Astro-nn.ru

Стройка и ремонт
18 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как проверить фазировку кабеля

Проверка фазировки

Время на чтение:

Проверять фазировку необходимо на устройствах, работающих с электрическим оборудованием от 3-фазного тока. Это необходимо для трансформаторов, линий электропередач, компенсаторов и холодильников. Делается она до ввода электроприбора в эксплуатацию и после произведения ремонта. Контроль значений фазы должен проверяться и при проведении планово-предупредительных работ. В этом материале рассмотрено, что такое фазировка кабеля, и зачем она осуществляется более подробно.

Зачем нужно проверять

Выполняют проверку фаз кабелей и электроприборов для того, чтобы проконтролировать электронапряжение на каждой точке токопроводящей жилы какого-либо электрооборудования. Оно должно соответствовать электрическому напряжению этих же жил в электросети. Если подобное не соблюдается, то могут появляться такие явления, как перекос фаз проводов. Из-за этого в промышленных установках может происходить снижение мощности, а в быту это приводит к выходу из строя даже новой и защищенной бытовой техники и электроприборов.

Прибор для определения фаз

К сведению! Согласно действующим нормативным документам, проверку фаз должны осуществлять специалисты в количестве от двух и более человек. Требования к ним таковы: прохождение обучения, понимание требований нормативных и технических документов на выполнение работ, а также наличие группы электробезопасности от 3 и выше.

Какие есть приборы для проверки

Существуют два способа выполнения проверки фаз:

  • прямой. Метод, при котором проверка производится на вводах электроприборов, находящихся под рабочим электронапряжением. Обычно его применяют для приборов до 110 кВ;
  • косвенный. Метод, при котором процесс проводится на вторичном электронапряжении. Такую проверку обычно выполняют при наличии напряжения от 110 кВ и выше.

Схема фазировки трансформаторов с установкой перемычки

Приборов, используемых при проверке, не так много. Среди них популярны:

  • вольтметры. Обычно применяются в приборах с напряженностью до 1 кВ. Они подключаются непосредственно к выводам оборудования или частям устройств, которые проводят ток. Что касается точности, то она от таких приборов не требуется;
  • фазоуказатель. Следования фаз и их порядок определяют индукционными фазоуказателями. Они состоят из нескольких катушек, внутри которых расположены ферромагнитные сердечники и диск из алюминия. Принцип действия аппарата схож с действием электродвигателя асинхронного типа. При подключении его к трехфазной сети все катушки начинают вращения электромагнитного поля вокруг них. Из-за этого начинает вращаться диск, что показывает последовательность фаз сети.

Как правильно проверять

Порядок проверки фазировки трехфазного напряжения, согласно нормативным документам, таков:

  1. Проверить отсутствие напряжения на оборудовании, которое вводится в эксплуатацию.
  2. Отсоединить кабеля от шин.
  3. Заземлить одну из жил.
  4. Измерить сопротивление изоляционного слоя жил относительно земли.
  5. Промаркировать жилу, сопротивление которой равняется нулю (относительно заземления).
  6. Выполнить фазировку других жил.
  7. Подключить кабель к распределительному устройству согласно отмеченной ранее маркировке.
  8. Прозвонить кабеля.
  9. Произвести фазировку под напряжением.

Важно! Сама проверка делается между одинаковыми фазами. Если между ними напряженности нет, а между разными оно есть, то этот кабель меняют.

Таким образом, выполнять фазировку важно и нужно перед введением электрических приборов в работу, а также в ходе ремонта электроустановок. Делается это при четком соблюдении всех норм электробезопасности и нормативных документов.

Что такое чередование фаз и как его проверить?

Большинство трехфазных электродвигателей и других устройств учитывают такой параметр, как чередование фаз. На практике, несоответствие данного параметра изначальным настройкам может привести к различным аварийным ситуациям, некорректной работе электрических приборов и к травмированию персонала.

Что такое чередование фаз?

Под чередованием фаз следует понимать последовательность, в которой напряжение нарастает в каждой из них. Во всех трехфазных цепях напряжение представляет собой синусоидальную кривую. В каждой линии напряжение отличается на 120º от остальных.

Рис. 1. Напряжение в трехфазной сети

Как видите, на рисунке 1, там где а) — показаны кривые напряжения во всех фазных проводах, смещенные на 120º. На соседнем рисунке б) изображена векторная диаграмма этих напряжений, На обоих рисунках показана разница между фазным и линейным напряжением.

Если взять за основу, что из нулевой точки на рисунке а) выходит U­A, то эта фаза является первой, на диаграмме б) наглядно стрелками показано, что очередность нарастания напряжения переходит от U­A к U­B, а за ним к U­C. Это означает, что фазы чередуются в порядке A, B, C. Такой порядок чередования считается прямым.

Прямое и обратное чередование фаз

В трехфазной сети порядок чередования фаз может отличаться в зависимости от способов подключения к силовым трансформаторам на подстанциях, от последовательности включения обмоток генератора, из-за несоответствия выводов кабеля и по прочим причинам.

Рисунок 2: Прямая и обратная последовательность

Обратите внимание, цветовая маркировка определяет последовательность в соответствии их очередностью в алфавите по первым буквам цвета:

  • Желтый – первый;
  • Зеленый – второй;
  • Красный – третий.

На рисунке 2 изображен классический вариант прямой последовательности A – B – C (где A имеет желтый цвет и является первой, B – зеленый и является второй, а C – красный и является третей) и классический вариант обратной последовательности C – B – A. Но, помимо них на практике могут встречаться и другие варианты, прямого: B – C – A, C – A – B, и обратного чередования: A – C – B, B – A – C. Соответственно, в каждом из приведенных примеров чередование фаз будет начинаться с первой.

Зачем нужно учитывать порядок фаз?

Последовательность чередования играет значительную роль в таких ситуациях:

  • При параллельном включении в работу – ряд устройств (трансформаторы, генераторы и прочие электрические машины), могут соединяться в параллельную работу для повышения надежности системы или для обеспечения большего резерва мощности. Но, в случае неправильного подключения из-за соединения разноименных фаз произойдет короткое замыкание.
  • При подключении трехфазного счетчика – так как его работа основана на совпадении фаз с соответствующими выводами прибора, то при нарушении правильности подключения может произойти сбой и самопроизвольное движение в отсутствии какой-либо нагрузки. Из-за чего такое подключение электросчетчика приведет к необходимости оплаты потребителем киловатт, которые он не расходовал.
  • При включении двигателя – следование фаз в сети определяет для электрической машины и направление вращения двигателя. В случае отсутствия правильной фазировки изменится и направление движения элементов, механически соединенных с ротором. Из-за чего может произойти нарушение технологического процесса или возникнуть угроза жизни персонала.

С целью предотвращения негативных последствий от перекоса фаз и других несовпадений, на практике выполняют проверку чередования и устанавливают защиту.

Как выполнить проверку?

Проверка может производиться несколькими способами. Целесообразность выбора того или другого варианта осуществляется в зависимости от параметров электрической сети и задач, которые необходимо решить. Так чередование можно узнать при помощи фазоуказателя, мегаомметра, мультиметра или по расцветке изоляции кабеля. Рассмотрите каждый из вариантов более подробно.

С помощью фазоуказателя

По принципу действия, фазоуказатель можно сравнить с обычным асинхронным двигателем. Рассмотрим в качестве примера наиболее распространенную модель фазоуказателя — ФУ-2 .

Рисунок 3: Принципиальная схема работы ФУ-2

Как видите на рисунке 3, у указателя последовательности фаз присутствуют три обмотки, которые подсоединяются к одноименным фазам в сети или устройстве. Между обмотками находится вращающийся ротор Р, который приводит в движение диск фазоуказателя Д.

На практике, после подсоединения к зажимам фазоуказателя соответствующих проводов, работник нажимает кнопку К, которая замыкает цепь обмоток. В зависимости от порядка чередования фаз, диск Д начнет вращаться по часовой или против часовой стрелки.

На самом приборе имеется стрелка, показывающая прямое чередование. Если при нажатии кнопки диск вращается в том же направлении, что и показано стрелкой, то эта трехфазная нагрузка имеет прямое чередование. Если диск начнет крутиться в противоположную от стрелки сторону, то чередование фаз обратное. Следует отметить, что этот прибор не способен определить, какая фаза на каком проводе находится, он может определить лишь порядок их чередования.

С помощью мегаомметра

Как один из способов прозвонки жил широко используется прибор для измерения сопротивления – мегаомметр.

Рис. 4: Прозвонка кабеля мегаомметром

Посмотрите на рисунок 4, для реализации такой схемы, вам понадобится отключить кабель от сети и от потребителя. При этом, с одного конца кабеля фазы поочередно соединяются с землей З, как и металлическая оболочка у бронированных кабелей. С другой стороны присоединяется мегаомметр М, один из зажимов которого заземляется, а второй поочередно подводится к каждой из фаз. На той, где мегаомметр покажет нулевое сопротивление, и будет одним проводом.

На концах одноименного провода устанавливается соответствующая маркировка. Недостатком такого способа прозвонки является большой объем трудозатрат. Так как каждая жила заземляется поочередно, после чего выполняется проверка. При этом на обоих концах кабеля должны устанавливаться ответственные сотрудники. Между ними должна обеспечиваться связь, для согласования действий и предупреждения подачи напряжения на работников.

По расцветке изоляции жил

Если в каком-либо устройстве имеется подключение разноцветными жилами, то фазировку оборудования можно выполнять по цветам. Для определения нахождения одноименных напряжений тех или иных фаз необходимо добраться до каждой жилы кабеля. Если на каждом проводе присутствует изоляция разных цветов, то сравнив их с местом присоединения к трансформатору или распедустройству, можно определить, где какая фаза находится.

Недостатком такого метода следует отметить ложную цветовую маркировку, так как производитель кабеля не всегда обеспечивает один и тот же цвет для каждой жилы на всей протяженности провода. Поэтому предварительно его все равно рекомендуется прозванивать и маркировать.

При помощи мультиметра

Для этого метода используется обычный мультиметр. Он наиболее актуален в тех ситуациях, когда необходимо включить в параллельную работу два смежных устройства и их шины расположены поблизости.

Рис. 5: фазировка мультиметром

Необходимо выполнить сравнение фазных напряжений в соседних линиях, на рисунке 5 приведен пример для фаз А и А1. Коммутационная аппаратура при этом должна быть разомкнута. Перед тем как пользоваться мультиметром, на нем выставляется класс напряжения, для линии, на которой будет производиться замер. Щупы подводятся к выводам фаз, при этом их изоляция должна обеспечивать защиту от напряжения, а на руки надеваются диэлектрические перчатки.

Если при подключении щупов к выводам A — A1 стрелка останется на нулевой отметке, то это значит, что фазы одинаковые. Если стрелка отклонится на величину линейного напряжения, вы меряете разноименные фазы.

Защита от нарушения порядка чередования

Для защиты электрического оборудования от неправильного чередования на практике применяется реле контроля фаз. Это реле настроено на работу двигателя или другого устройства в его прямом включении. Если из-за каких-то неполадок или неправильного подключения чередование нарушается, то трехфазное реле сразу отключит устройство. Его работа основана на анализе трехфазных токов и напряжений и последующем контроле этих параметров.

Подключение может выполняться через трансформаторы тока или напрямую, в зависимости от модели и класса напряжения в сети. Такая защита нашла широкое применение при подключении счетчиков индукционного типа, электрических машин и другого высокоточного оборудования.

Тематическое видео



Как проверить фазировку кабеля

Процесс определения соответствия (чередования) фаз кабельных линий от источников электропитания к потребителю, при трёхфазном, параллельном подключении, называется фазировкой или фазированием. Основной задачей данной операции, является определение напряжения тока на каждой из токоведущих жил электрооборудования на предмет совпадения с напряжением на соответствующих жилах электросети

Предварительная и прямая фазировка

Предварительное фазирование проводится непосредственно в процессе монтажа, перед первым включением электрооборудования. А также в случае ремонта оборудования или силового кабеля, когда есть вероятность изменения очерёдности фаз, и их несоответствия между собой и шинами распределительного устройства. Работы по предварительной фазировке проводяться исключительно на электрооборудовании находящееся без напряжения.

А при вводе в работу электрооборудования, в обязательном порядке производится косвенное или прямое фазирование оборудования. Поскольку, только проведение данной операции, может дать гарантию соответствия фаз всех элементов электроцепи.

Выбор метода, прямой или косвенной фазировки, главным образом, зависит от вида оборудования и класса напряжения электросети. Принципиальным отличием методов, является то, что прямой метод производится на рабочем напряжении и является более наглядным.

Косвенные методы

При вводе в эксплуатацию новых распределительных устройств (РУ)

Данный метод сводится к проверке соответствия маркировки (расцветки) выводов вторичных обмоток трансформаторов напряжения, с указаниями ПУЭ. Наиболее объективным способом проверки данной операции является пофазная подача электрического тока с проверкой на соответствие расцветки фаз в РУ, фазам энергосистемы. Вместе с тем проверяется маркировка вторичных цепей по появлению напряжения на выводах той или иной фазы трансформатора напряжения.

Читать еще:  Sn00pi › Блог › Как проверить ВВ провода? Поиск неисправностей

Вторичные обмотки других трансформаторов напряжения в дальнейшем фазируют с трансформатором, для которого маркировка уже проверена. Выбор метода зависит от схемы вторичной обмотки: заземлена ли ее нулевая точка или одна из фаз.

В первом случае для фазировки применяют вольтметр со шкалой на двойное фазное напряжение, во втором — на двойное линейное напряжение. Например, необходимо проверить совпадение фаз двух трансформаторов напряжения, включенных со стороны высокого напряжения (ВН) на разные системы шин (или секции), то для этого шины соединяют между собой включением шиносоединительного (или секционного) выключателя и затем производят фазировку.

При двойной системе шин

В данном случае фазировку проводят на вторичном напряжении трансформаторов. Для этого при включённом шиносоединительный выключателе с помощью вольтметра, устанавливают совпадение фаз вторичных напряжений трансформаторов рабочей и резервной систем шин. Затем одну из систем переводят в резерв, отключают выключатель соединяющий шины и снимают с её привода оперативный ток. К резервной линии подключают цепь, фазировку которой нужно произвести и на неё подают ток.

Затем производят фазировку на выводах вторичных цепей трансформаторов напряжения рабочей и резервной систем шин. С помощью вольтметра в последовательности (рис 1.): a1-a2; a1-b2; а12; b12; b1-b2; b1-c2, производят измерения. При нулевых показаниях вольтметра, включают шиносоединительный выключатель, а сфазированную цепь включают на параллельную работу.

Схема фазировки при двойной системе шин (Рис. 1)

При положительных показаниях прибора фазируемую цепь отключают и производят пересоединение токопроводящих частей. Заново производят процесс фазировки, добиваясь соответствия фаз резервной и фазируемой цепи.

Прямой метод фазировки цепи 6-10 кВ

В качестве указателя напряжения применяются УВН-80, УВНФ и другие. В обязательном порядке проводится проверка исправности указателя напряжения. Осуществляется внешний осмотр: на целостность лакового покрытия, наличие штампа о проведении периодических испытаний, целостность изоляции соединительного кабеля.

Заказать периодические высоковольтные испытания указателей и других СИЗ в электролаборатории МЕТТАТРОН.
Оставить заявку

После внешнего осмотра приступают к проверке исправности указателя.

УВН 80 2М с ТФ — указатель высокого напряжения с трубкой фазировки

Для этого щупом трубки, содержащей резистор, касаются заземления, а щуп другой трубки на несколько секунд подносят к одной из фаз цепи, которая заведомо находится под напряжением, индикаторная лампочка должна загореться (рис. 2а). Затем на насколько секунд щупами обеих трубок касаются одной токоведущей части (рис. 2б). Если лампочка не загорелась, значит указатель исправен и можно проверить наличие напряжения на всех фазах. Для этого щуп трубки с резистором соединяют с заземлением, а щупом другой трубки поочередно касаются всех шести зажимов разъединителя (рис. 2в). В каждом случае сигнальная лампа должна гореть.

Схема прямой фазировки (Рис. 2)

Процесс непосредственно самой фазировки заключается в подключении одного щупа трубки указателя напряжения, к любому крайнему выводу электроустановки, а щупом другой трубки поочерёдно касаются трёх выводов фазируемой линии (рис. 2г).

Если при подключении щупов указателя, лампочка не горит, то это означает, что разность потенциалов фаз между цепями отсутствует, а фазы являются одноимёнными (согласно включению). Найдя первую фазную пару, можно приступать к дальнейшей фазировке. При нахождении второй пары, проверка третьей не обязательна и является контрольной.

Далее одноимённые фазы соединяют на параллельную работу, при условии расположения одноимённых фаз друг против друга. В противном случае производится переподключение фаз в порядке совпадения расположения фаз.

Требования к безопасности при проведении фазировки

К производству работ допускается бригада состоящая минимум из двух электромонтёров. При этом, у одного из них должна быть группа по электробезопасности не ниже 4-ой. Он выполняет контроль за производством работ и вносит записи о выполненных операциях в бланке переключений и заполняет протокол фазировки.

Скачать образец протокола фазировки — форма 14.doc

Второй электромонтёр (оператор), который непосредственно проводит измерения, должен иметь группу не ниже 3-ей. В отдельных случаях, при необходимости, измерения может проводить старший электромонтёр. Все измерения производятся исключительно в диэлектрических перчатках, которые также как и УВН должны иметь штамп о проведении периодических испытаний. Перед фазировкой перчатки необходимо проверить на механические проколы и трещины, путём скручивания краг в сторону пальцев. Не допускается проведение измерений в условиях дождя, снега или густого тумана.

Онлайн журнал электрика

Статьи по электроремонту и электромонтажу

  • Справочник электрика
    • Бытовые электроприборы
    • Библиотека электрика
    • Инструмент электрика
    • Квалификационные характеристики
    • Книги электрика
    • Полезные советы электрику
    • Электричество для чайников
  • Справочник электромонтажника
    • КИП и А
    • Полезная информация
    • Полезные советы
    • Пусконаладочные работы
  • Основы электротехники
    • Провода и кабели
    • Программа профессионального обучения
    • Ремонт в доме
    • Экономия электроэнергии
    • Учёт электроэнергии
    • Электрика на производстве
  • Ремонт электрооборудования
    • Трансформаторы и электрические машины
    • Уроки электротехники
    • Электрические аппараты
    • Эксплуатация электрооборудования
  • Электромонтажные работы
    • Электрические схемы
    • Электрические измерения
    • Электрическое освещение
    • Электробезопасность
    • Электроснабжение
    • Электротехнические материалы
    • Электротехнические устройства
    • Электротехнологические установки

Проверка чередования фаз силовых кабелей

Обыкновенные методы фазировки кабеля

Простым методом поиска в конце кабеля токоведущих жил, соответственных определенным фазам его начала, является метод проверки («прозвонки») жил с помощью телефонных трубок, к примеру при проверке силовых кабелей, прокладываемых между разными помещениями станций и подстанций. Схема присоединения телефонных трубок показана на рисунке 1.

В качестве 1-го из проводов для установления связи используют заземленные конструкции (заземленную железную оболочку кабеля), к которым подсоединяют телефонные трубки. Дальше, с одной из сторон кабеля провод от батарейки соединяют с токоведущей жилой (допустим, фазой С).

Рис.1. Схема присоединения телефонных трубок при фазировке кабеля

С другой стороны кабеля вторым проводом от телефонной трубки попеременно касаются токоведущих жил, всякий раз подавая голосом сигнал в трубку. Обнаружив жилу, по которой будет получен отзыв проверяющего, ее отмечают как фазу С и в том же порядке продолжают поиск других жил. Вместо обычных телефонных трубок рекомендуется применение телефонных гарнитуров, использование которыми освобождает руки проверяющих для работы.

Для проверки чередования фаз довольно обширно используют мегаомметр, схема включения которого показана на рисунке 2. Для этого попеременно заземляют жилы сначала кабеля, а в конце создают измерение сопротивления изоляции жил относительно земли.

Рис.2. Схема присоединения мегаомметра при фазировке кабеля

Заземленную жилу обнаруживают по показаниям мегаомметра, потому что сопротивление ее изоляции на землю будет равно нулю, а 2-ух других жил — десяткам и даже сотням мегаом.

При всем этом методе проверки три раза устанавливают и снимают заземления. Не считая того, персонал, находящийся у концов кабеля, обязан иметь меж собой связь, чтоб координировать свои действия. Все это относится к недостаткам такового метода проверки.

Более совершенным методом фазировки кабеля является метод измерений по схеме, приведенной на рисунке 3.

Одну из 3-х жил кабеля (назовем ее фазой А) соединяют с заземленной оболочкой, другую жилу (фазу С) заземляют через сопротивление 8—10 МОм В качестве сопротивления обычно используют трубку с резисторами указателя УВНФ. Третью жилу (фазу В) не заземляют, она остается свободной. С другого конца кабеля мегаомметром определяют сопротивление жил относительно земли.

Разумеется, что фазе А будет соответствовать жила, сопротивление которой на землю равно нулю, фазе С — жила, имеющая сопротивление на землю 8 — 10 МОм, и фазе В — жила с бесконечно огромным сопротивлением.

Рис.3. Схема присоединения мегаомметра и дополнительного резистора при фазировке кабеля

Техника безопасности при выполнении фазировки кабелей

По условиям безопасности при производстве фазировки кабелей фазировка делается лишь на отключенной со всех боков кабельной полосы. При всем этом должны быть приняты меры против подачи на кабель рабочего напряжения. До фазировки с помощью мегаомметра весь персонал, находящийся поблизости кабеля, предупреждается о недопустимости прикосновения к токоведущим жилам.

Соединительные провода от мегаомметра обязаны иметь усиленную изоляцию (к примеру, провод типа ПВЛ). Присоединение их к токоведущим жилам делается после того, как кабель будет разряжен от емкостного тока. Для снятия остаточного заряда кабель заземляют на 2—3 мин.

Проверка чередования фаз силовых кабелей по раскраске изоляции жил

Токоведущие жилы силовых кабелей с изоляцией из пропитанной бумаги расцвечивают навитыми на их изоляцию лентами цветной бумаги. Одну из жил, обычно, обертывают красной лентой, другую — голубой, а изоляцию третьей специально не расцвечивают — она сохраняет цвет кабельной бумаги.

При изготовлении кабелей жилы скручивают меж собой так, что в протяжении 1-го шага скрутки любая жила меняет свое положение в площади сечения, делая один оборот вокруг оси кабеля. Рассматривая площади сечений с обоих концов кабеля, можно найти, что по отношению к наблюдающему фазы в сечениях чередуются в различных направлениях. Эти особенности конструкции кабелей учитывают при фазировке и соединении жил.

Чередования фаз в сечениях кабеля. Стрелками показаны направления обхода фаз.

Допустим, что нужно произвести фазировку и соединение жил 2-ух концов трехфазного кабеля. Фазировка
в этом случае тривиально ординарна. Она состоит в том, что из 6 жил выбирают пары, имеющие схожую расцветку. Эти жилы отмечают и готовят к соединению. Для соединения нужно, чтоб оси жил схожей раскраски
совпадали, а направление чередования фаз в площади сечения 1-го конца кабеля было зеркальным отражением другого.

Некие варианты чередования расцвеченных жил в сечениях 2-ух кабелей: а — соединение жил схожего цвета может быть; б — то же после поворота сечения на 180°; в — соединение 3-х жил по их цветам нереально.

При укладке кабелей в траншею возможность совпадения осей жил невелика. В большинстве случаев фазы 1-го цвета оказываются повернутыми относительно друг друга на некий угол, значение которого может доходить до 180°.

Кабели с несовпадающими осями идиентично расцвеченных жил при монтаже (либо ремонте) подкручивают вокруг оси, пока не будет зафиксировано четкое совпадение осей жил. Но сильное подкручивание не безопасно. Оно вызывает механические повреждения в защитных и изоляционных покрытиях кабелей и тянет за собой понижение надежности в работе.

Для того чтоб по цвету совпали все соединяемые меж собой жилы, направления чередований фаз в сечениях кабелей должны быть обратными. Это проверяется заблаговременно, до укладки кабеля в траншею, если на его концах отсутствуют метки с указанием направления чередования фаз. Заметим, что у кабелей с чередованием фаз, направленным в одну сторону, по цвету совпадает только одна жила, а две другие не могут совпадать.

Преимущество метода соединения кабелей идиентично расцвеченными жилами заключается в том, что фазировка тут не является самостоятельной операцией, она производится в процессе самих работ,
а процесс прокладки, ремонта и эксплуатации кабелей приобретает более точную систему и просит наименьших трудозатрат.

Проверка чередования фаз силовых кабелей прибором ФК-80

Для фазировки на две жилы кабеля на питающем его конце накладываются два излучателя: на фазу А — излучатель непрерывного сигнала И1, на фазу В — излучатель прерывающегося сигнала И2, фаза С остается свободной. Заземление с кабельной полосы не снимается — оно не мешает проведению фазировки. На время фазировки либо за длительное время ранее прибор ФК-80 врубается в сеть 220 В. Излучатели наводят в жилах кабеля надлежащие ЭДС. На другом конце полосы телефонные трубки подсоединяют одним проводом к заземлению (заземленной оболочке кабеля), а другим проводом попеременно касаются токоведущих жил кабеля.

Применение прибора ФК-80 при фазировке кабеля

Принадлежность жилы кабеля той либо другой фазе определяется по характеру звука в телефонных трубках. Если будет услышан непрерывный сигнал — трубки подключены к фазе А, прерывающийся — к фазе В и отсутствие звука укажет, что трубки подключены к фазе С. Наводимая в жилах кабеля ЭДС звуковой частоты (ее значение не превосходит 5 В) не является помехой для выполнения ремонтных работ на кабельной полосы.

Когда проводится проверка кабельных линий лабораторией?

Испытания кабельных линий проводятся со следующей периодичностью:

  • ежегодно — для силовых питающих и распределительных линий с резиновой изоляцией, обслуживающих объекты жизнеобеспечения населенных пунктов и других важных потребителей;
  • каждые 3 года — для основных питающих линий 6–35 кВ;
  • каждые 5 лет — для резервных линий.
  • Внеочередные – при аварийном отключении электрооборудования.

Испытание кабеля повышенным напряжением проводится для оценки соответствия величины сопротивления, коэффициента абсорбции и других параметров изолирующей оболочки установленным нормам. В процессе испытательных мероприятий выявляются дефекты, способные спровоцировать аварию и выход из строя дорогостоящего электрооборудования.

Читать еще:  Локальная сеть своими руками: Выбор и обжим сетевого кабеля

Определяемые характеристики.

  • Проверка целостности и фазировки жил кабеля;
  • Измерение сопротивления изоляции;
  • Испытание повышенным напряжением выпрямленного тока;
  • Испытание повышенным напряжением переменного тока частотой 50Гц.
  • Измерение распределения тока по одножильным кабелям;

Порядок проведения испытаний и измерений.

  • Изучение проектной документации.
  • Ознакомление с паспортами проверяемого оборудования.
  • Выполнение организационных и технических мероприятий при проведение измерений в действующих электроустановках.
  • Проверка работоспособности измерительных приборов в соответствие с инструкциями по эксплуатации.
  • Проведение испытаний в объеме требований главы 1.8 ПУЭ.

Методы испытаний.

1. Проверка целости и фазировки жил кабеля.

Определение целости жил и фазировка КЛ производится после окончания монтажа, перемонтажа муфт или отсоединения жил кабеля в процессе эксплуатации.

Определение целости жил кабелей напряжением до 10кВ производится мегаомметром. После включения КЛ под напряжение производится проверка правильности ее фазировки.

Сущность фазировки под напряжением заключается в определении соответствия фазы кабеля, находящейся под напряжением от распределительного устройства с противоположного конца кабеля, предполагаемой одноименной фазе шин распределительного устройства, где производится фазировка. Для фазировки КЛ 6 и 10 кВ под напряжением применяются указатели напряжения 10 кВ в комплекте с добавочным сопротивлением рисунок №1. Целость и совпадение обозначений фаз подключаемых жил кабеля должна соответствовать.

Рис. №1 Фазировка кабельных линий под напряжением.

а – соответствие фаз кабеля и шин; б – разные фазы шин и кабеля в месте присоединения последнего; 1 – указатель напряжения; 2 – трубка сопротивления; 3 – провод; 4 – шина; 5 – концевая заделка; 6 – кабель; 7 – разъем спуска шин.

Измерение сопротивления изоляции.

Измерение сопротивления изоляции высоковольтных кабелей проводят на полностью отключенном кабеле.

Перед проверкой необходимо проверить надёжность заземления кабельных воронок, брони и подключить к переносному заземлению со специальными зажимами (крокодилами). Второй конец кабеля остаётся свободным, жилы должны быть разведены на достаточное расстояние (примерно 150 — 200 мм).

В случае невозможности обеспечить требуемое расстояние между жилами и жил кабеля до заземлённых частей оборудования, на жилы надеваются изолирующие колпаки или накладки.

Перед началом измерений необходимо убедиться, что на испытываемом объекте нет

напряжения, тщательно очистить изоляцию от пыли. Измерения следует производить при устойчивом положении стрелки прибора; для этого нужно быстро, но равномерно, вращать ручку генератора (120 об/мин) в течение 60 сек. Сопротивление изоляции определяется показанием стрелки прибора мегаомметра. Для присоединения мегаомметра к испытываемому аппарату или линии следует применять раздельные провода с большим сопротивлением изоляции (не менее 100 мОм).

Мегаомметром поочерёдно измеряется сопротивление жил, при этом на свободные от измерения жилы устанавливается переносное заземление. Схема для измерения сопротивления изоляции силовых кабельных линий изображена на рисунке №2

Рис. №2 Схема измерения сопротивления изоляции силового кабеля.

Измерение сопротивления изоляции силовых и контрольных кабелей напряжением до 1000В проводят аналогично, при этом измерения производятся между каждыми двумя проводами (между фазами, между фазными жилами и нулем, между фазными жилами и защитным проводником и между нулевым и защитным проводником). При измерении разрешается объединять нулевой рабочий и нулевой защитный проводники. У четырехжильных кабелей измерение сопротивления изоляции нулевого проводника производится относительно заземленных частей электрооборудования.

Перед первыми или повторными измерениями КЛ должна быть разряжена путем соединения всех металлических элементов между собой и землей не менее чем на 2 мин. Сопротивление изоляции кабелей до 1 кВ должно быть не менее 0,5 МОм. Для силовых кабелей выше 1 кВ сопротивление изоляции не нормируется. Измерение следует производить до и после испытания кабеля повышенным напряжением.

Испытание повышенным напряжением выпрямленного тока.

Испытание изоляции кабельных линий повышенным напряжением выпрямленного тока производится с целью выявления местных сосредоточенных дефектов, которые не обнаруживаются при измерении мегаомметром, путем доведения их в процессе испытания до пробоя. Такое испытание повышенным напряжением выпрямленного тока производится от специальной установки типа: АИД-70, СКАТ-70 и т.п.

Напряжение от установки прикладывается поочередно к каждой фазе кабеля, при заземлении двух других фаз и оболочки кабеля (аналогично проведению измерения изоляции мегаомметром). Схема испытания кабеля повышенным напряжением выпрямленного тока изображена на рисунке №3.

Рис. №3 Испытание кабеля повышенным напряжением выпрямленного тока.

Изоляция одножильных кабелей без металлического экрана (оболочки, брони),

проложенных на воздухе, не испытываются. Изоляция одножильных кабелей с металлическим экраном (оболочкой, броней) испытываются между жилой и экраном. Изоляция многожильных кабелей без металлического экрана (оболочки, брони) испытываются между каждой жилой и остальными жилами, соединенными между собой и землей.

Изоляция многожильных кабелей с общим металлическим экраном (оболочкой, броней) испытывается между каждой жилой и остальными жилами, соединенными между собой и экраном (оболочкой, броней). При всех указанных выше видах испытаний металлические экраны (оболочки, броня) должны быть заземлены. Пластмассовые оболочки (шланги) кабелей, проложенных в земле, испытываются между отсоединенными от земли экранами (оболочками) и землей. Пластмассовые оболочки (шланги) кабелей, проложенных на воздухе не испытываются. Значение испытательного напряжения принимается в соответствии с таблицей №2

Испытательное напряжение кВ, для силовых кабелей.

Вид испытанийИспытательное напряжение (кВ) для кабельных линий
Кабели с бумажной изоляцией
До 1кВ6кВ10кВ
П63660
К2,53660
М3660
Вид испытанийКабели с пластмассовой изоляцией
До 1кВ*6кВ10кВ
П3,53660
К3660
М3660
Вид испытанийКабели с резиновой изоляцией
До 3кВ6кВ10кВ
П61220
К61220
М6**12**20**

* — испытание повышенным напряжением одножильных кабелей с пластмассовой изоляцией без брони (экранов), проложенных в воздухе, не производится.

** — после ремонтов, не связанных с перемонтажом кабеля, изоляция проверяется мегаомметром на напряжение 2500В, а испытание повышенным выпрямленным напряжением не производится.

Для кабелей на напряжение до 10кВ с бумажной и пластмассовой изоляцией длительность приложения полного испытательного напряжения при приёмосдаточных испытаниях 10 минут, в эксплуатации 5 минут. Для кабелей с резиновой изоляцией на напряжение 6-10кВ длительность приложения полного испытательного напряжения 5 минут.

Допустимые токи утечки в зависимости от испытательного напряжения и допустимые значения коэффициента асимметрии при измерении тока утечки приведены в таблице №3. абсолютное значение тока утечки не является браковочным показателем. Кабельные линии с удовлетворительной изоляцией должны иметь стабильные значения токов утечки. При проведении испытаний ток утечки должен уменьшаться. Если не происходит уменьшения тока утечки, а также при его увеличении или нестабильности, испытание производится до выявления дефекта, но не более чем 15 минут.

Допустимые токи утечки и значения коэффициента ассиметрии для силовых кабелей.

Кабели напряжением (кВ)Испытательное напряжение (кВ)Допустимые значения токов утечки (мА)Допустимые значения коэфф. ассиметрии
6360,28
10450,38
500,58
600,58

Разрешается техническому руководителю предприятия в процессе эксплуатации (М) исходя их местных условий как исключение уменьшать уровень испытательного напряжения для кабельных линий напряжением 6-10кВ до 0,4Uн.

Периодичность испытаний в процессе эксплуатации.

Кабели напряжением 2-35кВ:

а) 1 раз в год – для кабельных линий в течение первых 2 лет после ввода в эксплуатацию, а в дальнейшем:

  • 1 раз в 2 года – для кабельных линий, у которых в течение первых 2 лет не наблюдалось аварийных пробоев и пробоев при профилактических испытаниях, 1 раз в год для кабельных линий, на трассах которых производились строительные и ремонтные работы и на которых систематически происходят аварийные пробои изоляции;
  • 1 раз в 3 года – для кабельных линий на закрытых территориях (подстанции, заводы и т.д.);во время капитальных ремонтов оборудования для кабельных линий, присоединённых к агрегатам, кабельных перемычек 6-10кв между сборными шинами и трансформаторами в ТП и РП;

б) Допускается не проводить испытание:

  • Для кабельных линий длиной до 100 метров, которые являются выводами из РУ и ТП на воздушные линии и состоящих из двух параллельных кабелей;
  • Для кабельных линий со сроком эксплуатации более 15 лет, на которых удельное число отказов из-за электрического пробоя составляет 30 и более отказов на 100 километров в год;
  • Для кабельных линий, подлежащих реконструкции или выводу из работы в ближайшие 5 лет;

в) Допускается распоряжением технического руководителя предприятия устанавливать

другие значения периодичности испытаний и испытательных напряжений:

  • Для питающих кабельных линий на напряжение 6-10кВ со сроком эксплуатации более 15 лет при числе соединительных муфт более 10 на 1 километр длины;
  • Для питающих кабельных линий на напряжение 6-10кВ со сроком эксплуатации более 15 лет, на которых смонтированы концевые заделки только типов КВВ и КВБ и соединительные муфты местного изготовления, при значении испытательного напряжения не менее 4Uн и периодичности не реже 1 раза в 5 лет.
  • Для кабельных линий напряжением 20-35кВ в течение первых 15 лет испытательное напряжение должно составлять 5Uн, а в дальнейшем 4Uн.

6.3.8 Кабели на напряжение 3-10кВ с резиновой изоляцией:

  • в стационарных установках – 1 раз в год;
  • в сезонных установках – перед наступлением сезона;
  • после капитального ремонта агрегата, к которому присоединен кабель.

Измерение распределения тока по одножильным кабелям

На силовом кабеле измеряются токи, протекающие как в жилах, так и в металлических оболочках и броне. Измерения производятся токоизмерительными клещами.

В зависимости от материала оболочки, брони и положения кабеля в пространстве токи в них могут достигать 100% по отношению к току жилы и сильно влиять на нагрев кабелей. Одновременно с измерением токов при нагрузках, близких к номинальной, должны быть проведены измерения температуры наружных покровов кабелей, по которой может быть вычислена температура жилы. Эта температура должна измеряться в самом нагретом месте КЛ и не должна превосходить допустимую для данного места измерения. При неравномерности распределения токов более 10%, когда отдельные кабели лимитируют пропускную способность всей группы кабелей, должны быть приняты меры по выравниванию токов по фазам.

Проверка фазировки распределительных устройств и их присоединений

1. Вводная часть

1.1.Настоящий документ устанавливает методику выполнения: фазировки распределительных устройств и их присоединений согласно ПУЭ, п. 1.8.37.

1.2. Определяемые характеристики и условия испытаний. Для оценки возможности включения электрооборудования в работу, правильного подключения электрооборудования и правильной эксплуатации электроустановок производится:

— проверка целостности жил кабеля;

— фазировка жил кабеля;

— определение чередования фаз.

При проверке целостности и фазировки жил кабеля должны быть приняты все меры, предотвращающие случайное попадание опасного на­пряжения на проверяемые цепи.

2. Средства измерений

2.1. Мегаомметр MIC – 2500. Класс точности прибора ±3%, выражен­ный в виде приведенной относительной погрешности.

2.2. Индикатор наличия напряжения.

2.3 Вольтметр, класс точности 0,5.

3. Требования безопасности

3.1. Перед началом работ провести все организационные и технические мероприятия, согласно главе В.3.7 “Правил техники безопасности при эксплуа­тации электроустановок потребителей”, для обеспечения безопасного проведе­ния работ.

4. Требования к квалификации персонала

4.1. К работам допускается персонал, знающий требования НД на про­изводимые работы. Работы выполняет бригада, состоящая не менее чем из двух человек.

4.2. Руководитель работ должен иметь группу по электробезопасно­сти не ниже 4, а член бригады не ниже -3.

5. Подготовка к выполнению работ

5.1 Необходимо подготовить всю техническую документацию по про­веряемому устройству. Перед началом работ персоналу необходимо с ней ознакомиться.

5.2. С проверяемого объекта снять напряжение.

5.3. Приборы подготовить к работе согласно соответствующим инст­рукциям по эксплуатации.

6. Выполнение работ

При выполнении работ необходимо произвести следующие операции:

6.1. Проверить отсутствие напряжения.

6.2. Отсоединить кабель от шин РУ, щитка и т.п. с обеих сторон.

6.3. Заземлить одну из жил кабеля.

6.4. С противоположной стороны кабеля (предварительно убедив­шись, что измерения будут производиться на испытуемом кабеле), произве­сти измерение сопротивления изоляции жил кабеля относительно земли.

6.5. Жиле кабеля, сопротивление которой относительно земли будет равно 0, присвоить наименование (например, “фаза А”).

6.6. С обеих сторон кабеля на проверенную жилу нанести соответст­вующую маркировку.

6.7. Повторить до полного определения фазировки кабеля операции по п.п. 6.1.- 6.6.

6.8. При отсутствии надежной связи с землёй для фазировки раз­решается пользоваться другим кабелем, на котором отсутствует напряже­ние.

6..9. Недопустимо проведение работ на другом, соседнем и т. д. ка­беле, находящемся под напряжением. Во избежание этого необходимо пе­ред началом работ проверить отсутствие напряжения с обеих сторон про­веряемого и вспомогательного кабелей.

Читать еще:  Как правильно заменить патрон в люстре

6.10. Подключение кабеля к РУ производить согласно маркировке.

6.11. Перед включением силовых кабелей в работу, после предваритель­ной прозвонки, производится фазировка их под напряжением.

6.12. С одного конца на кабель подаётся рабочее напряжение, а с другого конца производится проверка соответствия фаз измерениями напряжений меж­ду одноимёнными и разноимёнными фазами. Фазировка производится с помо­щью вольтметра.

6.13. Фазируемые напряжения во избежание ошибочных суждений должны иметь одинаковые значения (допускаются отклонения не более 10%).

6.14. Проверка (измерения) производятся между всеми одноимёнными фазами, а также между всеми остальными фазами. Схема измерений при фазировке сило­вых кабелей показана на рис. 1.

6.15. Если при измерениях или проверке оказывается, что между одно­имёнными фазами А1-А2, В1-В2, С1-С2 напряжение отсутствует, а между раз­ноимёнными А1-В2, А1-С2, В1-С2, С1-А2, С1-В2 оно имеется и примерно оди­наково (рис 1), то такой кабель может быть включён в параллельную работу.

Как заказать услуги в нашей компании

Позвоните нам по номеру 8 (915) 208-27-05 или оставьте свой номер, чтобы мы могли вам перезвонить

Один звонок и наши специалисты приедут к вам в кратчайшие сроки.

Испытание и проверка силовых кабелей — Фазировка кабелей

Содержание материала

Для включения на параллельную работу нескольких кабелей, находящихся под напряжением от общего источника питания, должна быть определена полярность жил кабелей.
Определение полярности в цепях постоянного тока необходимо для правильного подключения полупроводниковых выпрямителей, входящих в схемы регулирования и измерения, и т. п.

В цепях переменного тока полярность зажимов, находящихся под напряжением, изменяется во времени с частотой источника питания. Однако и здесь имеются однополярные зажимы, полярность которых всегда одинакова, а изменение ее во времени происходит синхронно на всех зажимах.
Такие однополярные зажимы или выводы принадлежат одной и той же фазе общего источника питания (генератор или параллельно работающие генераторы), а нахождение их называется фазировкой.
Определение однополярных выводов в цепях постоянного тока производится с помощью вольтметра постоянного тока, который подключается на проверяемые зажимы. При одинаковом отклонении стрелки вольтметра полярность каждого испытываемого зажима и полярность соединенного с ним вывода вольтметра одинакова.

Фазировка параллельно включенных кабелей

Если в цепи постоянного (или переменного) тока имеются параллельно включенные кабели, то правильность их включения должна быть проверена до подачи на них напряжения. Для этого необходимо убедиться в том, что между разными полюсами (фазами) нет короткого замыкания и что подсоединение обоих концов кабелей к шинам произведено в соответствии с маркировкой или расцветкой шин.

Рис. 7. Фазировка кабелей при отсутствии напряжения.

Проверка производится прозвонкой между полюсами (фазами) и каждого полюса (фазы) на землю при помощи батарейки с лампочкой 3,5 в или омметра по схеме на рис. 7.

ФАЗИРОВКА КАБЕЛЕЙ И ПЕРЕМЫЧЕК НИЗКОГО НАПРЯЖЕНИЯ

Фазировка вновь смонтированного кабеля с кабелем, находящимся под напряжением, при напряжении до 500 в переменного тока производится при помощи вольтметра (по схеме на рис. 8) или группы соединенных контрольных ламп. Для этого вновь смонтированный кабель с одного конца подключается к шинам, а на другом его конце производится измерение напряжения между одноименными фазами действующего и фазируемого кабеля с обязательной проверкой наличия напряжения между разноименными фазами.

Рис. 8. Фазировка кабелей до 500 в при наличии напряжения.

Кабели сфазированы правильно, если напряжение между одноименными фазами равно нулю, а напряжение между разноименными фазами равно линейному напряжению.

ФАЗИРОВКА КАБЕЛЕЙ РАДИАЛЬНЫХ ЛИНИЙ И ПЕРЕМЫЧЕК ВЫСОКОГО НАПРЯЖЕНИЯ

Фазировка кабелей высокого напряжения производится высоковольтным указателем напряжения или трансформаторами напряжения, в том числе переносными, применяемыми в установках до 10 кВ.
Для фазировки используются два указателя напряжения (рис. 9). В одном из них вместо конденсатора и неоновой лампы внутрь вставлены омические сопротивления в 3—4 МОм (для 6 кВ) и 5—7 МОм (для 10 кВ).

Один конец фазируемого кабеля присоединяется к источнику напряжения. Фазировка производится на выводах отключенного выключателя с другого конца кабеля.
Перед фазировкой необходимо вначале коснуться крючком трубки с неоновой лампой части, находящейся под напряжением. При этом лампа должна загореться. Затем, не снимая первого крючка, следует коснуться той же части крючком второй трубки с сопротивлением.

Рис. 9. Фазировка кабелей и кабельных перемычек напряжением до 10 кВ методом индикатора с добавочным сопротивлением.
Лампа при этом должна погаснуть. Этим проверяется исправность действия прибора. После указанной операции крючок указателя подносится к шинному выводу выключателя, а крючок трубки с сопротивлением — к кабельному выводу. Горение лампы показывает, что фазы разноименные, а ее потухание — что фазы одноименные.
Крючки указателя и трубки сопротивления приближаются на расстояние 1—2 см к соответствующим зажимам, которые требуется сфазировать. При наличии свечения продолжительность нахождения указателей под напряжением ввиду малой термической устойчивости вмонтированных в трубку сопротивлений не должна превышать 10—15 сек. Для более точного определения разности потенциалов при отсутствии свечения допускается касание крючками трубок зажимов аппаратов, между которыми производится проверка фазировки.

Проводник, соединяющий указатель напряжения с трубкой добавочного сопротивления, должен быть гибким, иметь надежную изоляцию (например, автотракторные провода типа ПВЛ и ПВГ) и наконечники, приспособленные для присоединения к металлическим зажимам указателя напряжения.
Трубки с добавочным сопротивлением должны быть чистыми, храниться в специальных чехлах, в закрытых помещениях и подвергаться периодической проверке в лаборатории наравне с другим защитными средствами техники безопасности.

Рис. 10. Схема фазировки линий при помощи стационарных трансформаторов напряжения.
Лица, производящие испытания, должны быть в резиновых перчатках и ботах, проверенных по действующим нормам.

С помощью стационарных трансформаторов напряжения (рис. 10) можно производить фазировку цепей любого напряжения. По схеме на рис. 10,а при включении секционного выключателя и отключенной фазируемой линии предварительно проверяется фазировка трансформатора напряжения. По схеме на рис. 10,б при отключенном секционном выключателе и включенной на резервную секцию фазируемой линии производится фазировка линии с системой шин. Нулевое показание вольтметра указывает на одноименность фаз линии и системы шин. По этой схеме вместо трансформаторов напряжения могут быть использованы силовые трансформаторы, имеющие одинаковую группу соединений и питающиеся от разных секций.

Рис. 11. Фазировка кабельной линии и перемычки при помощи переносного измерительного трансформатора напряжения.

Однофазный измерительный трансформатор напряжения, рассчитанный на линейное напряжение, при помощи изолирующих рукояток подключается поочередно между зажимами фаз системы шин и фазируемого кабеля (рис. 11). Нулевое показание вольтметра указывает на одноименность фаз.

ТЕХНИКА БЕЗОПАСНОСТИ

В соответствии с правилами техники безопасности при эксплуатации электротехнических установок промышленных предприятий все измерения, производимые с помощью переносных приборов, за исключением измерений специальными приборами в установках напряжением свыше 1 000 В, производятся через стационарные измерительные трансформаторы, а при отсутствии последних— через переносные трансформаторы. Под специальными приборами подразумеваются переносные приборы, специально изготовленные для измерений под напряжением свыше 1 000 в.
В установках напряжением до 10 кВ присоединение и отсоединение вольтметров, переносных трансформаторов напряжения и специальных приборов, не требующих разрыва первичной цепи, допускается производить под напряжением при условии применения проводов с высокой изоляцией и специальных наконечников в виде крючков с изолированными рукоятками. Указанные операции должны производиться под непосредственным руководством работника, имеющего пятую квалификационную группу.
При напряжении установки свыше 1 000 в расстояние от места захвата до ввода провода в рукоятку должно быть не менее 200 мм, а общая длина захвата до конца, присоединяемого к токоведущим частям — не менее 500 мм.
Провода, которыми переносные приборы и измерительные трансформаторы присоединяются к первичным цепям, должны быть одножильными многопроволочными с изоляцией, соответствующей напряжению первичной цепи. Сечение их должно соответствовать измеряемой величине тока, но не должно быть менее 2,5 мм 2 .
Провода, находящиеся под напряжением, не должны касаться заземленных частей и других фаз. Они должны быть возможно короче, прочно соединены с основной цепью и при необходимости должны укрепляться на изолирующей подставке.
Корпуса проводов, изготовленные из непроводящего материала, должны быть надежно изолированы от земли, а металлические корпуса приборов и кожуха трансформаторов заземлены. Заземленные приборы ставить на изолирующую подставку не разрешается. Переносные приборы должны располагаться таким образом, чтобы при снятии их показаний опасное приближение к частям, находящимся под напряжением, было исключено.
При работах с трансформаторами напряжения сначала должна быть собрана схема на стороне низкого напряжения, а затем произведено подключение трансформатора со стороны высокого напряжения. Подключение надо производить в очках, диэлектрических перчатках и ботах или стоя на изолирующей подставке. Во время проведения измерений касаться включенных трансформаторов, приборов, сопротивлений и проводов запрещается. Всю измерительную установку следует оградить, а на ограждения повесить плакаты, предупреждающие о наличии напряжения.
На кабельных линиях всех напряжений согласно ПУЭ должны измеряться сопротивления заземлений концевых заделок, а также металлических конструкций кабельных колодцев и подпиточных пунктов (на линиях напряжением 110—220 кВ).
Так как эти элементы оборудования присоединяются к существующему и проверенному заземляющему устройству через заземляющие проводники, соединяющие заземленные части электроустановки с заземлителем, проверка заземления в данном случае сводится к замеру сопротивления заземляющей проводки.
Замер указанного сопротивления выявляет явные повреждения и плохие контакты в ней.
В качестве измерительного прибора для установления связи заземляющей проводки с заземлителем можно использовать мосты типов ММВ или УМВ, а также специальный прибор для измерения сопротивления заземляющей проводки типа Мз13.
Для измерения сопротивления проводов и контактов может быть использован также измеритель заземления типа МС-07. Для этого зажимы и Е2 попарно соединяют перемычками и к ним подключают измеряемый участок (рис. 12,а).

Рис. 12. Схема измерения сопротивления заземляющих проводников измерителем заземления типа МС-07.

При использовании прибора типа МС-07 влияние сопротивления соединительных проводов может быть исключено, если схему собрать по рис. 12,6. Однако при малых измеряемых сопротивлениях прибор МС-07 дает большую погрешность. При пользовании мостами типов ММВ и УМВ из результатов измерения необходимо вычесть сопротивление соединительных измерительных проводов.
При применении прибора типа Мз13 необходимо пользоваться заводской инструкцией. Этот прибор представляет собой обыкновенный омметр, снабженный струбциной для подключения к заземляющей проводке и щупом для создания контакта в месте заземления концевых заделок кабеля или конструкции кабельных колодцев и подпиточных пунктов.
Питание прибора производится от помещенного внутри сухого элемента или от внешнего источника постоянного тока напряжения 1,4 в.
При использовании соединительных проводов большей длины и меньшего сечения, чем указаны в заводской инструкции по измерению прибором типа Мз13, сопротивление этих проводов необходимо определить замыканием «на себя» и исключить из измеренного общего сопротивления.
В случае отсутствия приборов типов ММВ, УМВ, Мз13, МС-07 можно пользоваться амперметром, градуированным в омах по схеме рис. 13.

Рис. 13. Схема измерения сопротивления заземляющих проводников амперметром, отградуированным в омах.

Как видно из рис. 13, кроме отградуированного в омах амперметра схема включает понизительный трансформатор Т, добавочное ДС и регулировочное PC сопротивления. В качестве источника питания может быть использован котельный трансформатор со вторичным напряжением 12 в. Величина добавочного сопротивления определяется величиной вторичного напряжения из условия необходимости создания тока в пределах 10 а.
Если в измерительной схеме будет проходить ток порядка 10 а, то плохой контакт может быть обнаружен не только по величине сопротивления, но и по его нагреву.
Для исключения из показания прибора сопротивления соединительных проводов и добавочного сопротивления перед измерением вывод Г прибора подключается к точке А магистрали (пунктир) и с помощью регулировочного сопротивления стрелка прибора устанавливается на нуль. Величина добавочного и регулировочного сопротивлений подгоняются при производстве измерений. Рекомендуется брать величины добавочного сопротивления 0,6—0,8 Ом, регулировочнога — около 0,2 Ом. При этом погрешность измерений из-за колебаний сетевого напряжения, неплотности контакта и индуктивности магистрали и прочих факторов колеблется в пределах ±20%, что, однако, не мешает правильной оценке качества заземления.
Ниже приведена форма протокола проверки сопротивления заземляющей проводки.
ПРОТОКОЛ
проверки наличия цепи между заземлителями и заземляемыми элементами

Наименование защищаемого оборудования (обозначение по схеме)

Характеристика заземляющих проводников (стальные полосы. оболочки кабелей, конструкции)

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector