Astro-nn.ru

Стройка и ремонт
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Удельное полное сопротивление кабеля

Сопротивление кабеля.

Данная статья поможет вам рассчитать сопротивление кабеля. Расчет можно выполнить по формулам, либо по данным таблицы «сопротивление кабелей»,которая приведена ниже.

То как влияет материал проводника учитывается при помощи удельного сопротивления, которое принято обозначать буквой греческого алфавита ρ и являет собой сопротивление проводника сечением 1 мм2 и длинной 1м. У серебра наименьшее удельное сопротивление ρ = 0,016 Ом•мм2/м. Ниже приводятся значения удельного сопротивления для нескольких проводников:

  • Сопротивление кабеля для серебра — 0,016,
  • Сопротивление кабеля для свинеца — 0,21,
  • Сопротивление кабеля для меди — 0,017,
  • Сопротивление кабеля для никелина — 0,42,
  • Сопротивление кабеля для люминия — 0,026,
  • Сопротивление кабеля для манганина — 0,42,
  • Сопротивление кабеля для вольфрама — 0,055,
  • Сопротивление кабеля для константана — 0,5,
  • Сопротивление кабеля для цинка — 0,06,
  • Сопротивление кабеля для ртути — 0,96,
  • Сопротивление кабеля для латуни — 0,07,
  • Сопротивление кабеля для нихрома — 1,05,
  • Сопротивление кабеля для стали — 0,1,
  • Сопротивление кабеля для фехрали -1,2,
  • Сопротивление кабеля для бронзы фосфористой — 0,11,
  • Сопротивление кабеля для хромаля — 1,45

Так как в состав сплавов входят разные количества примесей, то удельное сопротивление может изменятся.

Для расчёта сопротивления проводника вы можете воспользоваться калькулятором расчета сопротивления проводника.

Сопротивление кабеля рассчитывается по формуле,которая приведена ниже:

  • R — сопротивление,
  • Ом; ρ — удельное сопротивление, (Ом•мм2)/м;
  • l — длина провода, м;
  • s — площадь сечения провода, мм2.

Площадь сечения рассчитывается так:

S=(π?d^2)/4=0.78?d^2≈0.8?d^2

  • где d — это диаметр провода.

Измерить диаметр провода можно микрометром либо штангенциркулем,но если их нету под рукой,то можно плотно намотать на ручку (карандаш) около 20 витков провода, затем измерить длину намотанного провода и разделить на количество витков.

Для определения длинны кабеля,которая нужна для достижения необходимого сопротивления,можно использовать формулу:

1.Если данные для провода отсутствуют в таблице,то берется некоторое среднее значение.Как пример ,провод из никелина который имеет диаметр 0,18 мм площадь сечения равна приблизительно 0,025 мм2, сопротивление одного метра 18 Ом, а допустимый ток 0,075 А.

2.Данные последнего столбца,для другой плотности тока, необходимо изменить. Например при плотности тока 6 А/мм2, значение необходимо увеличить вдвое.

Пример 1. Давайте найдем сопротивление 30 м медного провода диаметром 0,1 мм.

Решение. С помощью таблицы берем сопротивление 1 м медного провода, которое равно 2,2 Ом. Значит, сопротивление 30 м провода будет R = 30•2,2 = 66 Ом.

Расчет по формулам будет выглядеть так: площадь сечения : s= 0,78•0,12 = 0,0078 мм2. Поскольку удельное сопротивление меди ρ = 0,017 (Ом•мм2)/м, то получим R = 0,017•30/0,0078 = 65,50м.

Пример 2. Сколько провода из манганина у которого диаметр 0,5 мм нужно чтобы изготовить реостат, сопротивлением 40 Ом?

Решение. По таблице выбираем сопротивление 1 м этого провода: R= 2,12 Ом: Чтобы изготовить реостат сопротивлением 40 Ом, нужен провод, длина которого l= 40/2,12=18,9 м.

Расчет по формулам будет выглядеть так. Площадь сечения провода s= 0,78•0,52 = 0,195 мм2. Длина провода l = 0,195•40/0,42 = 18,6 м.

Как вычислить сопротивление проводника

Время на чтение:

Использование меди в электротехнических устройствах обусловлено двумя факторами: хорошей проводимостью и относительной дешевизной. При проектировании или ремонте линий электропередач или электронных приборов, необходимо учитывать сопротивление медных проводов. Пренебрежение данным параметром приведет к поломке электрической системы.

Что такое сопротивление медного провода

В металлах ток образуется при появлении электрического поля. Оно «заставляет» двигаться электроны упорядоченно, в одном направлении. Электроны дальних орбит атома, слабо удерживаемые ядром, формируют ток.

Медные провода

При прохождении отрицательных частиц сквозь кристаллическую решетку молекул меди, они сталкиваются с атомами и другими электронами. Возникает препятствие или сопротивление направленному движению частиц.

Для оценки противодействия току была введена величина «электрическое сопротивление» или «электрический импеданс». Обозначается она буквой «R» или «r». Вычисляется сопротивление по формуле Георга Ома: R=, где U — разность потенциалов или напряжение, действующее на участке цепи, I — сила тока.

Понятие сопротивления

Важно! Чем выше значение импеданса металла, тем меньший ток проходит по нему, и именно медные проводники так широко распространены в электротехнике, благодаря этому свойству.

Исходя из формулы Ома, на величину тока влияет приложенное напряжение при постоянном R. Но резистентность медных проводов меняется, в зависимости от их физических характеристик и условий эксплуатации.

Что влияет на сопротивление медного провода

Электрический импеданс медного кабеля зависит от нескольких факторов:

  • Удельного сопротивления;
  • Площади сечения проволоки;
  • Длины провода;
  • Внешней температуры.

Последним пунктом можно пренебречь в условиях бытового использования кабеля. Заметное изменение импеданса происходит при температурах более 100°C.

Зависимость сопротивления

Удельное сопротивление в системе СИ обозначается буквой ρ. Оно определяется, как величина сопротивления проводника, имеющего сечение 1 м2 и длину 1 м, измеряется в Ом ∙ м2. Такая размерность неудобна в электротехнических расчетах, поэтому часто используется единица измерения Ом ∙ мм2.

Важно! Данный параметр является характеристикой вещества — меди. Он не зависит от формы или площади сечения. Чистота меди, наличие примесей, метод изготовления проволоки, температура проводника — факторы, влияющие на удельное сопротивление.

Зависимость параметра от температуры описывается следующей формулой: ρt= ρ20[1+ α(t−20°C)]. Здесь ρ20— удельное сопротивление меди при 20°C, α— эмпирически найденный коэффициент, от 0°Cдо 100°C для меди имеет значение, равное 0,004 °C-1, t — температура проводника.

Ниже приведена таблица значений ρ для разных металлов при температуре 20°C.

Таблица удельного сопротивления

Согласно таблице, медь имеет низкое удельное сопротивление, ниже только у серебра. Это обуславливает хорошую проводимость металла.

Чем толще провод, тем меньше его резистентность. Зависимость R проводника от сечения называется «обратно пропорциональной».

Важно! При увеличении поперечной площади кабеля, электронам легче проходить сквозь кристаллическую решетку. Поэтому, при увеличении нагрузки и возрастании плотности тока, следует увеличить площадь сечения.

Увеличение длины медного кабеля влечет рост его резистентности. Импеданс прямо пропорционален протяженности провода. Чем длиннее проводник, тем больше атомов встречаются на пути свободных электронов.

Выводы

Последним элементом, влияющим на резистентность меди, является температура среды. Чем она выше, тем большую амплитуду движения имеют атомы кристаллической решетки. Тем самым, они создают дополнительное препятствие для электронов, участвующих в направленном движении.

Важно! Если понизить температуру до абсолютного нуля, имеющего значение 0° Kили -273°C, то будет наблюдаться обратный эффект — явление сверхпроводимости. В этом состоянии вещество имеет нулевое сопротивление.

Как узнать сопротивление 1 метра медного провода

После выяснения всех факторов, влияющих на резистентность медного провода, можно объединить их в формуле зависимости сопротивления от сечения проводника и узнать, как вычислить этот параметр. Математическое выражение выглядит следующим образом: R= pl/s, где:

  • ρ — удельное сопротивление;
  • l — длина проводника, при нахождении сопротивления медного проводника длиной 1 м, l = 1;
  • S— площадь поперечного сечения.

Для вычисления S, в случае провода цилиндрической формы, используется формула: S = π ∙ r2 = π d2/4 ≈ 0.785 ∙ d2, здесь:

  • r — радиус сечения провода;
  • d — его диаметр.

Если провод состоит из нескольких жил, то суммарная площадь будет равна: S = n d2/1,27, где n — количество жил.

Если проводник имеет прямоугольную форму, то S = a ∙ b, где a — ширина прямоугольника, b — длина.

Важно! Узнать диаметр сечения можно штангенциркулем. Если его нет под рукой, то намотать на любой стержень измеряемую проволоку, посчитать количество витков, желательно, чтобы их было не меньше 10 для большей точности. После этого измерить намотанную часть проводника, и разделить значение на количество витков.

Как правильно рассчитать сопротивление провода по сечению

Проектируя электрическую сеть, необходимо правильно подобрать сечение кабеля, чтобы его резистентность не была высокой. Большой импеданс вызовет падение напряжения выше допустимого значения. В результате подключенное к сети электрическое устройство может не заработать. Также, провода начнут перегреваться.

Для правильного расчета минимального сечения необходимо учесть следующие факторы:

  • По стандартам ПУЭ падение напряжения не должно быть больше 5%.
  • В бытовых условиях ток проходит по двум проводам. Поэтому, при расчете величину сопротивления нужно умножить на 2.
  • Учитывать нужно мощность всех подключенных приборов на линии. Для развития предусмотреть запас по нагрузке.

Как вычислить сопротивление проводника по формуле? Для примера можно рассмотреть задачу. Требуется определить: достаточно ли будет медного кабеля сечением 2,5 мм2 и длиной 30 метров для подключения оборудования мощностью 9 кВт.

Формулы электрической цепи

Задача решается следующим образом:

  • Резистентность медного кабеля будет равна:

2 ∙ (ρ ∙ L) / S = 2 ∙ (0,0175 ∙ 30) / 2,5 = 0,42 Ом.

  • Для нахождения падения напряжения нужно определить силу тока, по формуле: I= P/U.

Здесь P — суммарная мощность оборудования, U — напряжение в цепи. Тогда сила тока будет равна: I = 9000 / 220 = 40,91 А.

  • Используя закон Ома, можно найти падение напряжения по кабелю: ΔU = I ∙ R = 40, 91 ∙ 0,42 = 17,18 В.
  • От 220 В процент падения составит: U% = (ΔU / U) ∙ 100% = (17,18 / 220) ∙ 100% = 7, 81%>5%.
Читать еще:  Как обжать интернет кабель ростелеком своими руками, в домашних условиях

Падение напряжение выходит за пределы допустимого значения, значит необходимо использовать кабель большего сечения.

Таблица сопротивления медного провода

Узнать резистентность проводника можно по таблицам. В них содержатся готовые результаты вычислений для разных кабелей.

Таблица меди на метр 1

Например, сопротивление меди на метр для различных сечений можно определить без вычислений, из соответствующей таблицы.

Таблица меди на метр 2

Важно! Таблицы не содержат данные о всех сечениях. Если нужно узнать величину импеданса для неуказанного кабеля, то находится среднее значение между двумя ближайшими известными сопротивлениями.

Расчет сопротивления кабеля является важной задачей при проектировании электрической системы. Воспользовавшись формулами или таблицами, можно успешно ее решить.

Сопротивление цепи фаза – ноль

В статье рассмотрены метод расчета сопротивления цепи фаза — ноль в электроустановках напряжением до 1000 В с глухозаземленной нейтралью и правила вычисления тока короткого замыкания в линии, что позволяет проверить согласование параметров цепи с характеристиками аппаратов защиты при проектировании электроустановки. Приведенные в статье данные предназначены в первую очередь для расчетов распределительных и групповых сетей.

Для выполнения расчетов токов короткого замыкания в трансформаторных подстанциях необходимо дополнительно учитывать тип, мощность, схему подключения, и напряжение на входе трансформатора. Поэтому использование данной работы для расчета трансформаторных подстанций позволит лишь приблизительно оценить их параметры.

В общем случае сопротивление цепи фаза ноль RLN равно:

где Zт/3 – сопротивление трансформатора, Ом; RΣпер – суммарное переходное сопротивление контактов, Ом; RΣавт –суммарное сопротивление всех автоматических выключателей, Ом; Rn– удельное сопротивление n-го участка цепи Ом/км (по таблице 1); Ln – длина n-го участка цепи, км; Rдуги – сопротивление дуги в месте короткого замыкания, Ом.

Сопротивления кабелей и отдельно фазных и нулевых жил различных сечений при температуре +65 градусов приведены в таблице 1. Данная температура жил соответствует работе кабеля при номинальной нагрузке. В таблице 1 не учтены индуктивные составляющие сопротивлений, которые в кабелях пренебрежимо малы. При этом следует иметь ввиду, что при использовании проводов индуктивное сопротивление сети может иметь соизмеримую величину с активным сопротивлением жил, особенно при увеличении расстояния между проводами.

В таблице 2 приведены сопротивления трансформатора 10 (6) кВ при вторичном напряжении 400/230 В для случая соединения обмоток по схеме «треугольник-звезда». При соединении обмоток трансформатора по схеме «звезда-зигзак» оценить сопротивление трансформатора также можно по этой таблице. При соединении обмоток по схеме «звезда-звезда» сопротивление трансформатора в 3 – 3,5 раза больше, поэтому это соединение используется реже.

В таблице 3 приведены ориентировочные величины сопротивлений автоматических выключателей (по данным каталога по модульным выключателям АВВ).

Переходные сопротивления контактов, как правило, вносят несущественную часть в общее сопротивление цепи фаза – ноль. Но при большом количестве контактов их сопротивление необходимо учитывать. Переходное сопротивление болтовых соединений, как правило, мало и не превышает величины сопротивления 1 метра подключаемого кабеля (при подключении кабелей больших сечений переходное сопротивление контактов соответственно меньше, чем у кабелей меньшего сечения). Переходное сопротивление различных контактных колодок и сжимов, используемых в групповых сетях, для расчетов можно принять равным 0,01 Ом.

Активное сопротивление дуги в месте короткого замыкания в значительной степени зависит от мощности и схемы подключения трансформатора, длины и сечения кабелей, а также в большой степени от длины дуги. Ориентировочные значения сопротивления дуги в зависимости от величины сопротивления цепи фаза – ноль цепи приведены в таблице 4. С большим количеством графиков зависимостей сопротивления дуги от мощности трансформатора, длины и сечения кабелей, можно ознакомиться в ГОСТ 28249-93.

Сечение фазных жил мм 2

Сечение нулевой жилы мм 2

Полное сопротивление цепи фаза – ноль, Ом/км при температуре жил кабеля +65 градусов

Мощность трансформатора, кВ∙А

Сопротивление трансформатора, Zт/3, Ом (Δ/Υ)

I ном. авт. выкл, А

При проектировании групповой сети, если питающая и распределительная сеть уже проложены, целесообразно выполнить измерение сопротивления цепи фаза – ноль от трансформатора до шин группового щита. Это может значительно уменьшить вероятность ошибок при расчетах групповой сети. В этом случае сопротивление рассчитываем по формуле:

где, Rрасп – измеренное сопротивление цепи фаза – ноль линии, подключаемой к вводному автоматическому выключателю группового щитка, Ом; Rпер.гр – сопротивление переходных контактов в групповой линии, Ом; Rавт.гр – суммарное сопротивление автоматических выключателей – вводного группового щита и отходящей групповой линии, Ом; Rnгр – удельное сопротивление кабеля n-й групповой линии (по таблице 1), Ом/км; Lnгр – длина n-й групповой линии, км.

Рассмотрим процесс вычисления сопротивления цепи фаза – ноль схемы, показанной на Рис.1 при однофазном коротком замыкании фазы на ноль в конце групповой линии.

— трансформатор мощностью 630 кВ∙А подключен по схеме «треугольник – звезда» — по таблице 2 находим Zт/3=0,014 Ом;

— питающая сеть – кабель с алюминиевыми жилами длиной 80 метров имеет фазный проводник 150 мм 2 и нулевой – 50 мм 2 . По таблице 1 находим удельное сопротивление кабеля 0,986 Ом/км. Вычисляем его сопротивление (длины кабелей выражаем в километрах): 0,986 Ом/км∙0,08 км=0,079 Ом;

— распределительная сеть – кабель с медными жилами длиной 50 метров и сечением жил 35 мм 2 . По таблице 1 находим удельное сопротивление кабеля 1,25 Ом/км. Вычисляем его сопротивление:

1,25 Ом/км∙0,05 км=0,0625 Ом;

— групповая сеть – кабель с медными жилами длиной 35 метров и сечением жил 2,5 мм 2 . По таблице 1 находим удельное сопротивление кабеля 17,46 Ом/км. Вычисляем его сопротивление:

17,46 Ом/км∙0,035 км=0,61 Ом;

— автоматический выключатель отходящий линии – 16 Ампер (с характеристикой срабатывания «С»), вводной автоматический выключатель группового щитка 32 Ампера, остальные автоматические выключатели в линии имеют номинальный ток более 50 Ампер. Вычисляем их сопротивление (по таблице 3) 0,01 Ом+0,004 Ом+3∙0,001 Ом=0,017 Ом;

— переходные сопротивления контактов учтем только в групповой линии (точки подключения кабеля групповой линии к щитку и к нагрузке). Получаем 2∙0,01 Ом=0,02 Ом.

Суммируем все полученные значения и получаем сопротивление цепи фаза – ноль без учета сопротивления дуги RLN=0,014+0,079+0,0625+0,61+0,017+0,02=0,80 Ом.

Из таблицы 4 берем сопротивление дуги 0,075 Ом, и получаем окончательное значение искомой величины RLN=0,80 Ом+0,075 Ом=0,875 Ом.

В Правилах устройства электроустановок (ПУЭ) задано наибольшее время отключения цепей при коротком замыкании в сетях с глухозаземленной нейтралью 0,2 секунды при напряжении 380 В и 0,4 секунды при напряжении 220В.

Для обеспечения заданного времени срабатывания защиты необходимо, что бы при коротком замыкании в защищаемой линии возникал ток, превышающий не менее чем в 3 раза номинальный ток плавкой вставки ближайшего предохранителя (для взрывоопасных помещений не менее чем в 4 раза) и не менее чем в 3 раза ток расцепителя автоматического выключателя, имеющего обратнозависимую от тока характеристику (для взрывоопасных помещений не менее чем в 6 раз). Для автоматических выключателей с комбинированным расцепителем (имеющим тепловой расцепитель для защиты от перегрузок и электромагнитный расцепитель для защиты от токов коротких замыканий) ток короткого замыкания должен превысить ток срабатывания электромагнитного расцепителя не менее, чем в 1,2 – 1,25 раза.

В настоящее время используются автоматические выключатели с различной кратностью токов срабатывания электромагнитного расцепителя к тепловому. Автоматические выключатели группы «В» имеют кратность в пределах от 3 до 5, группы «С» от 5 до 10, группы «D» от 10 до 20, группы «K» от 10 до 15 и группы «Z» от 2 до 3. При расчетах всегда берется максимальное значение кратности токов срабатывания расцепителей. Например для автоматического выключателя С16, ток короткого замыкания должен быть не менее 16 А∙10∙1,2=192 А (для автоматического выключателя С10 не менее10А∙10∙1,2=120 А и для С25 не менее 25 А∙10∙1,2=300 А). В приведенном выше примере мы получили сопротивление цепи фаза – ноль 0,875 Ом. При таком сопротивлении цепи ток короткого замыкания Iкз составит величину

Uф/ RLN=220В/0,875 Ом=251 А. Следовательно групповая линия в приведенном примере защищена от токов коротких замыканий.

Максимальное сопротивление цепи фаза – ноль для автоматического выключателя С16 составит величину 220 В/192А=1,14 Ом. В приведенном примере сети (Рис. 1) сопротивление цепи от трансформатора до шин группового щита составит 0, 875 Ом — 0,61 Ом=0.265 Ом. Следовательно максимально возможное сопротивление кабеля групповой линии будет равно 1,14 Ом – 0, 265 Ом=0,875 Ом. Его максимальную длину L при сечении жил кабелей 2,5 мм 2 определим при помощи таблицы 1.

L, км=0,875 Ом/(17,46 Ом/км)=0,050 км.

Всегда, когда есть возможность, следует рассчитывать групповую сеть с максимальным запасом по сопротивлению цепи фаза – ноль, особенно розеточную сеть. Часто нагрузки (утюг, чайник и другие бытовые приборы), в которых часто происходят замыкания, подключают к розетке через удлинитель. Начиная с определенной длины провода удлинителя, нарушается согласование параметров цепи с характеристиками аппаратов защиты, то есть ток короткого замыкания оказывается недостаточным для мгновенного отключения сети. Отключение аварийного участка осуществится только тепловым расцепителем через сравнительно большой промежуток времени (несколько секунд), в результате чего кабели могут нагреться до недопустимо высоких температур вплоть до воспламенения изоляции.

Читать еще:  Бестраншейная прокладка кабеля; рассматриваем основательно

Проект электропроводки должен быть выполнен таким образом, что бы даже в случае воспламенения изоляции кабеля при коротком замыкании это не приводило к пожару. Именно поэтому возникли требования к прокладке скрытой электропроводки в стальных трубах в зданиях со строительными конструкциями, выполненными из горючих материалов. Во взрывоопасных зданиях целесообразно использовать более сложную защиту кабелей от воздействия токов короткого замыкания.

Расчет сопротивлений проводов

На практике нередко приходится рассчитывать сопротивление различных проводов. Это можно сделать с помощью формул или по данным, приведенным в табл. 1.

Влияние материала проводника учитывается с помощью удельного сопротивления, обозначаемого греческой буквой ? и представляющего собой сопротивление проводника длиной 1 м и площадью поперечного сечения 1 мм2. Наименьшим удельным сопротивлением ? = 0,016 Ом•мм2/м обладает серебро. Приведем среднее значение удельного со п ротивления некоторых проводников:

Серебро — 0,016 , Свинец — 0,21 , Медь — 0,017 , Никелин — 0,42 , Алюминий — 0,026 , Манганин — 0,42 , Вольфрам — 0,055 , Константан — 0,5 , Цинк — 0,06 , Ртуть — 0,96 , Латунь — 0,07 , Нихром — 1,05 , Сталь — 0,1 , Фехраль — 1,2 , Бронза фосфористая — 0,11 , Хромаль — 1,45 .

При различных количествах примесей и при разном соотношении компонентов, входящих в состав реостатных сплавов, удельное сопротивление может несколько измениться.

Сопротивление рассчитывается по формуле:

где R — сопротивление, Ом; удельное сопротивление, (Ом•мм2)/м; l — длина провода, м; s — площадь сечения провода, мм2.

Если известен диаметр провода d, то площадь его сечения равна:

Измерить диаметр провода лучше всего с помощью микрометра, но если его нет, то следует намотать плотно 10 или 20 витков провода на карандаш и измерить линейкой длину намотки. Разделив длину намотки на число витков, найдем диаметр провода.

Для определения длины провода известного диаметра из данного материала, необходимой для получения нужного сопротивления, пользуются формулой

Примечание. 1. Данные для проводов, не указанных в таблице, надо брать как некоторые средние значения. Например, для провода из никелина диаметром 0,18 мм можно приблизительно считать, что площадь сечения равна 0,025 мм2, сопротивление одного метра 18 Ом, а допустимый ток равен 0,075 А.

2. Для другого значения плотности тока данные последнего столбца нужно соответственно изменить; например, при плотности тока, равной 6 А/мм2, их следует увеличить в два раза.

Пример 1. Найти сопротивление 30 м медного провода диаметром 0,1 мм.

Решение. Определяем по табл. 1 сопротивление 1 м медного провода, оно равно 2,2 Ом. Следовательно, сопротивление 30 м провода будет R = 30•2,2 = 66 Ом.

Расчет по формулам дает следующие результаты: площадь сечения провода: s= 0,78•0,12 = 0,0078 мм2. Так как удельное сопротивление меди равно 0,017 (Ом•мм2)/м, то получим R = 0,017•30/0,0078 = 65,50м.

Пример 2. Сколько никелинового провода диаметром 0,5 мм нужно для изготовления реостата, имеющего сопротивление 40 Ом?

Решение. По табл. 1 определяем сопротивление 1 м этого провода: R= 2,12 Ом: Поэтому, чтобы изготовить реостат сопротивлением 40 Ом, нужен провод, длина которого l= 40/2,12=18,9 м.

Проделаем тот же расчет по формулам. Находим площадь сечения провода s= 0,78•0,52 = 0,195 мм2. А длина провода будет l = 0,195•40/0,42 = 18,6 м.

Расчёт сопротивлений проводов. Онлайн калькулятор.
Зависимость сопротивления от материала проводника, длины, диаметра или сечения. Расчёт площади сечения проводов в зависимости от мощности нагрузки.

На первый взгляд может показаться, что эта статья из рублики «Электрику на заметку».
С одной стороны, а почему бы и нет, с другой — так ведь и нам, пытливым электронщикам, иногда нужно рассчитать сопротивление обмотки катушки индуктивности, или самодельного нихромового резистора, да и чего уж там греха таить — акустического кабеля для высококачественной звуковоспроизводящей аппаратуры.

Формула тут совсем простая R = p*l/S, где l и S соответственно длина и площадь сечения проводника, а p — удельное сопротивление материала, поэтому расчёты эти можно провести самостоятельно, вооружившись калькулятором и Ля-минорной мыслью, что все собранные данные надо привести к системе СИ.

Ну а для нормальных пацанов, решивших сберечь своё время и не нервничать по пустякам, нарисуем незамысловатую таблицу.

ТАБЛИЦА ДЛЯ РАСЧЁТА СОПРОТИВЛЕНИЯ ПРОВОДНИКА

Страница получилась сиротливой, поэтому помещу-ка я сюда таблицу для желающих связать своё время с прокладкой электропроводки, подключить мощный источник энергопотребления, либо просто посмотреть в глаза электрику Василию и, «похлёбывая из котелка» задать справедливый вопрос: «А почему, собственно? Может разорить меня решил? Зачем мне тут четыре квадрата из бескислородной меди для двух лампочек и холодильника? Из-за чего, собственно?»

И расчёты эти мы с вами сделаем не от вольного и, даже не в соответствии с народной мудростью, гласящей, что «необходимая площадь сечения провода равна максимальному току, делённому на 10», а в строгом соответствии нормативными документами Минэнерго России по правилам устройства электроустановок.
Правила эти игнорируют провода, сечением, меньшим 1,5 мм 2 . Проигнорирую их и я, а за компанию и алюминиевые, в силу их вопиющей архаичности.
Итак.

РАСЧЁТ ПЛОЩАДИ СЕЧЕНИЯ ПРОВОДОВ В ЗАВИСИМОСТИ ОТ МОЩНОСТИ НАГРУЗКИ

Потери в проводниках возникают из-за ненулевого значения их сопротивления, зависящего от длины провода.
Значения мощности этих потерь, выделяемых в виде тепла в окружающее пространство, приведены в таблице.
В итоге к потребителю энергии на другом конце провода напряжение доходит в несколько урезанном виде — меньшим, чем оно было у источника. Из таблицы видно, что к примеру, при напряжении в сети 220 В и 100 метровой длине провода, сечением 1,5мм 2 , напряжение на нагрузке, потребляющей 4 кВт, окажется не 220, а 199 В.
Хорошо, это или плохо?
Для каких-то приборов — безразлично, какие-то работать будут, но при пониженной мощности, а какие-то взбрыкнут и пошлют Вас к едрене фене вместе с вашими длинными проводами и умными таблицами.
Поэтому Минэнерго — минэнергой, а собственная голова не повредит ни при каких обстоятельствах. Если ситуация складывается подобным примеру образом — прямая дорога к выбору проводов, большего сечения.

Сопротивление кабеля: что это такое

Сопротивление — физическая единица, показывающая способность сдерживать электрический ток. Разные виды проводников имеют свой показатель этой характеристики, из чего вытекают их особенности.

Что такое сопротивление, его природа

Сопротивление (обозначается латинской буквой R) — это одна из главных характеристик проводников. В зависимости от сферы применения это свойство может играть как положительную, так и отрицательную роль при использовании проводника.

В первую очередь проводниками могут быть металлы и металлические сплавы. Атомы в металле имеют свободные электроны, которые и являются носители заряда. Электроны в металле все время беспорядочно двигаются от атома к атому. Если к ним подключить электрический ток, то их движение становится упорядоченным. При столкновении электрона с атомной структурой электрон отдаёт свою энергию металлу, тем самым нагревая его. Чем больше структурных препятствий на пути электрона, тем больше R металла.

Особенности активного сопротивления

Активное сопротивление — это единица, показывающая R на участке в электрической цепи, на котором электрическая энергия переходит в тепловую, механическую или любую другую энергию. Из-за того что переменный тоκ проходит неравномерно, R переменного и постоянного тока будет различаться при их равных параметрах. Это правило действует на электрокабели и электролинии. Но для электрокабелей из цветных металлов с частотой переменного напряжения 50 Герц это правило практически неприменимо, так как в этом случае активное R всегда одинаково при любом токе.

Стальные электропровода имеют лучшее активное R в сравнении с цветными металлами.

Виды сопротивлений

Всего есть четыре вида сопротивления:

  • Омическое. Это R постоянного тока.
  • Активное. Это R переменного тока.
  • Индуктивное (XL). Это отношение самоиндукционного тока катушки к току от генератора.
  • Емкостное. Это отношение силы конденсатора к его заряду.

Удельное сопротивление

Удельное сопротивление (ρ) — это единица, показывающая способность проводника затруднять прохождение электрического тока.

С помощью него можно оценивать параметры электрических проводников из разных материалов.
ρ проводника всегда увеличивается при увеличении длины и уменьшении сечения, в интернациональной системе длина проводника равна 1 метру, а сечение -1 мм2.

Активное сопротивление проводов, кабелей и линий

Из-за того что переменный ток проходит неравномерно, то при одинаковых условиях тока переменного и постоянного R будет отличаться. Как уже было сказано, стальные электропровода имеют лучшее активное R по сравнению с проводниками из цветных металлов, которые имеют одинаковое R при любой силе тока.

Напротив, активное R электрокабелей из стали всегда зависит от электрического тока, поэтому удельную постоянную проводимость в этом случае никогда не используют. Активное R электрокабеля определяют с помощью формулы: R=l/у*s.

Индуктивное сопротивление проводов, кабелей и линий

Индуктивное R на один км с пятьюдесятью герцами определяем по специальной формуле:

  • x=0,144*lg(2*a(cp))/d+0,016*μ=х0’+х»0,
  • а(ср) – ср. длина между осью нескольких проводов, более подробно
  • a(cp)=3 корень(а1*а2*а3),
  • а1, а2 и а3 — длина между осью в различных фазах. d — наружный диаметр. μ— относительная магнитная проницаемость. х’0 — внешнее вне линии. x»0 — внутреннее внутри линии.
Читать еще:  Как надежно соединить любые провода без пайки

Сопротивление изоляции кабеля

Для нахождения R изоляции кабеля нужно исходить из его вида. Есть следующие разновидности:

  1. 1000 В и больше — высоковольтные.
  2. Ниже 1000 В — низковольтные.
  3. Контрольные электрокабели — защитные цепи, вторичные цепи РУ (реле указательных), цепи питания электроприводов и так далее.

Для измерения R изоляции необходимо специализированное устройство. Высоковольтные и низковольтные определяются при напряжении 2500 В, когда контрольные — от 500 до 2500 В. Если используется высоковольтный со значением больше 1000 В, то его R изоляции должно быть не меньше 10 МОм. Если используется низковольтный со значением меньше 1000 В, то его R изоляции должно быть не меньше 0,5 Мом. У контрольных кабелей R изоляции должно быть не меньше 1 МОм.

Высоковольтные провода нулевого сопротивления

Высоковольтные провода с нулевым R лучше и надежнее обычных, из-за использования в них силикона они не становятся твердыми на морозе, не становятся сухими с течением времени и от температуры.

«Нулевые» высоковольтные провода имеют разницу по сравнению с обычными высоковольтными проводами с полимерными жилами: R в них измеряется в Омах и десятых Ом, тогда как в обычных – в тысячах.

Помимо этого, у него есть и другие преимущества, в первую очередь больший срок эксплуатации.

Биметаллический кабель

Биметаллические кабели состоят из обычной проволоки из стали, покрытой медью и имеют малое удельное R. Биметаллические электрокабели производят из малого количество меди, что значительно удешевляет их. При этом они способны выдержать в 5 раз большую нагрузку, чем чисто стальные, и в 6 раз большую, чем медные. В связи с этим их активно используют в линиях электропередачи, а также шинах распределяющих устройств и разных частей электроприборов.

При выборе проводников необходимо учитывать условия их эксплуатации и выбирать в соответствии с ними кабель с подходящими свойствами, в первую очередь – сопротивлением.

Проводимость и сопротивление воздушных и кабельных линий

Для того, чтобы произвести расчет электрической сети на потерю напряжения необходимо знать параметры линий, а именно их сопротивления и проводимости. Если производятся расчеты цепей постоянного тока, то вполне достаточно знать только омическое сопротивление линии. А вот при расчете линии переменного тока одного омического сопротивления бывает недостаточно, и помимо активных сопротивлений, необходимо знать еще индуктивные сопротивления и емкостные проводимости проводов и кабелей.

Активное сопротивление проводов и кабелей

Из электротехники известно, что полное сопротивление при равных условиях переменному и постоянному току будут отличаться. Касается это также проводов и кабелей. Это вызвано тем, что переменный ток распределяется по сечению неравномерно (поверхностный эффект). Однако для проводов из цветных металлов и с частотой переменного напряжения 50 Гц этот эффект не оказывает слишком большого влияния и им можно пренебречь. Таким образом, при расчете проводников из цветных металлов, их сопротивления переменному и постоянному току принимаются равными.

На практике активное сопротивление медных и алюминиевых проводников рассчитывают по формуле:

Где: l – длина в км, γ – удельная проводимость материала провода м/ом∙мм 2 , r – активное сопротивление 1 км провода на фазу Ом/км, s – площадь поперечного сечения, мм 2 .

Величина r, как правило, берется из таблиц справочников.

На активное сопротивление провода влияет и температура окружающей среды. Величину r при температуре Θ можно определить по формуле:

Где: α – температурный коэффициент сопротивления; r20 – активное сопротивление при температуре 20 0 С, γ20 – удельная проводимость при температуре в 20 0 С.

Стальные провода обладают значительно большими активными сопротивлениями, чем аналогичные провода из цветных металлов. Его увеличение обусловлено значительно меньшей величиной удельной проводимости и поверхностным эффектом, который у стальных проводов выражен гораздо более ярко, чем у алюминиевых или медных. Более того, в стальных проводах присутствуют потери активной энергии на вихревые токи и перемагничивание, что в схемах замещения линий учитывают дополнительной составляющей активного сопротивления.

Активное сопротивление стальных проводов (в отличии от проводов из цветных металлов) сильно зависит от величины протекаемого тока, поэтому использовать постоянное значение удельной проводимости при расчетах нельзя.

Активное сопротивление стальных проводов в зависимости от протекающего тока аналитически выразить весьма трудно, поэтому для его определения используют специальные таблицы.

Индуктивное сопротивление проводов и кабелей

Для определения индуктивного сопротивления (обозначается Х) кабельной или воздушной линии определенной протяженности в километрах удобно пользоваться выражением:

Где: Х – индуктивное сопротивление одного километра провода или кабеля на фазу, Ом/км.

Х одного километра воздушной или кабельной линии можно определить по формуле:

Где: Dср – расстояние среднее между проводами или центрами жил кабелей, мм; d – диаметр токоведущей жилы кабеля или диаметр провода, мм; μт – относительная магнитная проницаемость материала провода;

Первый член правой части уравнения обусловлен внешним магнитным полем и называется внешним индуктивным сопротивлением Х / . Из этого выражения видно, что Х / зависит только от расстояния между проводами и их диаметра, а так как расстояние между проводами выбирается исходя из номинального напряжения линии, соответственно Х / будет расти с ростом номинального напряжения линии. Х / воздушных линий больше, чем кабельных. Это связано с тем, что токоведущие жилы кабеля располагаются друг к другу значительно ближе, чем провода воздушных линий.

Где: D1:2 расстояние между проводами.

Для одинарной трехфазной линии при расположении проводов по треугольнику:

При горизонтальном или вертикальном расположении проводов трехфазной линии в одной плоскости:

Увеличение сечения проводов линии ведет к незначительному уменьшению Х / .

Второй член уравнения для определения X обусловлен магнитным полем внутри проводника. Он выражает внутреннее индуктивное сопротивление Х // .

Таким образом выражение для Х можно представить в виде:

Для линий из немагнитными материалов μ = 1 внутреннее индуктивное сопротивление Х // по сравнению с внешним Х / составляет ничтожную величину, поэтому им очень часто пренебрегают.

В таком случае формула для определения Х примет вид:

Для практических расчетов индуктивные сопротивления кабелей и проводов определяют по соответствующим таблицам.

В случае приближенных расчетов можно считать для воздушных линий напряжением 6-10 кВ Х = 0,3 – 0,4 Ом/км, а для кабельных Х = 0,08 Ом/км.

Внутренне индуктивное сопротивление стальных проводов сильно отличается от Х // проводов из цветных металлов. Это вызвано тем, что Х // пропорционально магнитной проницаемости μr, которая сильно зависит от величины тока в проводе. Если для проводов из цветных металлов μr = 1, то для стальных проводов μr может достигать величины в 10 3 и даже выше.

Х // для линий прокладываемых стальными проводами пренебрегать нельзя. Как правило, данную величину берут из таблиц, составленных на основе экспериментальных данных.

Сопротивления r и Х // при некоторых значениях тока могут достигать максимальных значений, а затем с увеличением тока уменьшатся. Это явление объясняется магнитным насыщением стали.

Емкостная проводимость линий

Электрические линии, кроме активного и индуктивного сопротивлений, характеризуются и емкостной проводимостью, которая обусловлена емкостью между проводами и между проводам и землей.

Величину рабочей емкости в трехфазной воздушной линии приближенно можно определить по формуле:

Из данной формулы видно, что рабочая емкость будет увеличиваться с увеличением сечения проводов и уменьшением расстояния между ними. Поэтому при равных сечениях токоведущих частей линии низкого напряжения имеют большую рабочую емкость, чем линии высокого напряжения. В следствии небольших расстояний между токоведущими жилами кабеля и большей диэлектрической проницаемости изоляции по сравнению с воздухом рабочая емкость кабельной линии значительно больше, чем емкость воздушной линии.

Емкостная проводимость одноцепной воздушной линии определяется по формуле:

Определение рабочей емкости кабельной линии по формулам, в которые входят диэлектрическая проницаемость изоляции кабеля, геометрические размеры и другие конструктивные особенности, задача не из легких, поэтому значения рабочей емкости определяют по специальным таблицам, составленным заводом изготовителем для различных марок кабелей, в зависимости от их номинального напряжения.

Емкостной ток вначале линии при холостом ходе (при отключенных электроприемниках) можно определить из формулы:

Где: U – линейное напряжение сети, В; l – длина линии, км;

Емкостные токи имеют серьезное значение в воздушных линиях с рабочим напряжением 110 кВ и выше и в кабельных линиях с напряжением выше 10 кВ. При расчете электрических сетей с напряжениями ниже, чем выше перечисленные, емкость линии могут не учитывать. Емкость токопроводящих частей линии по отношению к земле имеет значение при расчете заземляющих устройств и защиты.

В сети с изолированной нейтралью величину емкостного тока однофазного замыкания на землю приближенно можно определить по формулам:

  • Для воздушной линии:

  • Для кабельной линии:
голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector