Astro-nn.ru

Стройка и ремонт
6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Частотный преобразователь принцип работы для чайников

Что нужно знать о частотном преобразователе

Частотный преобразователь для электродвигателя

Технические аспекты применения частотных преобразователей

В настоящее время асинхронный электродвигатель стал основным устройством в большинстве электроприводов. Все чаще для управления им используется частотный преобразователь — инвертор с ШИМ-регулированием. Такое управление дает массу преимуществ, но и создает некоторые проблемы выбора тех или иных технических решений. Попробуем разобраться в них более подробно.

Устройство частотных преобразователей

Разработка и производство широкой номенклатуры мощных высоковольтных транзисторных IGBT модулей предоставили возможность реализации многофазных силовых переключателей, управляемых непосредственно с помощью цифровых сигналов. Программируемые вычислительные средства позволили на входах коммутаторов сформировать числовые последовательности, обеспечивающие сигналы частотного управления асинхронными электродвигателями.Разработка и массовый выпуск однокристальных микроконтроллеров, обладающих большими вычислительными ресурсами, обусловили возможность перехода к следящим электроприводам с цифровыми регуляторами.

Силовые преобразователи частоты, как правило, реализуют по схеме, содержащей выпрямитель на мощных силовых диодах или транзисторах и инвертор (управляемый коммутатор) на IGBT транзисторах, шунтированных диодами (рис. 1).

Рис. 1. Схема частотного преобразователя

Входной каскад выпрямляет подаваемое синусоидальное напряжение сети, которое после сглаживания с помощью индуктивно-емкостного фильтра служит источником электропитания управляемого инвертора, вырабатывающего при действии команд цифрового управления сигнал с импульсной модуляцией, который формирует в обмотках статора токи синусоидальной формы с параметрами, обеспечивающими требуемый режим работы электродвигателя.

Цифровое управление силовым преобразователем осуществляется с помощью микропроцессорных аппаратных средств и соответствующим поставленным задачам программным обеспечением. Вычислительное устройство в режиме реального времени вырабатывает сигналы управления 52 модулями, а также производит обработку сигналов измерительных систем, контролирующих работу привода.

Силовые устройства и управляющие вычислительные средства объединены в составе конструктивно оформленного промышленного изделия, называемого частотным преобразователем.

В промышленном оборудовании применяются два основных вида частотных преобразователей:

  • фирменные преобразователи для конкретных типов оборудования.
  • универсальные преобразователи частоты предназначены для многоцелевого управления работой АД в задаваемых пользователем режимах.

Установку и контроль режимов работы частотного преобразователя можно производить с помощью пульта управления, оснащенного экраном для индикации введенной информации. В простом варианте скалярного регулирования частоты можно воспользоваться набором простых логических функций, имеющихся в заводских установках контроллера, и встроенным ПИД-регулятором.

Для осуществления более сложных режимов управления с использованием сигналов с датчиков обратных связей необходимо разработать структуру САУ и алгоритм, который следует запрограммировать с помощью подключаемого внешнего компьютера.

Большинство производителей выпускает целый ряд преобразователей частоты, отличающихся входными и выходными электрическими характеристиками, мощностью, конструктивным исполнением и другими параметрами. Для подключения к внешнему оборудованию (электросети, двигателю) могут быть использованы дополнительные внешние элементы: магнитные пускатели, трансформаторы, дроссели.

Типы сигналов управления

Необходимо делать различия между сигналами различных типов и для каждого из них использовать отдельный кабель. Различные типы сигналов могут оказывать влияние друг на друга. На практике такое разделение встречается часто, например кабель от датчика давления может быть подключен непосредственно к преобразователю частоты.

На рис. 2 приведен рекомендуемый вариант подключения преобразователя частоты при наличии различных цепей и сигналов управления.

Рис. 2. Пример подключения силовых цепей и цепей управления преобразователя частоты

Можно выделить следующие типы сигналов:

  • аналоговые — сигналы напряжения или тока (0. 10 В, 0/4. 20 мА), значение которых меняется медленно или редко, обычно это сигналы управления или измерения;
  • дискретные сигналы напряжения или тока (0. 10 В, 0/4. 20 мА), которые могут принимать только два редко изменяющихся значения (высокое или низкое);
  • цифровые (данные) — сигналы напряжения (0. 5 В, 0. 10 В), которые меняются быстро и с высокой частотой, обычно это сигналы портов RS232, RS485 и т.п.;
  • релейные — контакты реле (0. 220 В переменного тока) могут включать индуктивные токи в зависимости от подключенной нагрузки (внешние реле, лампы, клапаны, тормозные устройства и т.д.).

Выбор мощности частотного преобразователя

При выборе мощности частотного преобразователя необходимо основываться не только на мощности электродвигателя, но и на номинальных токах и напряжениях преобразователя и двигателя. Дело в том, что указанная мощность частотного преобразователя относится только к эксплуатации его со стандартным 4-х полюсным асинхронным электродвигателем в стандартном применении.

Реальные приводы имеют много аспектов, которые могут привести к росту токовой нагрузке привода, например, при пуске. В общем случае, применение частотного привода позволяет снизить токовые и механические нагрузки за счет плавного пуска. Например, пусковой ток снижается с 600% до 100-150% от номинального.

Работа привода на пониженной скорости

Необходимо помнить, что хотя частотный преобразователь легко обеспечивает регулирование по скорости 10:1, но при работе двигателя на низких оборотах мощности собственного вентилятора может не хватать. Необходимо следить за температурой двигателя и обеспечить принудительную вентиляцию.

Электромагнитная совместимость

Поскольку частотный преобразователь мощный источник высокочастотных гармоник, то для подключения двигателей нужно использовать экранированный кабель минимальной длины. Прокладку такого кабеля необходимо вести на расстоянии не менее 100 мм от других кабелей. Это минимизирует наводки. Если нужно пересечь кабели, то пересечение делается под углом 90 градусов.

Питание от аварийного генератора

Плавный пуск, который обеспечивает частотный преобразователь позволяет снизить необходимую мощность генератора. Так как при таком пуске ток снижается в 4-6 раз, то в аналогичное число раз можно снизить мощность генератора. Но все равно, между генератором и приводом должен быть установлен контактор, управляемый от релейного выхода частотного привода. Это защищает частотный преобразователь от опасных перенапряжений.

Питание трехфазного преобразователя от однофазной сети

Трехфазные частотные преобразователи могут быть запитаны от однофазной сети, но при этом их выходной ток не должен превышать 50% от номинального.

Экономия электроэнергии и денег

Экономия происходит по нескольким причинам. Во-первых, за счет роста косинуса фи до значений 0.98, т.е. максимум мощности используется для совершения полезной работы, минимум уходит в потери. Во-вторых, близкий к этому коэффициент получается на всех режимах работы двигателя.

Без частотного преобразователя, асинхронные двигатели на малых нагрузках имеют косинус фи 0.3-0.4. В-третьих, нет необходимости в дополнительных механических регулировках (заслонках, дросселях, вентилях, тормозах и т.д.), все делается электронным образом. При таком устройстве регулирования, экономия может достигать 50%.

Синхронизация нескольких устройств

За счет дополнительных входов управления частотного привода можно синхронизировать процессы на конвейере или задавать соотношения изменения одних величин, в зависимости от других. Например, поставить в зависимость скорость вращения шпинделя станка от скорости подачи резца. Процесс будет оптимизирован, т.к. при увеличении нагрузки на резец, подача будет уменьшена и наоборот.

Защита сети от высших гармоник

Для дополнительной защиты, кроме коротких экранированных кабелей, используются сетевые дроссели и шунтирующие конденсаторы. Дроссель, кроме того, ограничивает бросок тока при включении.

Правильный выбор класса защиты

Для безотказной работы частотного привода необходим надежный теплоотвод. Если использовать высокие классы защиты, например IP 54 и выше, то трудно или дорого добиться такого теплоотвода. Поэтому, можно использовать отдельный шкаф с высоким классом защиты, куда ставить модули с меньшим классом и осуществлять общую вентиляцию и охлаждение.

Параллельное подключение электродвигателей к одному частотному преобразователю

С целью снижения затрат, можно использовать один частотный преобразователь для управления несколькими электродвигателями. Его мощность нужно выбирать с запасом 10-15% от суммарной мощности всех электродвигателей. При этом нужно минимизировать длины моторных кабелей и очень желательно ставить моторный дроссель.

Большинство частотных преобразователей не допускают отключение или подключение двигателей с помощью контакторов во время работы частотного привода. Это производится только через команду стоп привода.

Задание функции регулирования

Для получения максимальных показателей работы электропривода, таких как: коэффициент мощности, коэффициент полезного действия, перегрузочная способность, плавность регулирования, долговечность, нужно правильно выбирать соотношение между изменением рабочей частоты и напряжения на выходе частотного преобразователя.

Функция изменения напряжения зависит от характера момента нагрузки. При постоянном моменте, напряжение на статоре электродвигателя должно регулироваться пропорционально частоте (скалярное регулирование U/F = const). Для вентилятора, например, другое соотношение – U/F*F = const. Если увеличиваем частоту в 2 раза, то напряжение нужно увеличить в 4 (векторное регулирование). Есть приводы и с более сложными функциями регулирования.

Преимущества использования регулируемого электропривода с частотным преобразователем

Кроме повышения КПД и энергосбережения такой электропривод позволяет получить новые качества управления. Это выражается в отказе от дополнительных механических устройств, создающих потери и снижающих надежность систем: тормозов, заслонок, дросселей, задвижек, регулирующих клапанов и т.д. Торможение, например, может быть осуществлено за счет обратного вращения электромагнитного поля в статоре электродвигателя. Меняя только функциональную зависимость между частотой и напряжением, мы получаем другой привод, не меняя ничего в механике.

Чтение документации

Следует заметить, что хотя частотные преобразователи похожи друг на друга и, освоив один, легко разобраться с другим, тем не менее, необходимо тщательно читать документацию. Некоторые производители накладывают ограничения на использование своей продукции, а при их нарушении снимают изделия с гарантии.

Источник: ООО «СВ-Техноэлектро»

Частотный преобразователь – что это такое, устройство, принцип действия, для чего нужен, плюсы и минусы

Для достижения высокой эффективности и экономии энергии в оборудовании, связанном с промышленными асинхронными двигателями, необходимо использовать управляемые системы. Современный частотный преобразователь отлично подходит для применения в двигателях переменного тока и простой установки.

Что такое частотный преобразователь?

Электропривод, или преобразователь частот в напряжение – часть технического оборудования, переводящее токи, частоты, импульсы и другие формы волн в пропорциональную электрическую мощность. Выходное напряжение соответствует колебаниям входного сигнала. Устройства могут модулировать частоты для ограничения выходного сигнала. Другими словами, преобразователь частоты трансформирует переменный ток частотой 50 или 60 Гц в переменный любой желаемой частоты. Если это требуется ПЧ может изменить напряжение.

Устройство частотного преобразователя

Современный преобразователь частоты объединяет как минимум три основных блока:

  1. Схему управления. Руководство частотным преобразователем строится на основе микропроцессора, регулирующего электронные ключи и обороты двигателя, проводящего его диагностику и защищающего от перегрева, перенапряжения и других задач.
  2. Выпрямитель с фильтром. Выходящее напряжение из выпрямителя сглаживает существенные пульсации, перенятые от переменного тока. Происходит это с помощью катушки индуктивности с реактивным сопротивлением и электролитического конденсатора.
  3. Трехфазный инвертор. Призван изменять показатели выходного тока. Включает в себя 6 транзисторов (по 2 на каждую фазу).

Принцип действия частотного преобразователя

У каждого прибора будет свой микроконтроллер, подпрограмма управления и настройки. Невзирая на то, что каждое устройство настраивается сугубо индивидуально, принцип работы частотного преобразователя один. Из входной токовой дроссельной защиты напряжение подается на выпрямитель и далее на блок инвертора, который будет создавать изменяющиеся частоты. Схематично это выглядит так: на входе до выпрямителя – синусоида, потом она выпрямляется и это напряжение формируется в меандр, то есть на выходе уже будут прямоугольные импульсы.

Для чего нужен частотный преобразователь?

Преобразователи частоты используются для энергосбережения и обеспечения точного управления критическими процессами, такими как:

  • системой охлаждения (радиаторы, насосы);
  • топливной система (усилители, нагреватели);
  • вентиляцией (например, машинного зала).

Это оборудование часто используется в электромеханическом контексте, например, для оценки отзывчивости двигателя транспортного средства или компонентов безопасности. Частотный преобразователь для электродвигателя позволяет контролировать его скорость вращения и управлять им. Это обуславливает их распространение в хозяйственной и промышленной областях.

Плюсы и минусы частотного преобразователя

В виду своих эксплуатационных качеств частотники все чаще применяются в различных технологических процессах. Каждый из них имеет свои особенности, которые зависят от их строения и принципа работы. Из достоинств этих устройств можно выделить:

  1. Невысокая стоимость. Относительно несложная конструкция делает их более доступными.
  2. КПД. Он является сравнительно высоким.
  3. Рекуперация. Частотный асинхронный преобразователь осуществляет как двигательную работу привода, и тормозную.
  4. Экономия. Например, частотный преобразователь для насоса может на 50% повысить экономичность его работы.
  5. Мощность. При добавлении преобразовательных комплектов, можно достичь любой мощности.
  6. Низкие частоты могут достигаться в широком диапазоне, при этом сохраняются стабильные двигательные вращения.
  7. Удобство. Конструкция в виде блоков и модулей делает возможным эксплуатацию устройства с небольшими затратами времени и труда.
Читать еще:  Как правильно выбрать кухонную вытяжку и рассчитать мощность

Однако, есть и минусы:

  1. Выходной диапазон частот. ЧП работают только на понижение.
  2. Помехи. В напряжение, которое преобразуется появляются субгармоники, перекрывающие двигатель и создающие помехи.
  3. Структурная многоэлементность, по большей части результативна только для больших мощностей.

Виды частотного преобразователя

Исходя из конструктивных особенностей, электроприводы можно разделить на электронные и индукционного типа. Первые дают возможность плавно управлять оборотами синхронных и асинхронных устройств. Электродвигатели второго типа с фазным ротором, работающие как генератор относятся к индукционным. Они имеют маленький коэффициент полезного действия и эффективность.

По типу электрического питания и величине можно выделить:

  • однофазный частотный преобразователь;
  • трёхфазный;
  • высоковольтный.

Как выбрать частотный преобразователь?

Покупая частотный асинхронный преобразователь, нужно понять, с какими нагрузками он будет связан. Еще стоит учесть характеристики крутящего момента, диапазон скоростей, точность статической скорости, требования к начальному крутящему моменту и условия окружающей среды.

  1. Подходящий режим управления согласно характеристикам нагрузки. Производительность стала определяющим фактором. В дополнение к качеству изготовления, важным является и управление устройством.
  2. Защитная конструкция в соответствии со средой установки. Преобразователь частоты – это прибор, работающий с напряжением, поэтому важно учитывать температуру окружающей среды, влажность, пыль, pH, едкие газы и другие факторы.
  3. Характеристики крутящего момента нагрузки механического оборудования. Делятся на три типа: нагрузка с постоянным крутящим моментом, с постоянной мощностью и гидравлическая нагрузка.

Рейтинг частотного преобразователя

Подключение частотного преобразователя

Современные электроприводы для удобства подключения, имеются специальные выводы. Частотный преобразователь – это прибор, который требует правильного и точного подключения, заключающегося в корректном соединении кабельных проводов нужного сечения к определенным выводам электрического двигателя.

Подсоединение преобразователей к электрическим двигателям может происходить следующими способами:

  1. Звезда. Инверторные выводы должны подключаться к одновременно сопряженным обмоткам двигателя. Применяется данное соединение, когда нужно включить трехфазный частотный преобразователь в такую же сеть объектов промышленного назначения.
  2. Треугольник. Выводы с электропривода подсоединяются с поступательно подключенными обмотками статором электродвигателя. Применяется для подключения в быту к сетям с одной фазой, где выходное инверторное напряжение не выше входного значения больше чем на 50%.

Как настроить частотный преобразователь?

Корректировка работы частотного преобразователя разрешает установить нужный режим ускорения и торможения электрического двигателя. Во избежание вывода из строя оборудования нужно оптимизировать следующие параметры:

  1. Наименьшую выходную частоту. Ее повышение во многих случаях уменьшает при разгоне разогрев двигателя.
  2. Предельную выходную частоту. Заданный показатель частоты может равняться или быть менее пиковой выходной частоты. Это значение применяется, чтобы гипотетически рассчитать время разгона.
  3. Нижнюю границу выходной частоты. По сути, это ограничитель частоты на выходе ПЧ. Настройка обеспечивает защиту двигателя, если минимальная рабочая частота была установлена ошибочно.
  4. Частоту предельно допустимого напряжения. Задается согласно значению, которое указано на электродвигателе.
  5. Время разгона. Параметр, который определяет предполагаемое время с разгона электродвигателя от нулевой частоты до наибольшей выходной.

Устройство и принцип действия частотного преобразователя

Время на чтение:

Частотный преобразователь — электронное устройство для изменения частоты тока. Оно широко применяется для работы асинхронных электрических двигателей. Использование этого прибора позволяет продлить срок службы механизмов и увеличить экономию электроэнергии.

Достигается это тем, что преобразователь частоты (ПЧ) обеспечивает плавный пуск рабочего режима электрооборудования и его остановку.

Устройство и назначение

Частотный преобразователь представляет собой набор схем, в которых тиристоры или транзисторы функционируют в режиме электронных ключей. Основное управление этими ключами осуществляет микропроцессор, который параллельно выполняет контроль, диагностику и защиту.

Часто преобразователь называют инвертором частотником. Существует два класса оборудования этого назначения:

  1. С прямой связью.
  2. С промежуточным звеном постоянного тока.

По своим характеристикам каждый класс обладает своими преимуществами и недостатками, которые и определяют место их конкретного использования. Управляемый выпрямитель считается основным электрическим устройством в инверторах с прямой связью. Во время работы он отключает тиристоры и подключает статорную обмотку электродвигателей к сети.

Преобразование выходного напряжения происходит за счет участков входного, поэтому их частота не может быть равна или больше питания, поступающего от источника. То есть она находится в пределах от 0 до 50 Гц, что приводит к слишком малому диапазону управления частотой вращения электродвигателя.

Эти параметры не позволяют подобные конструкции использовать в современных, регулируемых по частоте приводах.

Асинхронные электродвигатели требуют сложную регулировку вращения, которую и обеспечивают преобразователи частоты, создающие на выходе высокочастотное напряжение до 800 Гц.

Принцип действия

Если объяснять принцип работы частотного преобразователя, то можно сказать, что применение этого устройства позволяет эффективно и качественно управлять работой мощных асинхронных электродвигателей.

Оборудование представляет собой частотно-регулируемый привод (ЧРП), за счет которого улучшились технические характеристики машин и механизмов. Чтобы изменить число оборотов вала двигателя, необходимо отрегулировать амплитуду напряжения и частоты. Принцип работы преобразователя частоты основан на двух способах:

  1. Скалярное управление — позволяет проводить регулировку согласно линейному закону, когда амплитуда и частота пропорционально зависят друг от друга. То есть изменение частоты влияет на амплитуду поступающего напряжения, которое действует на крутящий момент и коэффициент мощности механизма. Очень важно, чтобы момент нагрузки на валу электродвигателя оставался одинаковым, а отношение напряжения к выходной частоте оставалось неизменным.
  2. Векторная регулировка — позволяет удерживать постоянную нагрузку при любых изменениях частоты. Осуществляет более точное управление, и электропривод мягче реагирует на изменение выходной мощности. Следует учитывать, на момент вращения влияет величина тока статора, точнее, магнитное поле, которое он создает.

Промышленное напряжение поступает на выпрямитель, который сглаживает синусоиды, оставляя пульсации сигнала. Чтобы их ликвидировать и сгладить форму выходного напряжения, предусмотрены в конструкции конденсаторы с индуктивностью.

С выпрямителя сигнал поступает на вход инвертора, состоящего из шести транзисторов с диодами, которые выполняют защитные функции от напряжения обратной полярности. Иногда в схемах могут стоять тиристоры, но они действуют медленнее и с большими помехами.

Чтобы обеспечить плавное торможение вращения, в конструкцию вмонтирован регулируемый транзистор с мощным сопротивлением. По такому принципу работает частотный преобразователь для электродвигателя.

Выпускаемые модели

Во многих областях применяются асинхронные двигатели, работа которых характеризуется высокими показателями устойчивости и безопасности. Это особенно важно, так как любое устройство обладает своими индивидуальными характеристиками, зачем и нужны инверторы, которые обеспечивают оптимизацию параметров их питания. К новой линейке оборудования относятся:

  1. Emotron FDU 2.0 — преобразователь частоты последнего поколения, выпускаемый шведской компанией Emotron. Устройство работает в диапазоне от 0,75 до 1,6 кВт и рассчитано на разные группы напряжения: 3×380 B, 3×500 B, 3×690 B. В основном инвертор используется для насосного или вентиляционного оборудования.
  2. Emotron серии CDU/CDX — оборудование, предназначенное для контроля за работой лифта. Инверторы этой марки устанавливаются как на новые лифты, так и для модернизации старых конструкций. Монтируются в машинном отделении или непосредственно рядом с шахтой.
  3. «Лидер» — преобразователь частоты применяется для управления асинхронными двигателями в насосном, вентиляционном оборудовании, мельницах, дробилках, центрифугах и так далее. Устройство исключает присутствие динамических ударов во время запуска, что позволяет в 1,5—2 раза увеличить срок службы двигателя и приводного механизма.
  4. Easydrive серии Smart — инвертор, обладающий выходной мощностью от 1 Гц до 2 кГц. Отличается автоматическим определением параметров электродвигателя, когда механизм неподвижен. Устройство обладает семью программируемыми входами переключения, которые позволяют выполнять до 30 функций.

Все модели позволяют менять направление вращения вала электродвигателя, экономить основные энергетические ресурсы, снижать эксплуатационные затраты.

Правила подключения и настройки

Для полноценной и эффективной работы инвертора асинхронного электродвигателя его необходимо правильно подключить и настроить. В схему перед частотником устанавливается нужный автоматический выключатель. Если это трехфазная сеть, то выключатель должен быть рассчитан на напряжение 380 В, а сила тока соответствовать номиналу двигателя.

В случае аварийной ситуации в сети на одной фазе, отключены будут и остальные токоведущие проводники. Величина тока разрыва должна соответствовать значению в отдельной фазе электродвигателя. При использовании преобразователя частоты в однофазной сети устанавливается одиночный автоматический выключатель, по номиналу превышающий в три раза значение тока.

В обоих случаях автоматические выключатели не рекомендуется устанавливать в разрыв заземляющего или нулевого проводника, необходимо осуществлять только прямое подключение.

Чтобы подключение было выполнено правильно, идущие от преобразователя токоведущие провода должны быть подключены к соответствующим клеммам двигателя.

Статорные обмотки механизма соединяются «звездой» или «треугольником», в зависимости от того, какое напряжение поступает от инвертора. Если оно совпадает с наименьшим значением на корпусе электродвигателя, то применяется схема «треугольник». При совпадении высокого значения напряжения соединение проводится по схеме «звезда».

Далее, инвертор подключается к контроллеру и блоку управления, который обычно поставляется в комплекте с преобразователем. Все подключения проводятся по схеме, входящей в руководство по эксплуатации оборудования. После выполнения крепежных работ включается автомат и на инвертор подается питание, о чем будет сигнализировать лампочка на пульте.

Для начала работы частотника включается кнопка запуска и осуществляется поворот соответствующей рукоятки. Электродвигатель медленно начнет вращаться. Если необходимо поменять вращение в обратную сторону, то для этого на пульте находится соответствующий тумблер. Чтобы добиться необходимого количества оборотов двигателя, устанавливается необходимая частота напряжения или вращения, в зависимости от модели оборудования.

Преобразователи частоты

В данной статье мы рассмотрим что такое частотный преобразователь, сферы применения преобразователей частоты, их плюсы и минусы, а также схемы частотников.

  1. Виды преобразователей частоты
  2. Способы управления преобразователем
  3. Режимы управления частотными преобразователями
  4. Преимущества частотных преобразователей
  5. Сферы применения

Преобразователи частоты (или частотники) – электротехническое оборудование для регулирования частоты переменного напряжения. Основная сфера применения этих устройств – изменение частоты вращения и крутящего момента электрических машин асинхронного типа. Принцип действия управления и регулирования основан на зависимости скорости вращения магнитного поля от частоты питающего напряжения.

Асинхронные электродвигатели широко используются в качестве приводов промышленного оборудования, насосных агрегатов, регулирующей арматуры и других устройств. Основным недостатком этих электрических машин являются постоянная скорость вращения, большие пусковые токи. При помощи частотных преобразователей возможно устранить эти недостатки и существенно расширить сферу применения электродвигателей переменного тока.

Виды преобразователей частоты

Частотные преобразователи различаются по конструкции, принципу действия, способу управления. По конструктивному исполнению преобразователи частоты разделяют на две большие группы:

Электромашинные частотники.

Электромашинные или индукционные преобразователи частоты представляют собой двигатели переменного тока, включенные в режим генератора. Применяются такие электротехнические устройства относительного редко, в условиях, где затруднено или невозможно применение электронных частотных преобразователей.

Электронные преобразователи.

Полупроводниковые ЧП состоят из силовой части, выполненной на транзисторах или тиристорах, и схемы управления на базе микроконтроллеров. Это электротехническое оборудование пригодно для трехфазных и однофазных приводов любого назначения. Различают ЧП с непосредственной связью с питающей сетью и устройства с промежуточным звеном постоянного тока.

Непосредственные преобразователи частоты

Такие частотники построены на базе быстродействующих тиристорных преобразователей, включенных по мостовым, перекрестным, нулевым и встречно-параллельным схемам.

Устройства такого типа включаются непосредственно в питающую сеть.

Плюсы непосредственных преобразователей частоты:
  • Возможностью рекуперации электроэнергии в сеть при работе в режиме торможения двигателя. Непосредственное включение обеспечивает двусторонний обмен электричеством.
  • Высоким к.п.д. за счет однократного преобразования частоты.
  • Возможностью наращивания мощности за счет присоединения дополнительных преобразователей.
  • Широким диапазоном низких частот. Непосредственные преобразователи обеспечивают стабильную работу привода на малых скоростях.
Читать еще:  Обзор самого экономного способа отопления дома электричеством
Минусы непосредственных преобразователей частоты:
  • Аппроксимированная форма выходного напряжения с наличием постоянных составляющих и субгармоник. Такая форма переменного напряжения на выходе устройства вызывает дополнительный нагрев двигателя, снижает момент, создает помехи.
  • Частота напряжения на выходе преобразователя не превышает аналогичную характеристику сетевого напряжения. Таким образом, при помощи этих устройств можно только снижать скорость вращения двигателей.
  • Основная сфера непосредственных преобразователей – электроприводы на базе асинхронных и синхронных двигателей большой и средней мощности.

Преобразователи частоты с промежуточным звеном постоянного тока.

Частотные преобразователи этого типа выполнены на базе схемы двойного преобразования. Питающее сетевое напряжение преобразуется в постоянное, затем сглаживается и инвертируется в переменное выходное напряжение заданной частоты.

Плюсы преобразователей с промежуточным звеном постоянного тока:
  • Возможностью получения выходного напряжения с частотой как выше, так и ниже аналогичного параметра сети питания. Частотники на базе схемы двойного преобразования используют для высоко- средне- и низкоскоростных электроприводов.
  • Чистой синусоидальной формой напряжения на выходе. Схема преобразователя позволяет получать переменное напряжение с минимальным отклонением от синусоидальной формы.
  • Возможностью построения простых и сложных силовых и управляющих схем для приводов с различными требованиями к скорости реагирования, диапазону скоростей.
  • Возможностью адаптации к сетям постоянного тока. Преобразователи данного типа можно приспособить для питания от резервных и аварийных источников постоянного тока без дополнительных устройств. Это позволяет применять такие частотники в приводах ответственного оборудования с резервными источниками электроэнергии.
  • Разнообразием алгоритмов управления. Преобразователи со звеном постоянного тока можно запрограммировать и адаптировать практически ко всем электроприводам, в том числе и претенциозным, где требуется особо точное регулирование скорости и момента.
Минусы преобразователей с промежуточным звеном постоянного тока:
  • Относительно большую массу и габариты, что обусловлено наличием выпрямительного, фильтрующего и инверторного блоков.
  • Повышенные потери мощности. Схема двойного преобразования несколько уменьшает общий к.п.д.

Устройство преобразователей с промежуточным звеном постоянного тока

Состоят такие преобразователи из нескольких основных блоков:

  • Выпрямителя. Для ЧП используются диодные и тиристорные преобразователи постоянного тока. Первые отличаются высоким качеством постоянного напряжения практически с полным отсутствием пульсации, низкой стоимостью и надежностью. Однако диодные выпрямители не позволяют реализовать возможность рекуперации электроэнергии в сеть при торможении двигателя. Выпрямители на тиристорах обеспечивают возможность протекания тока в обоих направлениях и позволяют отключать преобразователь от сети без дополнительной коммутирующей аппаратуры.
  • Фильтра. Выходное напряжение тиристорных управляемых выпрямителей имеет значительную пульсацию. Для ее сглаживания используют реакторы, емкостные или индуктивно-емкостные фильтры.
  • Инвертора. В ЧП используют инверторы напряжения и тока. Последние обеспечивают рекуперацию электроэнергии в сеть и применяются для управления электрическими машинами с частым пуском, реверсом и остановкой, например, крановыми двигателями.
  • Частотники на базе инверторов напряжения выдают на выходе напряжение формы “чистый синус”. Благодаря этому преобразователи такого типа получили наиболее широкое распространение.
  • Микропроцессора. Этот блок осуществляет управление входным выпрямителем, прием и обработку сигналов с датчиков, взаимодействие с автоматизированной системой высшего уровня, запись и хранение информации о событиях, формирует выходное напряжения ЧП соответствующей частоты. А также выполняет функции защиты от перегрузок, обрыва фазы и других аварийных и ненормальных режимов работы.

Способы управления преобразователем

По принципу управления различают 2 основных вида частотных преобразователей:

ЧП со скалярным управлением

Частотники этого типа выдают на выходе напряжение определенной частоты и амплитуды для поддержания определенного магнитного потока в обмотках статора. Частотники с таким принципом регулирования отличаются относительно низкой стоимостью, простотой конструкции. Нижний предел регулировки скорости составляет около 10 % от номинальной частоты вращения. Их можно использовать для управления сразу несколькими двигателями. Скалярные ЧП используют для приводов насосных агрегатов, вентиляторов и других устройств и оборудования, где не требуется поддерживать скорость вращения ротора вне зависимости от нагрузки.

ЧП с векторным управлением

Микропроцессорные устройства преобразователей с векторным управлением автоматически вычисляют взаимодействие магнитных полей статора и ротора. ЧП такого типа обеспечивают постоянную частоту вращения ротора вне зависимости от нагрузки. Они используются для оборудования, где необходимо поддерживать необходимый момент силы при низких скоростях, высокое быстродействие и точность регулирования. Применение векторных ЧП позволяет регулировать частоту вращения, задавать требуемый момент на валу.

ЧП с векторным управлением делятся на преобразователи бездатчикового типа и устройства с обратной связью по скорости. Последние используются для приводов с широким диапазоном регулирования скорости до 1:1000, необходимости позиционирования точного положения вала, регулирования момента при низких скоростях, точного поддержания частоты вращения, пуска двигателя с номинальным моментом. Преобразователи без датчика скорости применяют для приводов с более низкими требованиями.

Режимы управления частотными преобразователями

В большинстве моделей современных частотных преобразователей реализована возможность управления в нескольких режимах:

1) Ручное управление.

2) Внешнее управление.

3) Управление по дискретным входам или “сухим контактам”.

4) Управление по событиям.

Преимущества частотных преобразователей.

1) Экономия электроэнергии.

2) Увеличение срока службы промышленного оборудования.

3) Отсутствие необходимости проводить техническое обслуживание.

4) Возможность удаленного управления и контроля параметров оборудования с электроприводом.

5) Широкий диапазон мощности двигателей.

6) Защита электродвигателя от аварий и аномальных режимов работы.

7) Снижение уровня шума работающего двигателя.

Сферы применения

Частотно-регулируемые приводы применяют:

  • Для кранов и грузоподъемных машин . Крановые двигатели работают в режиме частых пусков, остановок, изменяющейся нагрузки. ЧП обеспечивают отсутствие рывков и раскачивания груза при пусках и остановках, остановку крана точно в требуемом месте, снижают нагрев электродвигателей и максимальный пусковой момент.
  • Для привода нагнетательных вентиляторов в котельных и дымососов. Общее управление с плавной регулировкой дутьевых и вытяжных вентиляторов позволяет автоматизировать процесс горения и обеспечить максимальный к.п.д . котельных агрегатов.
  • Для транспортеров, прокатных станов, конвейеров, лифтов. ЧП регулирует скорость перемещения транспортного оборудования без рывков и ударов, что увеличивает срок службы механических узлов. Для насосных агрегатов. ЧП позволяют обойтись без задвижек и вентилей, регулирующих давление и производительность, и существенно увеличить общий к.п.д системы водоподачи.
  • Для электродвигателей станков. Использование преобразователя частоты вместо коробки передач позволяет плавно увеличивать или уменьшать частоту вращения рабочего органа станка, осуществлять реверс. ЧП широко используются для станков с ЧПУ и высокоточного промышленного оборудования.

Внедрение частотно-регулируемых приводов дает значительный экономический эффект. Снижение затрат достигается за счет сокращения потребления электроэнергии, расходов на ремонт и ТО двигателей и оборудования, возможности использования более дешевых асинхронных электродвигателей с короткозамкнутым ротором, а также сокращения других производственных издержек. Средний срок окупаемости частотных преобразователей составляет от 3-х месяцев до трех лет.

Принцип работы частотного преобразователя для асинхронного двигателя

Асинхронный двигатель изобретен достаточно давно и нашел широкое применение в различных областях благодаря простоте конструкции и надежности. Однако он имеет ряд недостатков, ключевыми из которых являются:

высокая пусковая мощность до момента выхода на рабочую частоту вращения;

низкий крутящий момент на старте;

квадратичная зависимость мощности от питающего напряжения;

предельная частота вращения для стандартной сети 50 Гц в 3000 об/мин.

Также штатно такой двигатель может работать только в одном направлении вращения. Все эти недостатки устраняются применением частотного преобразователя для управления асинхронным двигателем, использование которого обеспечивает:

плавный пуск и остановку;

возможность регулировки частоты вращения и повышение штатного числа оборотов в минуту;

смену направления вращения;

защиту двигателя от перегрузок и заклинивания оборудования;

точное поддержание заданной частоты вращения.

Несмотря на то, что это достаточно дорогостоящее оборудование, его применение оправдано как для решения промышленных задач, так и в быту, например, для управления насосом автономного водоснабжения или вентиляцией.

Как работает частотник для асинхронного двигателя

Несмотря на сложность схемотехнических решений, в том числе и с использованием микропроцессорного управления, принцип работы частотного преобразователя для асинхронного двигателя достаточно прост. Современные частотные преобразователи строятся по инверторной схеме с двойным преобразованием и работают по такому принципу:

входное одно- или трехфазное напряжение выпрямляется;

фильтруется от пульсаций и стабилизируется;

выпрямленное напряжение поступает на управляемые генераторы напряжения и частоты, которые формируют переменное выходное напряжение с заданными характеристиками;

режимом работы выходных генераторов управляет контроллер, построенный, как правило, на базе микропроцессора.

Таким образом, на вход питания двигателя подается не напряжение электросети с фиксированной частотой 50 Гц, а переменный ток с частотой, которую задает управляемый генератор частотного преобразователя. При этом частотник управляет не только частотой, но и напряжением, поэтому обеспечивается стабильный режим работы двигателя. В системе управления предусмотрена обратная связь, которая контролирует параметры выходного напряжения и его частоты на соответствие заданным. Также современные преобразователи могут иметь внешнюю обратную связь, которая контролирует параметры работы системы с асинхронным двигателем и оперативно изменяет режим его работы для поддержания, например, давления в системе подачи воды или скорости движения транспортера на заданном уровне.

Потери на такое двойное преобразование у современных частотников составляют всего несколько процентов, а те возможности, которые они предоставляют по управлению электроприводами, значительно расширяют сферу применения асинхронных двигателей.

Частотные преобразователи: структура, принцип работы

Внимание! Приведенная ниже информация носит теоретический характер. Если Вам необходимо решить конкретную задачу или разобраться как и какое оборудование следует применить в Вашем случае, воспользуйтесь бесплатной консультацией связавшись с нами одним из указанных вверху данной страницы или на странице «Контакты» способов, либо заполните опросный лист. Инженер службы технической поддержки направит Вам рекомендации на указанный Вами адрес электронной почты.

Частотные преобразователи – это устройства, предназначенные для преобразования переменного тока (напряжения) одной частоты в переменный ток (напряжение) другой частоты.

Выходная частота в современных преобразователях может изменяться в широком диапазоне и быть как выше, так и ниже частоты питающей сети.

Схема любого преобразователя частоты состоит из силовой и управляющей частей. Силовая часть обычно выполнена на тиристорах или транзисторах, которые работают в режиме электронных ключей. Управляющая часть выполняется на цифровых микропроцессорах и обеспечивает управление силовыми электронными ключами, а также решение большого количества вспомогательных задач (контроль, диагностика, защита).

Частотные преобразователи, применяемые в регулируемом электроприводе, в зависимости от структуры и принципа работы силовой части разделяются на два класса:

    1. С явно выраженным промежуточным звеном постоянного тока.
    2. С с непосредственной связью (без промежуточного звена постоянного тока).
      • Практически самый высокий КПД относительно других преобразователей (98,5% и выше).
      • Способность работать с большими напряжениями и токами, что делает возможным их использование в мощных высоковольтных приводах, относительная дешевизна, несмотря на увеличение абсолютной стоимости за счет схем управления и дополнительного оборудования.

Каждый из существующих классов имеет свои достоинства и недостатки, которые определяют область рационального применения каждого из них.

Исторически первыми появились преобразователи с непосредственной связью (рис. 4.), в которых силовая часть представляет собой управляемый выпрямитель и выполнена на не запираемых тиристорах. Система управления поочередно отпирает группы тиристоров и подключает статорные обмотки двигателя к питающей сети.

Таким образом, выходное напряжение преобразователя формируется из «вырезанных» участков синусоид входного напряжения. На рис.5. показан пример формирования выходного напряжения для одной из фаз нагрузки. На входе выигрывают у тиристорных действует трехфазное синусоидальное напряжение u а, u в, u с. Выходное напряжение u вых имеет несинусоидальную «пилообразную» форму, которую условно можно аппроксимировать синусоидой (утолщенная линия). Из рисунка видно, что частота выходного напряжения не может быть равна или выше частоты питающей сети. Она находится в диапазоне от 0 до 30 Гц. Как следствие малый диапазон управления частоты вращения двигателя (не более 1: 10). Это ограничение не позволяет применять такие преобразователи в современных частотно регулируемых приводах с широким диапазоном регулирования технологических параметров.

Читать еще:  9 лучших производителей смесителей для ванной

Использование не запираемых тиристоров требует относительно сложных систем управления, которые увеличивают стоимость преобразователя.

«Резаная» синусоида на выходе преобразователя является источником высших гармоник, которые вызывают дополнительные потери в электрическом двигателе, перегрев электрической машины, снижение момента, очень сильные помехи в питающей сети. Применение компенсирующих устройств приводит к повышению стоимости, массы, габаритов, понижению к.п.д. системы в целом.

Наряду с перечисленными недостатками преобразователей с непосредственной связью, они имеют определенные достоинства. К ним относятся:

Подобные схемы преобразователей используются в старых приводах и новые конструкции их практически не разрабатываются.

Наиболее широкое применение в современных частотно регулируемых приводах находят частотники с явно выраженным звеном постоянного тока (рис. 6.)

В частотных преобразователях этого класса используется двойное преобразование электрической энергии: входное синусоидальное напряжение с постоянной амплитудой и частотой выпрямляется в выпрямителе (В), фильтруется фильтром (Ф), сглаживается, а затем вновь преобразуется инвертором (И) в переменное напряжение изменяемой частоты и амплитуды. Двойное преобразование энергии приводит к снижению к.п.д. и к некоторому ухудшению массогабаритных показателей по отношению к преобразователям с непосредственной связью.

Для формирования синусоидального переменного напряжения используются автономные инверторы напряжения и автономные инверторы тока.

В качестве электронных ключей в инверторах применяются запираемые тиристоры GTO и их усовершенствованные модификации GCT , IG C T, SGCT, и биполярные транзисторы с изолированным затвором IGBT.

Главным достоинством тиристорных преобразователей частоты, как и в схеме с непосредственной связью, является способность работать с большими токами и напряжениями, выдерживая при этом продолжительную нагрузку и импульсные воздействия.

Они имеют более высокий КПД (до 98%) по отношению к преобразователям на IGBT транзисторах (95 – 98%).

Преобразователи частоты на тиристорах в настоящее время занимают доминирующее положение в высоковольтном приводе в диапазоне мощностей от сотен киловатт и до десятков мегаватт с выходным напряжением 3 — 10 кВ и выше. Однако их цена на один кВт выходной мощности самая большая в классе высоковольтных преобразователей.

До недавнего прошлого преобразователи частоты на GTO составляли основную долю и в низковольтном частотно регулируемом приводе. Но с появлением IGBT транзисторов произошел «естественный отбор» и сегодня преобразователи на их базе общепризнанные лидеры в области низковольтного частотно регулируемого привода.

Тиристор является полууправляемым приборам: для его включения достаточно подать короткий импульс на управляющий вывод, но для выключения необходимо либо приложить к нему обратное напряжение, либо снизить коммутируемый ток до нуля. Для этого в тиристорном преобразователе частоты требуется сложная и громоздкая система управления.

Биполярные транзисторы с изолированным затвором IGBT отличают от тиристоров полная управляемость, простая не энергоемкая система управления, самая высокая рабочая частота.

Вследствие этого преобразователи частоты на IGBT позволяют расширить диапазон управления скорости вращения двигателя, повысить быстродействие привода в целом.

Для асинхронного электропривода с векторным управлением преобразователи на IGBT позволяют работать на низких скоростях без датчика обратной связи.

Применение IGBT с более высокой частотой переключения в совокупности с микропроцессорной системой управления в частотных преобразователях снижает уровень высших гармоник, характерных для тиристорных преобразователей. Как следствие меньшие добавочные потери в обмотках и магнитопроводе электродвигателя, уменьшение нагрева электрической машины, снижение пульсаций момента и исключение так называемого «шагания» ротора в области малых частот. Снижаются потери в трансформаторах, конденсаторных батареях, увеличивается их срок службы и изоляции проводов, уменьшаются количество ложных срабатываний устройств защиты и погрешности индукционных измерительных приборов.

Частотные преобразователи на транзисторах IGBT по сравнению с тиристорными преобразователями при одинаковой выходной мощности отличаются меньшими габаритами, массой, повышенной надежностью в силу модульного исполнения электронных ключей, лучшего теплоотвода с поверхности модуля и меньшего количества конструктивных элементов.

Они позволяют реализовать более полную защиту от бросков тока и от перенапряжения, что существенно снижает вероятность отказов и повреждений электропривода.

На настоящий момент низковольтные преобразователи на IGBT имеют более высокую цену на единицу выходной мощности, вследствие относительной сложности производства транзисторных модулей. Однако по соотношению цена/качество, исходя из перечисленных достоинств, они явно выигрывают у тиристорных, кроме того, на протяжении последних лет наблюдается неуклонное снижение цен на IGBT модули.

Главным препятствием на пути их использования в высоковольтном приводе с прямым преобразованием частоты и при мощностях выше 1 – 2 МВт на настоящий момент являются технологические ограничения. Увеличение коммутируемого напряжения и рабочего тока приводит к увеличению размеров транзисторного модуля, а также требует более эффективного отвода тепла от кремниевого кристалла.

Новые технологии производства биполярных транзисторов направлены на преодоление этих ограничений, и перспективность применения IGBT очень высока также и в высоковольтном приводе. В настоящее время IGBT транзисторы применяются в высоковольтных преобразователях в виде последовательно соединенных нескольких единичных модулей.

Структура и принцип работы низковольтного преобразователя частоты на IGBT транзисторах

Типовая схема низковольтного преобразователя частоты представлена на рис. 7. В нижней части рисунка изображены графики напряжений и токов на выходе каждого элемента инвертора.

Переменное напряжение питающей сети ( uвх.)с постоянной амплитудой и частотой (U вх = const, f вх = const) поступает на управляемый или неуправляемый выпрямитель (1).

Для сглаживания пульсаций выпрямленного напряжения ( uвыпр.) используется фильтр (2). Выпрямитель и емкостный фильтр (2) образуют звено постоянного тока.

С выхода фильтра постоянное напряжение u d поступает на вход автономного импульсного инвертора (3).

Автономный инвертор современных низковольтных преобразователей, как было отмечено, выполняется на основе силовых биполярных транзисторов с изолированным затвором IGBT. На рассматриваемом рисунке изображена схема преобразователя частоты с автономным инвертором напряжения как получившая наибольшее распространение.

В инверторе осуществляется преобразование постоянного напряжения ud в трехфазное (или однофазное) импульсное напряжение u и изменяемой амплитуды и частоты. По сигналам системы управления каждая обмотка электрического двигателя подсоединяется через соответствующие силовые транзисторы инвертора к положительному и отрицательному полюсам звена постоянного тока. Длительность подключения каждой обмотки в пределах периода следования импульсов модулируется по синусоидальному закону. Наибольшая ширина импульсов обеспечивается в середине полупериода, а к началу и концу полупериода уменьшается. Таким образом, система управления обеспечивает широтно-импульсную модуляцию (ШИМ) напряжения, прикладываемого к обмоткам двигателя.Амплитуда и частота напряжения определяются параметрами модулирующей синусоидальной функции.

При высокой несущей частоте ШИМ (2 … 15 кГц) обмотки двигателя вследствие их высокой индуктивности работают как фильтр. Поэтому в них протекают практически синусоидальные токи.

В схемах преобразователей с управляемым выпрямителем (1) изменение амплитуды напряжения u и может достигаться регулированием величины постоянного напряжения u d , а изменение частоты – режимом работы инвертора.

При необходимости на выходе автономного инвертора устанавливается фильтр (4) для сглаживания пульсаций тока. (В схемах преобразователей на IGBT в силу низкого уровня высших гармоник в выходном напряжении потребность в фильтре практически отсутствует.)

Таким образом, на выходе преобразователя частоты формируется трехфазное (или однофазное) переменное напряжение изменяемой частоты и амплитуды (вых = var, f вых = var).

Перейдите в разделы, приведенные ниже, выберите необходимое оборудование и положите его в корзину. — Преобразователи частоты
— Оборудование для плавного пуска

  • ИЗДЕЛИЯ
    • преобразователи частоты (частотные преобразователи, частотники)
      • принцип действия
      • структура частотников
      • выбор преобразователя частоты
      • пример применения преобразователей частоты с насосами
      • пример применения станции управления насосами
      • подбор преобразователя частоты
    • оборудование для плавного пуска и энергосбережения
      • устройства плавного пуска (УПП, плавные пускатели, мягкие пускатели, устройства мягкого пуска, софтстартеры)
        • принцип действия
        • плавный пуск насосов
      • подбор устройств плавного пуска
      • контроллеры ЭнерджиСейвер
        • принцип действия
        • области применения
        • реализованные проекты
        • отзывы
      • контроллеры Powerboss
        • примеры применения

для преобразователей частоты серий ES022, ES024, ES025 и ES026

Преобразователь частоты: его устройство и принцип действия

Электрические двигатели используются повсеместно, они задействованы во множестве технологических процессов на целом ряде производств. При этом для работы разных электродвигателей требуется ток разной частоты. Именно эта функция возложена на преобразователь частоты. Он управляет скоростью вращения вала асинхронного двигателя, изменяя частоту подаваемого электрического тока. Такое контролируемое изменение скорости вращения не только позволяет осуществлять всевозможные технологические процессы, но и создает условия для полной машинной автоматизации, а также приводит к экономии электроэнергии. Весьма существенной особенностью является то, что преобразователь частоты позволяет добиться согласованного или распределенного движения сразу нескольких электродвигателей.

Частотный преобразователь может найти применение практически в любой отрасли промышленности или строительства. Он нужен для управления электродвигателями в системах вентиляции, установках компрессорного и поршневого типа, насосных системах и т.п. В городском хозяйстве преобразователь частоты используется для работы эскалаторов и лифтов. На строительных площадках он может быть использован в качестве источника тока заданной частоты для управления бетономешалками, экструдерами, дробилками, крановым оборудованием и др. На производстве в преобразователе частоты нуждаются многие обрабатывающие станки, конвейеры, упаковочные машины, складское оборудование. Даже в сельском хозяйстве изменение частоты электрического тока может понадобиться для работы сепараторов, мельниц, дробилок и центрифуг.

Основные параметры

При выборе преобразователя частоты в первую очередь стоит обратить внимание на входное напряжение. Оно может быть однофазным (220В) или трехфазным (380В). То же самое касается выходного напряжения. Следующая немаловажная характеристика, на которую стоит обратить внимание — это диапазон частот, измеряемый в герцах. Именно в этих пределах будет работать частотный преобразователь. Также не стоит забывать о том, что любой частотный преобразователь рассчитан на определенную мощность. Именно эта характеристика, измеряемая в киловаттах, определяет суммарную мощность электрооборудования, которое к данному преобразователю можно будет подключить.

Принцип работы

Основная суть работы частотного преобразователя заключается в том, что он из электрического тока одной частоты получает ток другой частоты. При этом напряжение и сила тока остаются прежними, а вот полученная частота может существенно отличаться от классической сетевой в 50 Гц. В зависимости от выбранной модели частотный преобразователь может генерировать ток с частотой от 0,5 до нескольких сотен герц.

Конструкция

Классический преобразователь частоты имеет конструкцию, состоящую из нескольких элементов, наиболее значимыми из которых являются выпрямитель и инвертор. Итак, входное напряжение поступает на выпрямитель, который представляет собой набор полупроводниковых элементов (как правило, это тиристоры). Здесь напряжение питающей сети преобразуется в ток с заданными параметрами. После этого ток поступает на входной дроссель, который играет роль фильтра от высокочастотных помех и сглаживает кривую тока. В итоге ток попадает на инвертор, где уже создается электрическое напряжение с заданной симметрией.

Особо стоит отметить такую разновидность частотно-пускового оборудования как устройство плавного пуска. Не секрет, что в момент запуска двигателя пусковой ток и крутящий момент могут в несколько раз превышать номинальные значения. А это уже чревато перегревом обмоток и даже выходом из строя механической части электродвигателя. Удерживать параметры тока в заданных значениях позволит устройство плавного пуска. Оно обеспечит плавный разгон и остановку двигателя, а в процессе работы создаст правильное соотношение крутящего момента и текущей нагрузки. Более того, в насосных и поршневых системах устройство плавного пуска позволит избежать гидравлических ударов в момент запуска и остановки оборудования.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector