Astro-nn.ru

Стройка и ремонт
82 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Длительно допустимые токи кабелей ПУЭ

Таблица ПУЭ выбора сечения кабеля, провода

ПУЭ, Таблица 1.3.4. Допустимый длительный ток для проводов и шнуров
с резиновой и поливинилхлоридной изоляцией с медными жилами

ПУЭ, Таблица 1.3.5. Допустимый длительный ток для проводов
с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами

ПУЭ, Таблица 1.3.6. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных

ПУЭ, Таблица 1.3.7. Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных

ПУЭ, Таблица 1.3.8. Допустимый длительный ток для переносных шланговых легких и средних шнуров, переносных шланговых тяжелых кабелей, шахтных гибких шланговых, прожекторных кабелей и переносных проводов с медными жилами

ГОСТ 16442-80, Таблица 23. Допустимые токовые нагрузки кабелей до 3КВ включ. с медными жилами с изоляцией из полиэтилена и поливинилхлоридного пластиката, А*

ГОСТ 16442-80, Таблица 24. Допустимые токовые нагрузки кабелей до 3КВ включ. с алюминиевыми жилами с изоляцией из полиэтилена и поливинилхлоридного пластиката, А*

Токи относятся к проводам и кабелям как с нулевой жилой, так и без нее.Сечения приняты из расчета нагрева жил до 65°С при температуре окружающей среды +25°С. При определении количества проводов, прокладываемых в одной трубе, нулевой рабочий провод четырехпроводной системы трехфазного тока (или заземляющий провод) в расчет не входит.

Токовые нагрузки для проводов, проложенных в лотках (не в пучках), такие же, как и для проводов, проложенных открыто.

Если количество одновременно нагруженных проводников, проложенных в трубах, коробах, а также в лотках пучками, будет более четырех, то сечение проводников нужно выбирать как для проводников, проложенных открыто, но с введением понижающих коэффициентов для тока: 0,68 при 5 и 6 проводниках, 0,63 — при 7-9, 0,6 — при 10-12.

Для облегчения выбора сечения и учета дополнительных условий можно воспользоваться формой «Расчет сечения провода по допустимому нагреву и допустимым потерям напряжения». Значения токов для малых сечений для медных проводников получен методом экстрапляции.

Расчет по экономическому критерию для конечных потребителей не производится.

Длительно допустимые токи кабелей ПУЭ

Полезная
реклама

Данная форма может быть свободно использована в автономном режиме «как есть» — т.е. без изменения исходного текста.
По поводу использования программы на сайтах необходимо связаться с автором — Мирошко Леонид: leonid@miroshko.kiev.ua.

С уважением Мирошко Леонид.

Таблицы ПУЭ и ГОСТ 16442-80 для программы WireSel —
Выбор сечения провода по нагреву и потерям напряжения.

ПУЭ, Таблица 1.3.4. Допустимый длительный ток для проводов и шнуров
с резиновой и поливинилхлоридной изоляцией с медными жилами

ПУЭ, Таблица 1.3.5. Допустимый длительный ток для проводов
с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами

ПУЭ, Таблица 1.3.6. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных

ПУЭ, Таблица 1.3.7. Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных

ПУЭ, Таблица 1.3.8. Допустимый длительный ток для переносных шланговых легких и средних шнуров, переносных шланговых тяжелых кабелей, шахтных гибких шланговых, прожекторных кабелей и переносных проводов с медными жилами

ГОСТ 16442-80, Таблица 23. Допустимые токовые нагрузки кабелей до 3КВ включ. с медными жилами с изоляцией из полиэтилена и поливинилхлоридного пластиката, А*

ГОСТ 16442-80, Таблица 24. Допустимые токовые нагрузки кабелей до 3КВ включ. с алюминиевыми жилами с изоляцией из полиэтилена и поливинилхлоридного пластиката, А*

* Токи относятся к проводам и кабелям как с нулевой жилой, так и без нее.

Сечения приняты из расчета нагрева жил до 65°С при температуре окружающей среды +25°С. При определении количества проводов, прокладываемых в одной трубе, нулевой рабочий провод четырехпроводной системы трехфазного тока (или заземляющий провод) в расчет не входит.

Токовые нагрузки для проводов, проложенных в лотках (не в пучках), такие же, как и для проводов, проложенных открыто.

Если количество одновременно нагруженных проводников, проложенных в трубах, коробах, а также в лотках пучками, будет более четырех, то сечение проводников нужно выбирать как для проводников, проложенных открыто, но с введением понижающих коэффициентов для тока: 0,68 при 5 и 6 проводниках, 0,63 — при 7-9, 0,6 — при 10-12.

Для облегчения выбора сечения и учета дополнительных условий можно воспользоваться формой «Расчет сечения провода по допустимому нагреву и допустимым потерям напряжения». Значения токов для малых сечений для медных проводников получен методом экстрапляции.

Расчет по экономическому критерию для конечных потребителей не производится.

Выбор сечения кабеля

Время на чтение:

Диаметр кабеля по току определяется через величину допустимого нагрева, учитывая нормальный и аварийный режимы эксплуатации электроустановки, а также неравномерное распределение токов на линиях. Более подробно о ПУЭ сечение кабеля по току, критериях выбора геометрических характеристик проводника и показателях длительного предельного электротока провода рассказывается ниже.

Критерии выбора

Существует несколько основных принципов, по которым подбирается площадь поперечного среза кабеля, что помогает обеспечить подачу электроэнергии потребителям. В список основных критериев входят такие свойства, как нормативный показатель расчетного тока на линиях по соответствующей таблице, способ прокладки, проводниковый материал и температурные условия при эксплуатации установок.

Сечение кабеля

Среди второстепенных критериев, помогающих подобрать оптимальное сечение кабеля, можно выделить следующие свойства и требования:

  • Допустимый габарит сечения, определяемый для токовой проходимости без перегрева металлического сердечника;
  • Исключение опасности падения электронапряжения провода с подобранным диаметром ниже нормативных значений;
  • Соблюдение механической прочности и надежности кабеля посредством выбора минимальной площади сечения и качества материала изоляционного слоя. Соблюдая это требование, можно поддерживать оптимальный показатель мощности и обеспечить безопасность электрификации.

Обратите внимание! Допустимое значение нагрева проводника – 60 градусов, и данного показателя необходимо придерживаться, чтобы предотвратить преждевременный износ изоляции, для чего требуется применять только провода с достаточным для прохождения тока сечениями. При перегреве провода гарантировать надежность контакта в местах присоединения к электрическим приборам невозможно, из-за чего возникает опасность возникновения аварийных ситуаций, например, выгорания проводки, после которой придётся править всю ЭЦ.

Таким образом, для того, чтобы выбрать оптимальный диаметр проводника по току, необходимо иметь навыки и опыт в корректном использовании нормативной информации, о предельных токовых нагрузках.

Какой длительно допустимый электроток проводника в соответствии с Правилами Устройства Электроустановок

Для надёжности и безопасности эксплуатации электроустановок к их монтажу предъявляются высокие требования. Любой профессионал знает, что все работы по кабельной прокладке, выбору проводников по длительно допустимому току и сбору цепей, должны быть строго регламентированы правилами устройства электроустановок, сокращённо – ПУЭ.

Предельный длительно допустимый электроток проводника в поливинилхлоридной или резиновой оболочке в соответствии с таблицей ПУЭ равен 11–830 ампер, на что пропорционально влияет габарит сечения сердечника. Предельная величина длительного тока у проводника, проложенного в кабельном канале при однорядном расположении (без наложений элементов друг на друга), следует определять, как для проводящих элементов цепи, которые проложены открыто.

Длительный электроток в коробе необходимо считать с применением понижающих коэффициентов, как для одиночных проводников, которые проложены открыто. Выбирая понижающие коэффициенты, контрольные и резервные провода считать нецелесообразно.

Предельно допустимый токовый показатель

Что представляют собой таблицы Правил Устройства Электроустановок

Показатели, отображённые в таблице, относятся к устройствам с обеспечением нулевого потенциала как через заземляющую жилу, так и без нее. Диаметры приняты из расчета предельного нагрева сердечников до 60 градусов. Определяя количество проводов, которые прокладываются в одной трубе или в едином лотке, следует учесть, что заземляющий или нулевой рабочие проводники не рассчитываются.

Электротоковые нагрузки на провода, проложенные в лотках, должны быть такими же, как и для проводящих элементов цепи, проложенных в открытом исполнении, то есть, по воздуху.

Если в трубах, лотках или коробах показатель нагрузки единый, так как все элементы связаны единой цепью, то диаметр проводника следует подбирать по аналогичному с открытой прокладкой алгоритму. Однако, здесь необходимо вводить специальные коэффициенты, обеспечивающие запасы численных показателей в зависимости от геометрических характеристик и количества жил: 0,68 при 5–6 проводниках, 0,63 при 7–9 проводниковых элементах или 0,6 при 10–12 кабелях в едином лотке или канале.

Читать еще:  Как обжать витую пару или делаем кабель для ЗАЛА ТВ

Обратите внимание! Чтобы правильно рассчитать сечение и облегчить выбор проводников, отталкиваясь от показателя длительно допустимого тока и добавочных условий, следует использовать специальную онлайн-форму расчета. Токовые значения для малых диаметров проводников из меди, представленные в таблице, получены по правилам экстраполяции, и их всегда можно откорректировать.

В целом, кабельный диаметр принимается по току, в зависимости от достаточной площади сердечника, падения напряжения и площади поперечного среза металлического сердечника кабеля. Это необходимо для максимального обеспечения механической прочности и общей надежности проводки. Допустимый кабельный ток по ПУЭ равен от 11 до 645 ампер.

Длительно допустимые токи кабелей ПУЭ

Таблицы из ПУЭ 1.3.4 и 1.3.5 знакомы уже многим и разжеваны сотни раз на разных форумах профессиональными электриками. В эту дискуссию хочу внести свою лепту и я. Ниже я описываю свое мнение как нужно правильно пользоваться данными таблицами. Там вы найдете ссылки и выдержки на соответствующие пункты ПУЭ, мои расчеты и примеры. Если вы еще не знаете как правильно выбирать сечение кабеля и как пользоваться этими таблицами, то вам нужно обязательно прочитать эту статью.

Вот они эти заветные таблицы ПУЭ.

Таблица 1.3.4. предназначена для выбора проводов с медными жилами.

Таблица 1.3.5. предназначена для выбора проводов с алюминиевыми жилами.

Посмотрели их внимательно? Теперь давайте подумаем, почему для кабеля одного и того же сечения допустимый длительный ток может быть разным. Например, для сечения 2,5мм 2 он может быть 21А, 25А, 27А или 30А. Видите какой разброс, аж в целых 7 ампер. Из этих таблиц мы видим, что величина длительного номинального тока зависит от способа прокладки проводов. Но какая может быть разница от того если мы кабель заштукатурили в стену, проложили в кабель-канале или в землю закопали? Сопротивление же этого кабеля не может измениться от его способа прокладки. Сопротивление это параметр, который может повлиять на величину номинального тока. Когда мы увеличиваем сечение кабеля мы тупо уменьшаем его сопротивление, поэтому по более толстому проводу может протекать более высокий ток.

Итак, давайте во всем этом мы с вами вместе разберемся. Для этого открываем ПУЭ и смотрим пункт 1.3.2. Тут сказано, что все провода должны удовлетворять только требованиям предельно допустимого нагрева. Это означает, что ограничения по току выбираются исходя из нагрева токопроводящих жил, то есть при выборе сечения нам нужно исключить только перегрев кабелей.

Оказывается, что от способа прокладки кабеля зависит его естественное охлаждение. Если мы прокладываем провод открыто, то он лучше охлаждается, чем если мы его проложим в кабель-канале. Если мы кабель закопаем в землю, то он еще лучше будет охлаждаться и соответственно меньше греться, поэтому по нему допускается протекание более высокого длительного номинального тока.

Листаем ПУЭ дальше и смотрим пункт 1.3.10. Тут сказано, что все номинальные токи, указанные в таблице, рассчитаны исходя из температуры жил +65С 0 , окружающего воздуха +25С 0 и земли +15С 0 . Таким образом получается, если на улице теплая погода +25С 0 , а мы проложили кабель сечением 2,5мм2 открыто и по нему протекает ток величиной 30А, то температура его жил должна быть +65С 0 . Вы представляете себе эту температуру? Ее даже не сможет выдержать ваша рука. Конечно для изоляции может эта температура и нормальная, но признаюсь честно, что я не хочу чтобы у меня дома жилы кабелей имели температуру +65С 0 .

Делаем вывод что, если кабель имеет хорошее охлаждение, то для того чтобы его жилу нагреть до критической температуры необходимо, чтобы по нему протекал больший ток. Поэтому в таблицах ПУЭ 1.3.4 и 1.3.5 присутствует разброс по величине номинального тока в зависимости от способа прокладки, т.е. от условий его охлаждения.

Теперь давайте разберем, что означает в столбцах таблиц прокладка кабеля в одной трубе и т.д. В том же пункте ПУЭ 1.3.10. написана следующая фраза:.

При определении количества проводов, прокладываемых в одной трубе (или жил многожильного проводника), нулевой рабочий проводник четырехпроводной системы трехфазного тока, а также заземляющие и нулевые защитные проводники в расчет не принимаются.

Я ее понимаю так, что при подсчете количества проводов при использовании многожильных кабелей, нулевые защитные проводники в расчет не принимаются. Также если сеть 3-х фазная, то здесь еще не принимается в расчет нулевой рабочий проводник N.

Поэтому получаем, что когда мы используем 3-х жильный кабель у себя дома, то у него не учитывается нулевой защитный проводник. Для такого кабеля нужно смотреть столбец в таблице для «одного двухжильного». Если вы дома используете 5-ти жильный кабель для подключения 3-х фазной нагрузки, то у него уже не учитываются две жилы — это нулевой защитный и нулевой рабочий проводники. Для такого кабеля нужно смотреть в таблице столбец как для «одного трехжильного».

Нулевой защитный проводник в расчет не принимается, так как по нему не протекает ток, он соответственно не греется и не оказывает теплового влияния на свои соседние жилы. В трехфазном кабеле протекает ток в трех жилах, которые греют друг друга и поэтому жилы этого кабеля нагреваются до температуры +65С 0 при меньшем токе, чем однофазный кабель.

Также если вы прокладываете провода в кабель-каналах (коробах) или пучками на лотках, то в таблицах ПУЭ это понимается как прокладка в одной трубе.

Вот вроде бы и разобрались с этими волшебными таблицами из ПУЭ )))

Теперь давайте всю полученную информацию подытожим. Для примера я возьму самый распространенный кабель в домах — это 3х2,5. Данный кабель 3-х жильный и поэтому мы у него не считаем третью жилу. Если мы его прокладываем не открыто, а в чем-нибудь (в коробе и т.д.), то значение длительного номинального тока нужно выбирать из столбца «для прокладки в одной трубе одного двухжильного». Для сечения 2,5 мм 2 мы получает 25А. В принципе мы его можем защитить автоматическим выключателем на 25А, что многие и делают. Когда данный автомат сработает из-за перегрузки, то кабель будет иметь температуру выше +65С 0 . Лично я не хочу, чтобы кабели у меня дома могли нагреваться до такой высокой температуры. Вот из каких соображений:

  1. Автомат срабатывает от перегрузки при токе превышающем его номинал более чем на 13%, т.е 25Ах1,13=28,25А. Этот ток уже будет завышенным для кабеля сечением 2,5мм2 и соответственно жилы кабеля нагреются больше чем на +65С 0 .
  2. Современный кабель имеет заниженное сечение, чем заявлено на его изоляции. Если взять кабель сечением 2,5мм 2 , то реальное его сечение может оказаться 2,3мм 2 , а то и меньше. Это наша действительность. Вы сейчас уже не сможете найти в продаже кабель соответствующий заявленному сечению. Если на нем будет написано ГОСТ, то уже с большой уверенностью я могу сказать, что его сечение будет меньше на 0,1-0,2 мм 2 . Я делаю такой вывод, так как нами уже измерено множество кабелей и разных производителей, на которых написано ГОСТ.

Исходя из вышесказанного лично я всегда буду защищать кабель сечением 2,5мм 2 , автоматическим выключателем номиналом 16А. Это позволит сделать запас по току 25-16=9А. Этот запас может снизить риски перегрева кабеля из-за задержки срабатывания автомата, из-за заниженного сечения и не позволит жилам кабеля нагреться до температуры +65С 0 . С выбором номиналов автоматических выключателей для других сечений я поступаю аналогичным способом. Я и вам советую придерживаться такого мнения при выборе пары автомат + кабель.

Если вы не согласны с моим мнением, то пожалуйста выскажете это в комментариях. Нам всем будет полезно найти правильное решение в этом нелегком выборе )))

Длительно-допустимый ток кабеля

Длительно-допустимый ток кабеля обозначает параметры токов, при которых наблюдается пиковый подъем температуры до своего максимума. На изменении данной характеристики больше всего влияет эксплуатационный режим, сечение токопроводника и наружные условия в плане влажности и температуры. Эти колебания происходят под воздействием данных факторов.
Содержание:

Читать еще:  7 способов соединение многожильных проводов между собой

Причины нагрева кабеля

Для любой сети, проектируемой для бытового использования или на крупном промышленном объекте, обязательно потребуется грамотно рассчитать сечение кабельно-проводниковых элементов. Корректно выполнить данную работу поможет знание причин изменения температуры в проводниках.

Физическая природа такого явления, как электрический ток, заключается в четко направленном перемещении заряженных частиц, происходящем под влиянием электрополя. В рабочем процессе электроны вынуждены преодолевать существующие в кристаллической решетке внутренние связи на молекулярном уровне. Из-за этого наблюдается образование значительного количества тепловой энергии.

Как и у любого другого явления, есть как негативные, так и положительные аспекты подобного свойства. В различных устройствах, к примеру, утюгах, чайниках, печах, такой эффект положен в основу конструкции. А вот минусом становится угроза разрушения изоляции, что грозит поломкой и даже воспламенением техники. Каждая такая ситуация – это превышение установленного лимита длительной токовой нагрузкой.

К чрезмерному перегреву приводит:

  • небрежный выбор параметров сечения. Перед подключением кабеля к прибору нужно убедиться в наличии запаса мощности кабеля порядка 30-40% к номинальному рабочему значению потребления;
  • плохое качество контактов обязательно послужит причиной нагрева и может закончиться возгоранием. Устранить опасность нередко можно своевременной профилактикой в виде подтягивания в местах соединения;

  • использование скрутки для алюминиевых и медных жил недопустимо. Следует воспользоваться клеммниками.

Получить корректные данные требуемого сечения можно делением суммы номинальных мощностей потребителей энергии на показатель напряжения. После этого не составит труда определиться с сечением, используя таблицы.

Расчет длительно допустимого тока кабеля

Избежать слишком большого повышения температуры можно только при грамотном выборе кабеля. Нужный рабочий режим обеспечивает оптимальное сечение проводника.

Для выполнения данного условия особую важность имеют два критерия – потеря в пределах нормы напряжения и допускаемая величина нагревания. Первый параметр сказывается на состоянии воздушных коммуникаций, а второй – на магистралях под землей.

Важно учитывать, сила тока Ip была сопоставима с аналогичной величиной по нагреву Iд. Таким образом обеспечивается соответствие конкретного показателя температуры проводника, протекающему в нем определенное время, любому току. Последний параметр представляет собой рассматриваемую нами величину.

В ходе расчета длительно допустимого тока кабеля принимается во внимание наибольшая положительная температура наружной среды. Базовое значение характеристики последнего значения в таблицах ПУЭ для установок в помещениях и на улице берется в пределах 250°С, и для подземной прокладки не менее 70-80 см – 150 градусов.

Важный нюанс – намного быстрее и проще воспользоваться таблицами допустимых значений, чем формулами. Подобный метод будет оптимальным при потребности уточнить приспособленность кабеля к воздействию на участке цепи номинальной нагрузки.

Условия теплоотдачи

Данный процесс протекает с максимальной эффективностью при находящемся во влажной среде кабеле. На параметры большое влияние имеют структура почвы и содержание в ней влаги.

Наиболее корректные результаты получаются при точном определении состава грунта с уточнением его показателей сопротивления при помощи специальных таблиц. При необходимости уменьшить теплоотдачу делается изменение структуры засыпки и ее трамбовка. К примеру, глина обладает большей теплопроводностью, чем гравий и песок. Из этого следует, что вместо камней и шлака гораздо целесообразнее воспользоваться суглинком и похожим материалами.

Минимальные значение токовых нагрузок применяются в ситуациях с расположением проводников в кабель-каналах и других вариантах воздушных линий. Оптимальным методом для нормальной эксплуатации будет расчет для работы и обычном длительном режиме, и в аварийном. Кабеля ПВХ могут выдержать короткое замыкание с допустимой температурой в 1200°С, а с бумажным слоем изоляции – до 2000 градусов.

Существует обратная пропорциональная зависимость между температурным сопротивлением проводника и показателями теплоемкости наружной среды. При этом есть разница в условиях охлаждения изолированных и не имеющих оболочки проводов.

Во время расчета важно предусмотреть снижение длительности токовой нагрузки в каждой линии при нахождении в общей траншее сразу нескольких кабелей.

Длительно допустимый ток по ПУЭ

Особая система правил разработана для обеспечения безопасности в ходе всех мероприятий, касающихся электроэнергии. Последнее 7-е издание ПУЭ предусматривает регламент всех рабочих процессов, условия монтажа, профилактического обслуживания, ремонта и обеспечения безопасности персонала. Подробно описаны требования по допустимому длительному току для множества вариантов с разным сечением, используемым металлом, видом кабеля, способом укладки.

Все документы по безопасности находятся в 3-ей главе в разделе№1. Здесь рассмотрены все значения допустимого тока в таблицах 3. 1. 7. 4 – 3. 1. 7. 11.

Более наглядно можно понять все нюансы нормативов ПУЭ при построении стандартной таблицы с выполнением выделения подсетей и вычислением для них по отдельности наибольшего значения тока и мощности.

Таблица длительно допустимых токов для кабелей

Всегда следует помнить о порядке значимости определенных критериев при определении параметров сечения. Обычно следует определяться в такой последовательности:

  1. Основные технические характеристики и тип линии.
  2. Номинальная мощность рабочей нагрузки.
  3. Особенности тока.
  4. Планируемые к установке аппараты защиты.
  5. Подбор с учетом вышеуказанных факторов проводки.

Есть таблица, где указаны длительно допустимые токи для медных кабелей в изделиях с изоляционным слоем ПВХ, а также с другими видами покрытия.

На практике нередко отдается предпочтение алюминию, как более дешевому варианту монтажа. Для подобных случаев производится свой расчет, который определяет допустимый длительный ток для алюминиевого кабеля с необходимым уровнем параметров точности.

Вся изложенная в ПУЭ информация стала основой для составления таблиц для с множеством различных вариантов подбора нужных токопроводников, используемых для видео- и звуковых устройств, образцов с повышенной устойчивостью к возгораниям, кабелей речевого оповещения, стационарных линий на бытовых и промышленных объектах.

Выбираем сечение кабеля по току с помощью таблиц ПУЭ и ГОСТ, особенности расчетов

Используя таблицу ПУЭ можно правильно выбрать сечение кабеля по току. Так, например если кабель будет меньшего сечения, то это может привести к преждевременному выходу из строя всей системы проводки или порче включённого оборудования. Так же неправильный выбор толщины кабеля может стать причиной пожара, который произойдёт из-за плавления изоляции провода при его перегреве из-за высокой мощности.

При обратном процессе, когда толщина кабеля будет взята со значительным запасом по мощности, может произойти лишняя трата денег для приобретения более дорогостоящего провода.

Как показывает практика, в большинстве случаев выбирать сечение кабеля по току следует исходя из показателя его плотности.

Таблицы ПУЭ и ГОСТ

Плотность тока

При проведении выбора сечения провода необходимо знать некоторые показатели. Так, например величина плотности тока в таком материале как медь составляет от 6 до 10 А/мм2. Такой показатель является результатом многолетних наработок специалистов и принимается исходя из основных правил регламентирующих устройство электрических установок.

В первом случае при плотности в шесть единиц предусмотрена работа электрической сети в длительном рабочем режиме. Если же показатель составляет десять единиц, то следует понимать, что работа сети возможна не длительное время во время периодических коротких включений.

Поэтому производить выбор толщины необходимо именно по данному допустимому показателю.

Приведенные выше данные соответствуют медному кабелю. Во многих электрических сетях до сих пор применяются и алюминиевые провода. При этом медный кабель в сравнении с последним типом провода имеет свои неоспоримые преимущества.

К таковым можно отнести следующее:

  1. Медный кабель обладает намного большей мягкостью и в тоже время показатель его прочности выше.
  2. Изделия, изготовленные из меди более длительное время не подвержены процессам окисления.
  3. Пожалуй, самым главным показателем медного кабеля есть его более высокая степень проводимости, а значит и лучший показатель по плотности тока и мощности.

К самому главному недостатку такого кабеля можно отнести более высокую цену на него.

Показатель плотности тока для алюминиевого провода находится в диапазоне от четырёх до шести А/мм2. Поэтому его можно применять в менее ответственных сооружениях. Так же данный тип проводки активно применялся в прошлом веке при строительстве жилых домов.

Проведение расчетов сечения по току

При расчете рабочего показателя толщины кабеля, необходимо знать какой ток будет протекать по сети данного помещения. Например, в самой обычной квартире необходимо суммировать мощность всех электрических приборов, которые подключаются к сети.

В качестве примера для расчета можно привести стандартную таблицу потребляемой мощности основными бытовыми приборами, использующимися в обычной квартире.

Исходя и суммарной мощности, производится расчет тока, который будет течь по кабелям сети.

Читать еще:  NYM или ВВГ

В этой формуле Р означает общую мощность, измеряемую в Ваттах, К1 – коэффициент, который определяет одновременную работу всех бытовых приборов (его величина обычно равняется 0,75) и U – напряжение в домашней сети равное обычно 220 Вольтам.

Данный показатель расчета тока поможет сделать оценку нужного сечения для общей сети. При этом необходимо так же учитывать и рабочую плотность тока.

Такой расчет можно принимать как приблизительный выбор. При этом более точные показатели могут быть получены с использованием выбора из специальной таблицы ПУЭ. Такая таблица ПУЭ является элементом специальных правил устройства электрических установок.

Ниже приведен пример таблицы ПУЭ, по которой возможно производить выбор сечения.

Как видно такая таблица ПУЭ кроме зависимости сечений от показателя по току ещё предусматривает и учёт материала, из которого изготавливаются провода, а так же и его расположение. Кроме этого в таблице регламентируется количество жил и величина напряжения, которая может быть как 220, так и 380 Вольт.

Расчет по току с применением дополнительных параметров

При расчете сечения на основе тока с использованием таблицы ПУЭ можно пользоваться и дополнительными параметрами.

Например, есть возможность учитывать диаметр жилы. Поэтому при определении сечения жилы применяют специальное оборудование под названием микрометр. На основе его данных определяется толщина каждой жилы. Потом с использованием значений ранее полученных токов и специальной таблицы производится окончательный выбор величины сечения жилы провода.

Если же кабель состоит из нескольких жил, то следует произвести замер одной из них и посчитать её сечение. После этого для нахождения окончательного значения толщины, показатель, полученный для одной жилы, умножается на их количество в проводе.

Полученное таким образом с использованием расчетов и таблицы ПУЭ значение сечения кабеля позволит создать в доме или квартире проводку, которая будет служить хозяевам на протяжении довольно долгого периода времени без возникновения аварийных или внештатных ситуаций.

ПУЭ 7. Правила устройства электроустановок. Издание 7

Раздел 1. Общие правила

Глава 1.3. Выбор проводников по нагреву, экономической плотности тока и по условиям короны

Допустимые длительные токи для кабелей с бумажной пропитанной изоляцией

1.3.12. Допустимые длительные токи для кабелей напряжением до 35 кВ с изоляцией из пропитанной кабельной бумаги в свинцовой, алюминиевой или поливинилхлоридной оболочке приняты в соответствии с допустимыми температурами жил кабелей:

Номинальное напряжение, кВ

Допустимая температура жилы кабеля, °С

1.3.13. Для кабелей, проложенных в земле, допустимые длительные токи приведены в табл. 1.3.13, 1.3.16, 1.3.19-1.3.22. Они приняты из расчета прокладки в траншее на глубине 0,7-1,0 м не более одного кабеля при температуре земли + 15 °С и удельном сопротивлении земли 120 см•К/Вт.

Таблица 1.3.13. Допустимый длительный ток для кабелей с медными жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой оболочке, прокладываемых в земле

Сечение токопроводящей жилы, мм 2

Ток, А, для кабелей

одножильных до 1 кВ

двухжильных до 1 кВ

трехжильных напряжением, кВ

четырехжильных до 1 кВ

Таблица 1.3.14. Допустимый длительный ток для кабелей с медными жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой оболочке, прокладываемых в воде

Сечение токопроводящей жилы, мм 2

Ток, А, для кабелей

трехжильных напряжением, кВ

четырехжильных до 1 кВ

Таблица 1.3.15. Допустимый длительный ток для кабелей с медными жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой оболочке, прокладываемых в воздухе

Сечение токопро водящей жилы, мм 2

Ток, А, для кабелей

одножильных до 1кВ

двухжильных до 1кВ

трехжильных напряжением, кВ

четырехжильных до 1 кВ

Таблица 1.3.16. Допустимый длительный ток для кабелей с алюминиевыми жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой или алюминиевой оболочке, прокладываемых в земле

Сечение токопро водящей жилы, мм 2

Ток, А, для кабелей

одножильных до 1 кВ

двухжильных до 1 кВ

трехжильных напряжением, кВ

четырехжильных до 1 кВ

Таблица 1.3.17. Допустимый длительный ток для кабелей с алюминиевыми жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой оболочке, прокладываемых в воде

Сечение токопроводящей жилы, мм 2

Ток, А, для кабелей

трехжильных напряжением, кВ

четырех жильных до 1 кВ

Таблица 1.3.18. Допустимый длительный ток для кабелей с алюминиевыми жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой или алюминиевой оболочке, прокладываемых в воздухе

Сечение токопроводящей жилы, мм 2

Ток, А, для кабелей

одножильных до 1 кВ

двухжильных до 1 кВ

трехжильных напряжением, кВ

четырехжильных до 1 кВ

Таблица 1.3.19. Допустимый длительный ток для трехжильных кабелей напряжением 6 кВ с медными жилами с обедненнопропитанной изоляцией в общей свинцовой оболочке, прокладываемых в земле и воздухе

Сечение токопроводящей жилы, мм 2

Ток, А, для кабелей проложенных

Сечение токопроводящей жилы, мм 2

Ток, А, для кабелей проложенных

Таблица 1.3.20. Допустимый длительный ток для трехжильных кабелей напряжением 6 кВ с алюминиевыми жилами с обедненнопропитанной изоляцией в общей свинцовой оболочке, прокладываемых в земле и воздухе

Сечение токопроводящей жилы, мм 2

Ток, А, для кабелей проложенных

Сечение токопро водящей жилы, мм 2

Ток, А, для кабелей проложенных

Таблица 1.3.21. Допустимый длительный ток для кабелей с отдельно освинцованными медными жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией, прокладываемых в земле, воде, воздухе

Сечение токопроводящей жилы, мм 2

Ток, А, для трехжильных кабелей напряжением, кВ

Таблица 1.3.22. Допустимый длительный ток для кабелей с отдельно освинцованными алюминиевыми жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией, прокладываемых в земле, воде, воздухе

Сечение токопроводящей жилы, мм 2

Ток, А, для трехжильных кабелей напряжением, кВ

Таблица 1.3.23. Поправочный коэффициент на допустимый длительный ток для кабелей, проложенных в земле, в зависимости от удельного сопротивления земли

Удельное сопротивление см•К/Вт

Песок влажностью более 9% песчано-глинистая почва влажностью более 1%

Нормальные почва и песок влажностью 7-9%, песчано-глинистая почва влажностью 12-14%

Песок влажностью более 4 и менее 7%, песчано-глинистая почва влажностью 8-12%

Песок влажностью до 4%, каменистая почва

При удельном сопротивлении земли, отличающемся от 120 см•К/Вт, необходимо к токовым нагрузкам, указанным в упомянутых ранее таблицах, применять поправочные коэффициенты.

1.3.14. Для кабелей, проложенных в воде, допустимые длительные токи приведены в табл. 1.3.14, 1.3.17, 1.3.21, 1.3.22. Они приняты из расчета температуры воды +15 °С.

1.3.15. Для кабелей, проложенных в воздухе, внутри и вне зданий, при любом количестве кабелей и температуре воздуха +25 °С допустимые длительные токи приведены в табл. 1.3.15, 1.3.18-1.3.22,

1.3.16. Допустимые длительные токи для одиночных кабелей, прокладываемых в трубах в земле, должны приниматься как для тех же кабелей, прокладываемых в воздухе, при температуре, равной температуре земли.

Таблица 1.3.24. Допустимый длительный ток для одножильных кабелей с медной жилой с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой оболочке, небронированных, прокладываемых в воздухе

Сечение токопроводящей жилы, мм 2

Ток *, А, для кабелей напряжением, кВ

* В числителе указаны токи для кабелей, расположенных в одной плоскости с расстоянием в свету 35-125 мм, в знаменателе — для кабелей, расположенных вплотную треугольником.

1.3.17. При смешанной прокладке кабелей допустимые длительные токи должны приниматься для участка трассы с наихудшими условиями охлаждения, если длина его более 10 м. Рекомендуется применять в указанных случаях кабельные вставки большего сечения.

1.3.18. При прокладке нескольких кабелей в земле (включая прокладку в трубах) допустимые длительные токи должны быть уменьшены путем введения коэффициентов, приведенных в табл. 1.3.26. При этом не должны учитываться резервные кабели.

Прокладка нескольких кабелей в земле с расстояниями между ними менее 100 мм в свету не рекомендуется.

1.3.19. Для масло- и газонаполненных одножильных бронированных кабелей, а также других кабелей новых конструкций допустимые длительные токи устанавливаются заводами-изготовителями.

1.3.20. Допустимые длительные токи для кабелей, прокладываемых в блоках, следует определять по эмпирической формуле

где I — допустимый длительный ток для трехжильного кабеля напряжением 10 кВ с медными или алюминиевыми жилами, определяемый по табл. 1.3.27; a — коэффициент, выбираемый по табл. 1.3.28 в зависимости от сечения и расположения кабеля в блоке; b — коэффициент, выбираемый в зависимости от напряжения кабеля:

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector