный на близко расположенные коммуникации и помехи на приемник от этих коммуникаций.

Если в месте повреждения есть электрический контакт поврежденной жилы с оболочкой желательно устранить его, например, воздействуя на ненужный контакт высоковольтным импульсом.

При движении оператора с приемником вдоль трассы кабельной линии уровень принимаемого сигнала будет периодически уменьшаться и увеличиваться. Это объясняется наличием повива (скрутки) жил кабельной линии. Из-за повива жил и взаимовлияния магнитных полей от двух противоположно направленных токов в жилах вокруг кабеля возникает результирующее спиральное поле («твист-эффект»). На индикаторе приемника это и будет проявляться периодическим изменением сигнала с шагом повива. На Рис. 3 (а) показаны повив двух короткозамкнутых жил кабельной линии и токи в них. На Рис.3 (б) приведен график уровня сигнала при движении с горизонтально расположенной катушкой приемника вдоль трассы кабельной линии. На Рис.3 (в) показано распределение магнитных полей от двух свитых жил в разрезе А–А и В–В кабельной линии. При вертикальном расположении поисковой катушки слышимость также периодически изменяется из-за скрутки, рис. 3 (г). В точке повреждения может быть, как увеличение, так и уменьшение уровня сигнала. Это зависит от ориентации жил в месте повреждения. После прохождения места повреждения уровень сигнала снижается до нуля, периодически меняющийся сигнал обусловленный шагом скрутки отсутствует. Наличие сигнала скрутки до места повреждения и отсутствие после — главный признак, позволяющий точно локализовать место междуфазного повреждения. Следует помнить, что сигнал с шагом повива будет наблюдаться при глубине прокладки кабеля не превышающей шаг повива более чем на 20…50%.

Рис.3 — Изменение сигнала кабельной линии из-за повива

На рис. 4 показана кабельная линия с муфтой и участком, имеющим увеличение глубины залегания. Вверху приведена зависимость интенсивности магнитного поля кабельной линии от длины. Над муфтами и другими неоднородностями кабельной линии интенсивность магнитного поля изменяется. Непосредственно над муфтой уровень сигнала увеличивается за счёт большего расстояния между жилами в муфте. Длина интервала с максимальным уровнем сигнала увеличивается относительно шага скрутки кабеля (c>d, рис. 4). За муфтой сигнал опять меняется по уровню с шагом скрутки. По этим признакам определяется место расположения муфты на кабеле. В местах, где кабельная линия плавно уходит на большую глубину наблюдается плавное уменьшение интенсивности магнитного поля. В местах, требующих особой защиты кабельной линии от механических повреждений, кабель прокладывают в металлических трубах. В этих случаях из-за экранирования наблюдается значительное ослабление интенсивности магнитного поля. В месте короткого замыкания между жилами кабельной линии ток от индукционного генератора меняет свое направление, структура магнитного поля вокруг кабеля изменяется, и компенсация от жил проявляется более слабо. Поэтому над местом повреждения интенсивность магнитного поля увеличивается (Рис. 4), а после прохождения места повреждения плавно уменьшается, при этом сигнал от шага скрутки практически не наблюдается.

Рис.4 — Кабельная линия с неоднородностями и распределение магнитного поля по длине

Трудности при локализации междуфазного повреждения возникают, когда кроме основного полезного сигнального тока протекающего по жилам кабеля присутствуют, так называемые, токи растекания. Эти токи возникают, если кроме основного пути для тока (генератор — жила 1 — повреждение — жила 2 — генератор) существуют пути утечки тока на «землю». Например, в месте повреждения есть утечка или замыкание на оболочку и броню. Ток растекания в отличие от сигнального является током одиночного проводника. Поле, создаваемое таким током, убывает обратно пропорционально расстоянию от кабеля в то время как поле сигнального (ток пары проводников) обратно пропорционально квадрату расстояния. Понятно, что в таком случае токи растекания даже значительно меньшие сигнального могут создать поле «забивающее» полезное поле сигнального тока. Радикально решить эту проблему можно ликвидировав замыкание или утечку в месте повреждения и разорвав все связи кабеля с землей. Однако если кабель имеет не одно повреждение и заземленные муфты такое решение проблематично.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector