Astro-nn.ru

Стройка и ремонт
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Для чего нужен диод в электрической цепи

Что такое диод, где он применяется и как проверить диод мультиметром?

  • Основные разновидности диодов – не полупроводниковые и полупроводниковые
  • Что такое диод, и для чего он нужен?
  • Как проверить светодиод мультиметром?

Диод – простейший полупроводниковый или вакуумный прибор, имеющий два контакта. Главное свойство этого элемента – так называемая односторонняя проводимость.

Это означает, что в зависимости от полярности, полупроводник имеет кардинально разную проводимость. Меняя направление тока, можно открывать или закрывать диод. Свойство широко применяется в самых разных областях схемопостроения.

Принцип действия следующий:
Радиоэлемент состоит из токового перехода с интегрированными рабочими контактами – анодом и катодом.
Прикладывая к электродам прямое напряжение (анод – положительный, катод – отрицательный), мы открываем переход, сопротивление диода становится ничтожно малым, и через него протекает электрический ток, именуемый прямым.

Если поменять местами полярность: то есть на анод подать отрицательный потенциал, а на катод – положительный, сопротивление перехода возрастает настолько, что принято считать его стремящимся к бесконечности. Электрический ток (обратный) фактически равен нулю.

Основные разновидности диодов – не полупроводниковые и полупроводниковые

Первый вид широко использовался в эпоху радиоламп, до начала масштабного применения полупроводников. В колбе, являющейся корпусом радиодетали, мог быть специальный газ или вакуум. Надежность и мощность газонаполненных (вакуумных) диодов не вызывает нареканий, однако крупные габариты и необходимость прогрева для выхода на рабочие характеристики, ограничивает применение.

Для работы требовалось предварительно разогреть один из электродов – катод. После чего внутри лампы возникала электронная эмиссия, и между рабочими электродами протекал ток (в одном направлении).

Это интересно! Несмотря на архаичность вакуумных ламп, ценители хорошей музыки предпочитают усилители, собранные на этих элементах. Считается, что звук будет естественнее и чище, чем в полупроводниковых системах.

Усилитель собран из вакуумных диодов

Полупроводниковые диоды. Рабочим элементом является полупроводниковый материал с интегрированными контактами-электродами.

Поскольку кристалл может работать в любых условиях (ток протекает непосредственно в его теле), необходимости помещения в вакуум или особую газовую среду нет. Требуется лишь механическая защита, ибо все полупроводниковые материалы хрупкие.

Такие детали компактны, для их изготовления требуется меньше материала, да и себестоимость ниже. Поэтому до 95% современной элементной базы – это именно полупроводниковые диоды.

Что такое диод, и для чего он нужен?

Прежде всего, рассмотрим классификацию радиоэлементов. Поскольку вакуумные и газонаполненные диоды являются скорее экзотикой, рассматривать будем лишь полупроводниковые приборы.

Классификация по назначению:

Выпрямительные.
Самый распространенный тип элемента. Применяется для получения постоянного тока из переменного. Для этого применяются специальные выпрямительные схемы – мосты.

Выпрямительные сборки настолько популярны, что они выпускаются сразу в готовом виде, диоды имеют общий корпус и четыре контакта с маркировкой.

Детекторные.
Используется способность детали детектировать сигнал. Применяется в основном в радиоприемниках. Многие радиолюбители знакомы с термином «детекторный приемник». Его работа построена на детекторном диоде.

Импульсные.
Исходя из названия, применяются в импульсных схемах.

Смесительные.
Используются в системах преобразования высокочастотных токов в сигналы промежуточной частоты.

Ограничительные.
На них строятся схемы защиты аппаратуры от скачков напряжения.

Умножительные. Их сфера применения – умножители напряжения.

Генераторные. Используются в генераторах частоты.

Настроечные и параметрические.
Используются в схемах с управляемыми характеристиками, для настройки и поддержания параметров.

В зависимости от назначения, диоды бывают:

  • Низкочастотными;
  • Высокочастотными;
  • Для работы со сверхвысокими частотами (СВЧ).

Классификация конструктивного исполнения:

Диод Шоттки.

В качестве полупроводника используется металл, вместо классического p-n перехода. За счет этого, диод имеет мизерное падение напряжения при прямом токе. Широкое применение такой конструкции ограничено существенным недостатком – при значительном обратном токе диод быстро выходит из строя. Эта особенности учитывается при его проверке.

Как проверить диод Шоттки? Контроль мультиметром в режиме «проверка диода» может показать положительный результат, даже при пробитом полупроводнике. Необходимо замерять сопротивление между рабочими электродами в прямом и обратном подключении в режиме «прозвонка».

Тестер в одном случае показывает низкое сопротивление, а в другом – бесконечно большое. Такой диод исправен.

При подозрении на «пробой» проведите измерение в диапазоне «20 кОм». Сопротивление обратному току должно быть бесконечно большим. При значении 1-2 кОм – диод неисправен.

Посмотрите видео на тему: «Как проверить диод Шоттки мультиметром».

Стабилитрон.
Способность давать стабильные токи в режиме пробоя – особенность диода, которая применяется в стабилизаторах напряжения. В данном случае конструктивный недостаток применяется как основная характеристика. Как проверить диод-стабилитрон мультиметром? Также, как обычный диод. Напряжение тестера не способно организовать пробой с обратным током.

Стабистор.
Назначение такое же, как у стабилитрона, но зависимость напряжения от силы тока тут меньше. Поэтому стабисторы применяются для меньших напряжений.

Диод Ганна.
Эти детали вообще не имеют p-n перехода в полупроводниковом кристалле. Его работа основана на собственных эффектах монокристалла, в отличие от перехода в классическом диоде. Применяется в диапазонах СВЧ. Внимание! Проверка диода мультиметром невозможна. Для этого применяются стенды СВЧ.

Варикап.
Некая смесь диода с конденсатором. Емкость зависит от обратного напряжения p-n перехода. Применяются в радиосвязи, на них строятся колебательные контуры.

Фотодиод.

При попадании световой энергии на чувствительный элемент – в p-n переходе возникает разность потенциалов. Замкнув цепь, мы получаем электрический ток. Принцип фотодиодов применен в солнечных элементах электростанций. Широкое распространение эти элементы получили в датчиках освещенности и движения.

Как проверить фото-диод тестером? Подключиться к электродам в режиме измерения постоянного напряжения и направить не кристалл мощный свет. На шкале появится значение напряжения.

Светодиод.

На этом элементе остановимся подробнее. Элемент работает так же, как обычный полупроводниковый диод. Пропускает ток лишь в одном направлении. Однако его кристалл начинает излучать свет при определенной силе тока. Для усиления яркости, место p-n перехода покрывают люминофором. В результате сила света может достигать десятков люменов на одном кристалле.

Подбирая различные материалы, можно получить любой спектр – от инфракрасного до видимого (разных цветов), и ультрафиолетового.

Как проверить светодиод мультиметром?

Проверка проводимости не отличается от обычного диода. Ток протекает только в одном направлении. А вот светиться диод начинает лишь при превышении напряжения падения. Для однокристальных деталей это диапазон 2,5-3,6 вольта. Убедитесь в том, что ваш тестер имеет питание от 3 вольт и выше.

Подробно о проверке диода и светодиода мультиметром рассказано в этом видео.

Что такое диод и как он работает

В электротехнике используется много радиодеталей, и все они имеют свои особенности, но семейство диодов имеет свои удивительные свойства.

Манипулируя соотношениями примесей или конструктивными особенностями, получают новые возможности этого прибора, используемые совершенно для других целей. Зная, что такое диод, его устройство и принцип работы диода можно научиться использовать его для самых неожиданных решений.

Приглашаем познакомиться с этим многоцелевым и разнообразным радиоэлементом. А начнем с назначения диода.

Назначение диода

Область применения диодов все больше и больше расширяется. Это достигается благодаря тому, что работа над их преобразованием не утихает, а только увеличивается. Рассмотрим, где их можно встретить:

  • выпрямление;
  • детектирование;
  • защита;
  • стабилизация;
  • переключение;
  • излучение.

На заре своего образования диоды назывались выпрямителями . Они способны пропускать ток в одном направлении и задерживать его в противоположном. Благодаря чему переменный ток становился однонаправленным, пульсирующим. То есть напряжение носило волновой характер.

Причем выпрямление могло быть как на одном диоде, тогда на выходе была только положительная полуволна, так и на четырех, в этом случае на выходе оставались и положительная, и отрицательная полуволны.

Другой способ применения – детектирование . Радио и телевизионные сигналы передаются на несущих частотах. В передающих устройствах с помощью модулятора происходит наложение полезного сигнала на несущую частоту.

Чтобы извлечь полезную информацию, чаще всего применяют диод с конденсатором. В этом случае диод работает как однопериодный выпрямитель, а конденсатор фильтрует ненужные частоты.

Диод используется для защиты, например, в коммутируемой цепи с индукционной нагрузкой. Если катушку, по которой проходит ток отключить, то электроны под действием электромагнитного поля продолжат двигаться, создавая для ключа опасное высокое напряжение.

В качестве ключа может быть использован транзистор, который может выйти из строя. Чтобы снять накопленный заряд, параллельно катушке подключают диод, но включают его в обратном направлении относительно движения тока. При отключении выключателя диод возвращает ток на начало катушки, тем самым защищая ключ.

Несколько измененные диоды способны работать в обратном направлении, пропуская через себя ток, когда напряжение превышает допустимое значение. Такие приборы называются стабилитронами, и о них будет сказано ниже.

Для переключения частот часто требуются переменные конденсаторы. Варикап, еще одна разновидность диода, способен менять свою емкость под действием меняющегося обратного напряжения.

Наконец, светодиоды и фотодиоды. Светодиоды способны излучать потоки лучистой энергии, фотодиоды, напротив, преобразуют солнечный свет в электрический ток. Фотодиоды по своему назначению также разнообразны и имеют различное применение.

Из чего состоит диод

Лучше всего понять, что такое диод поможет его строение. Выделим три основные группы:

  • вакуумные;
  • газонаполненные;
  • полупроводниковые.

Как у любого другого радиоэлемента у диода есть выводы. Если перевести слово диод с древнегреческого, то получится два электрода. Они носят название:

  • анод ;
  • катод .

В обычном состоянии на анод подается положительное напряжение, на катод отрицательное. В этом случае диод открыт и через него протекает ток.

На оба вывода могут подаваться положительные потенциалы, но на аноде этот потенциал должен превышать катодный.

В вакуумных диодах применяются стеклянные или металлические баллоны, из которых выкачан воздух. Катод может быть:

  • прямого накала;
  • косвенного накала.

Катод прямого накала представляет собой спиральную нить, по которой проходит ток, разогревая его. При этом высвобождаются электроны, которые устремляются к аноду, если он имеет положительный потенциал относительно катода.

Если на аноде напряжение ниже катодного, то электроны возвращаются назад. Таким образом, происходит выпрямление переменного тока. В лампах с косвенным подогревом катод представляет собой короб или цилиндр, внутри него находится нить накала, разогревающая его.

В отличие от вакуумных диодов в газонаполненных имеется ионизированный газ. Он становится проводником между анодом и катодом. Для включения диода используют сетки или поджигающий электрод.

Вакуумные и газонаполненные диоды способны пропускать большой ток и работать с повышенным напряжением. Однако они потребляют много энергии для своей работы, поэтому на смену им пришли полупроводники.

По проводимости электрического тока различают:

  • проводники;
  • полупроводники;
  • диэлектрики.

Полупроводники занимают промежуточное значение между проводниками и диэлектриками. В обычном состоянии они не проводят ток, но при определенных условиях у них появляется проводимость. Достигается это, например, добавлением примесей. Различают два вида проводимости:

  • с помощью электронов, n-тип;
  • с помощью дырок, p-тип.
Материал, основным носителем которого служат положительно заряженные атомы. Для этого добавляют акцепторные примеси, при этом получается материал с недостающим количеством электронов. Для n-типа добавляют донорные примеси, материал обладает избытком электронов.

Соединяя эти два типа получают прибор, способный пропускать ток только в одном направлении.

Как определить анод и катод диода

Диоды бывают разного размера, и маркировка может несколько отличаться. Например, на диодах советского образца на корпусе, который был достаточно большим, непосредственно наносился знак диода, указывающий направление движения.

Корпус, расположенный возле катода, может иметь большое расширение в виде кольца. На некоторых видах устанавливают знаки + и – или делают отметку в виде нарисованного кольца либо точки.

В случае сомнения можно проверить диод с помощью мультиметра, поставив прибор в режим измерения сопротивления или проверки диода, если есть такой режим.

Если сопротивление маленькое, значит, щуп с положительным напряжением подключен к аноду, а минусовой к катоду. Большое сопротивление говорит, что щупы подключены в обратном порядке.

Принцип работы диода

Осталось посмотреть, как работает диод. Когда происходит соединение двух полупроводников разной проводимостью, между ними появляется пограничная полоса с нейтральным зарядом, поскольку часть электронов занимает часть дырок.

При прямом включении положительное напряжение подается на дырочную область, а отрицательное на электронную. В этом случае электроны под действием напряжения перескакивают нейтральную зону и, проходя через дырочную область, устремляются к положительному полюсу источника питания.

Если поменять напряжение, электроны уходят к положительному полюсу, увеличивая нейтральную зону. В этом случае диод закрывается.

Диод в цепи постоянного тока

В схеме с постоянным током диод работает как ключ: открывается, когда прямое напряжение превышает пороговое значение и закрывается, когда это напряжение становится меньше.

Выше было рассмотрена работа диода с катушкой индуктивности. Когда по катушке идет ток, то параллельно подключенный диод находится в закрытом состоянии, так как на аноде и катоде напряжение почти равно.

Когда цепь размыкается, по катушке продолжает идти ток и накапливается. Напряжение на аноде повышается, диод открывается и пропускает лишний заряд через себя. После падения напряжения он закрывается.

Обозначение диода на схемах

Для пояснения работы радиоэлектронного устройства используют электрические принципиальные схемы. Найти диод на схеме не составит труда, потому что обозначение диода осуществляется с помощью треугольника с вертикальным отрезком на его вершине.

Рядом ставится порядковый номер и буквы VD.

Диод в цепи переменного тока

Если диод работает как выпрямитель переменного тока, тогда во время повышения напряжения положительной полуволны диод открывается, а когда напряжение падает ниже порогового значения, он закрывается. Во время отрицательной полуволны включается в работу параллельно подключенный диод, но обращенный в обратном направлении.

Читать еще:  Электрик УФА

Два других подключены таким же образом к нулевому проводу. При каждой полуволне участвуют в работе два диода, один связан с фазным проводом, другой с нулевым. Снимаемое с них положительное и отрицательное напряжение подается в постоянную цепь.

Характеристики диода

Полупроводники очень чувствительны к перегреву, поэтому режим их работы строго оговаривается. Учитываются следующие параметры:
рабочее, максимальное и импульсное обратное напряжение;

  1. прямое напряжение;
  2. обратный ток;
  3. прямой постоянный, импульсный и ток перегрузки;
  4. рабочая и максимальная частота;
  5. максимальная температура корпуса и перехода.

Допускается максимальное значение только по одному из указанных параметров. После импульса должно пройти оговоренное время, чтобы прибор успел остыть.

Виды диодов

Кроме описанных диодов, используются диоды, у которых характеристики изменены за счет примесей и конструкторских доработок. Остановимся на двух из них: стабилитроне и светодиоде.

Стабилитроны

Работа стабилитрона отличается от работы диода. Подключается он в обратном направлении, то есть на анод подают отрицательное напряжение, а на катод положительное. При таком подключении он работает в пробивном режиме.

Стабилитроны рассчитаны на определенное рабочее обратное напряжение, при достижении которого происходит обратимый пробой. Используются для поддержания определенного напряжения на контролируемом участке цепи. Чтобы ток не превышал рабочее значение, в цепь стабилитрона ставят ограничивающий резистор.

Светодиоды

У полупроводниковых приборов p-n-переход из-за внутреннего сопротивления постоянно греется. Это происходит главным образом во время захвата дырками электронов. Высвобождается энергия, нагревающая переход.

В 60-х годах прошлого столетия был создан светодиод, в котором часть высвобождаемой энергии была лучистой с красным и желто-зеленым свечением. Правда, процентное соотношение было маленьким, всего 0,1% от всей высвобождаемой энергии. Но это было только началом.

В 70-х годах упорные разработки привели к хорошим показателям. Сначала это был 15% выход, затем дошло до 55%. Такой показатель уже превышал к. п. д. ламп накаливания. Испускаемый свет имеет очень узкий спектр, что позволяет получать очень качественное цветное свечение.

Оно намного превосходит свет ламп накаливания, пропущенных через светофильтр. Мощность светового потока также была поднята, это дало возможность использовать светодиоды в качестве освещения.

Тиристоры

Тиристоры – это общее название для мощных диодов, работающих в режиме ключа. Подразделяются на три вида:

  1. тринистор;
  2. динистор;
  3. симистор.

Тринистор имеет три вывода: анод, катод и управляющий электрод. При подаче небольшого управляющего напряжения на управляющий электрод тринистор открывается. Динистор открывается при достижении заданного напряжения на его двух выводах. Симистор – это два динистора, включенных навстречу друг другу. То есть он работает, в отличие от динистора, в двух направлениях.

Исследуя, что такое диод, можно открыть для себя еще много удивительных знаний. Здесь были рассмотрены лишь поверхностные познания, но они уже могут дать понять, что такие элементы радиотехники очень полезны и разнообразны в своем применении.

Устройство и принцип работы диода

Диод — простейший полупроводниковый прибор, который можно встретить сегодня на печатной плате любого электронного устройства. В зависимости от внутренней структуры и технических характеристик, диоды классифицируются на нескольких видов: универсальные, выпрямительные, импульсные, стабилитроны, туннельные диоды и варикапы. Они применяются для выпрямления, ограничения напряжения, детектирования, модуляции и т. д. — в зависимости от назначения устройства, в котором применяются.

Основа диода — p-n-переход, сформированный полупроводниковыми материалами с двумя разными типами проводимости. К кристаллу диода присоединены два вывода, называемые катод (минусовой электрод) и анод (плюсовой электрод). На стороне анода находится область полупроводника p-типа, а на стороне катода — область n-типа. Данное устройство диода обеспечивает ему уникальное свойство — он проводит ток лишь в одном (прямом) направлении, от анода — к катоду. В обратном направлении обычный исправный диод ток не проводит.

В области анода (p-типа), основными носителями заряда являются положительно заряженные дырки, а в области катода (n-типа) — отрицательно заряженные электроны. Выводы диода представляют собой контактные металлические поверхности к которым и припаяны выводы.

Когда диод проводит ток в прямом направлении, это значит что он находится в открытом состоянии. Если ток через p-n-переход не идет, значит диод закрыт. Таким образом, диод может находиться в одном из двух устойчивых состояний: или открыт или закрыт.

Включив диод в цепь источника постоянного напряжения, анодом к плюсовой клемме, а катодом — к минусовой, получим смещение p-n-перехода в прямом направлении. И если напряжение источника окажется достаточным (для кремниевого диода хватит 0,7 вольт), то диод откроется и начнет проводить ток. Величина этого тока будет зависеть от величины приложенного напряжения и от внутреннего сопротивления диода.

Почему диод перешел в проводящее состояние? Потому что при правильном включении диода, электроны из n-области, под действием ЭДС источника, устремились к его положительному электроду, навстречу дыркам из p-области, которые теперь движутся в сторону отрицательного электрода источника, навстречу электронам.

На границе областей (на самом p-n-переходе) в это время происходит рекомбинация электронов и дырок, их взаимное поглощение. А источник вынужден непрерывно поставлять новые электроны и дырки в область p-n-перехода, увеличивая их концентрацию.

А что случится если диод включить наоборот, катодом к плюсовой клемме источника, а анодом — к минусовой?Дырки и электроны разбегутся в разные стороны — к выводам — от перехода, и в окрестности перехода возникнет зона обедненная носителями заряда — потенциальный барьер. Ток обусловленный основными носителями заряда (электронами и дырками) попросту не возникнет.

Но кристалл диода не идеален, в нем кроме основных носителей заряда присутствуют еще и неосновные носители заряда, которые и создадут очень незначительный обратный ток диода, измеряемый микроамперами. Но диод в данном состоянии закрыт, так как p-n-переход его смещен в обратном направлении.

Напряжение, при котором диод переходит из закрытого состояния в открытое, называется прямым напряжением диода (смотрите — Основные параметры диодов), которое по сути является падением напряжения на p-n-переходе. Сопротивление диода току в прямом направлении не постоянно, оно зависит от величины тока через диод и имеет размер порядка единиц Ом. Напряжение обратной полярности, при котором диод закрывается, называется обратным напряжением диода. Обратное сопротивление диода в этом состоянии измеряется тысячами Ом.

Очевидно, диод может переходить из открытого состояния в закрытое и обратно при смене полярности приложенного к нему напряжения. На данном свойстве диода основана работа выпрямителя. Так, в цепи синусоидального переменного тока диод будет проводить ток лишь во время положительной полуволны, а во время отрицательной — будет заперт.

Для чего нужен диод в электрической цепи

Диод это – полупроводниковый прибор, который пропускает электрический ток только в одном направлении. Это очень краткое описание свойства диода и его работы и самое точное. Теперь давай разберемся подробнее, тем более, что с диода ты начинаешь свое знакомство с огромным семейством полупроводников. Что такое полупроводник? Из самого названия полупроводник, понятно, это проводящий на половину. В конкретном случае диод пропускает электрический ток только в одну сторону и не пропускает его в обратном направлении. Работает как система ниппель или золотник в камере автомобиля или велосипеда. Воздух, нагнетаемый насосом через золотник или ниппель поступает в камеру автомобиля и не выходит обратно за счет запирания его золотником. На рисунке изображен диод так как его обозначают на электрических схемах.

В соответствии с рисунком, треугольник (анод) показывает в какую сторону проходит электрический ток от плюса к минусу диод будет «открыт», соответственно со стороны вертикальной полосы (катода) диод будет «заперт».

Это свойство диода используется для преобразования переменного тока в постоянный для этого из диодов собирается диодный мост.

Диодный мост

Как работает диодный мост. На следующем рисунке изображена принципиальная схема диодного моста. Обрати внимание, что на вход диодного моста подается переменный ток, на выходе уже получаем постоянный ток. Теперь давай разберемся как происходит преобразование переменного тока в постоянный.

Если ты читал мою статью “Что такое переменный ток” ты должен помнить, что переменный ток меняет свое направление с определенной частотой. Проще говоря, на входных клеммах диодного моста, плюс с минусом будут меняться местами с частотой сети (в России эта частота составляет 50 Герц), значит (+) и (–) меняются местами 50 раз в секунду. Допустим в первом цикле на клемме “А” будет положительный потенциал (+) на клемме “Б”отрицательный (–) . Плюс от клеммы “А” может пройти только в одном направлении по красной стрелке, через диод “Д1” на выходную клемму со знаком (+) и далее через резистор (R1) через диод “Д3” на минус клеммы “Б”. В следующем цикле когда плюс и минус поменяются местами, все произойдет с точностью до наоборот. Плюс с клеммы “Б” через диод “Д2” пройдет на выходную клемму со знаком (+) и далее через резистор (R1) через диод “Д4” на минус клеммы “А”. Таким образом получаем на входе выпрямителя постоянный электрический ток который движется только в одном направлении от плюса к минусу (как в обычной батарейке). Этот способ преобразования переменного тока в постоянный используется во всех электронных устройствах которые питаются от электрической сети 220Вольт. Кроме диодных мостов собранных из отдельных диодов применяют электронные компоненты в которых для удобства монтажа выпрямительные диоды заключены в один компактный корпус. Такое устройство называют “диодная сборка”.

Диоды бывают не только выпрямительные. Есть диоды проводимость которых зависит от освещенности их называют “фотодиоды” обозначаются они так –

Выглядеть могут так —

Светодиоды, тебе хорошо известны, они встречаются и в елочной гирлянде и в мощных прожекторах и фарах автомобилей. Н схеме они обозначаются так –

Выглядят светодиоды так —

Как проверить диод

Проверить диод можно обычным мультиметром – как пользоваться мультиметром в этой статье , для проверки переключаем тестер в режим прозвонки . Подключаем щупы прибора к электродам диода, черный щуп к катоду

(на корпусах современных диодах катод обозначен кольцевой меткой), красный щуп подключаем к аноду (как ты уже знаешь диод пропускают напряжение только в одну сторону) сопротивление диода будет маленьким т.е. цифры на приборе будут иметь значение большое значение.

Переключаем щупы прибора наоборот —

сопротивление будет очень большим практически бесконечным. Если у тебя все получится так как я написал, диод исправен, если в обоих случаях сопротивление очень большое значит “диод в обрыве” неисправен и не пропускает напряжение вообще, если сопротивление очень маленькое значит диод пробит и пропускает напряжение в обоих направлениях.

Как проверить диодный мост

Если диодный мост собран из отдельных диодов, каждый диод проверяют отдельно, как было описано выше. Выпаивать каждый диод из схемы не обязательно, но лучше отключить плюсовой или минусовой вывод выпрямителя от схемы.

Если нужно проверить диодную сборку, где диоды находятся в одно корпусе и добраться до них невозможно, поступаем следующим образом,

Подключаем один щуп мультимерта к плюсу диодной сборки, а вторым поочередно касаемся к выводам сборки куда подается переменный ток. В одном направлении прибор должен показать малое сопротивление при смене щупов в обратном направлении очень большое сопротивление. После чего также проверяем выпрямитель относительно минусового выхода. Если при измерении показания в обоих направления будут малыми или большими диодная сборка неисправна. Этот способ проверки применяют, когда проводится ремонт электроники.

Высокочастотные диоды, импульсные, туннельные, варикапы все эти диоды широко применяются в бытовой и специальной аппаратуре. Для того, чтобы понять и разобраться, как правильно применять и где какие использовать диоды, необходимо совершенствовать свои знания изучать специальную литературу и конечно не стесняться задавать вопросы.

nightdi › Блог › Что такое реле, и как оно работает? Диод и провода в автомобили.

Зная, как работает реле, Вы сможете осуществить различные схемы подключения к электропроводке автомобиля.

Что такое реле, и как оно работает? 5-тиконтактное реле
Обычно реле имеет 5 контактов (бывают и 4-хконтактные и 7-ми и т.д.). Если Вы посмотрите на реле внимательно, то увидите, что все контакты подписаны. Каждый контакт имеет своё обозначение. 30, 85, 86, 87 и 87А. На рисунке видно где, какой контакт.
Контакты 85 и 86 — это катушка. Контакт 30 — общий контакт, контакт 87А — нормально-замкнутый контакт, контакт 87 — нормально-разомкнутый контакт.

Что такое реле, и как оно работает? 5-тиконтактное реле
В состоянии покоя, т.е., когда на катушке нет питания, контакт 30 замкнут с контактом 87А. При одновременной подаче питания на контакты 85 и 86 (на один контакт «плюс» на другой — «минус», без разницы куда что) катушка «возбуждается», то есть срабатывает. Тогда контакт 30 отмыкается от контакта 87А и соединяется с контактом 87. Вот и весь принцип действия. Вроде бы ничего сложного.
Реле часто приходит на выручку во время установки дополнительного оборудования. Давайте рассмотрим простейшие примеры применения реле.

Блокировка двигателя.
Что такое реле, и как оно работает? Реле блокировки двигателяВ качестве блокируемой цепи может быть что угодно, лишь бы машина не заводилась при разорванной цепи (стартер, зажигание, бензонасос, питание форсунок и т.д.). Один контакт питания катушки (пусть 85) соединяем с проводом сигнализации, на котором появляется «минус» при постановке в охрану. На другой контакт катушки (пусть 86) подаём +12 Вольт при включении зажигания. Контакты 30 и 87А подцепляем в разрыв блокируемой цепи. Теперь, если попытаться завести автомобиль при включенной охране, контакт 30 разомкнётся с контактом 87А и не даст завести двигатель.

Читать еще:  Почему светодиодная лампа светится при выключенном выключателе

Эта схема используется, если у вас «минус» с сигнализации на блокировку выходит при постановке в охрану. Если у вас «минус» с сигнализации на блокировку выходит при снятии с охраны, тогда вместо контакта 87А используем контакт 87, т.е. разрыв цепи теперь будет на контактах 87 и 30. При таком подключении реле будет всегда в рабочем состоянии (разомкнутом) при работающем двигателе.

Инвертируем полярность сигнала (с «минуса» делаем «плюс» и наоборот). Подключаемся к слаботочным транзисторным выходам сигнализации.
Что такое реле, и как оно работает? Инвертируем сигнал с помощью реле Допустим, нам надо получить «минус», но у нас есть только «плюсовой» сигнал (например, у автомобиля положительные концевики, а у сигнализации нет входа положительных концевиков, а есть только вход отрицательных). На помощь опять приходит реле.

Подаём на один из контактов катушки (86) наш «плюс» (с концевиков автомобиля). На другой контакт катушки (85) и на контакт 87 подаём «минус». В итоге на выходе (контакт 30) получаем нужный нам «минус».
Если нам надо, наоборот, из «минуса» получить «плюс», то маленько меняем подключение. На контакт 86 подаём исходный «минус», а на контакты 85 и 87 подаём «плюс». В итоге на выходе (контакт 30) получаем нужный нам «плюс».
Если нам надо из слаботочного отрицательного выхода сигнализации (в сигнализации такие выходы могут называться по-разному и их назначение тоже различное: выход на 3-е зажигание, выход на открытие багажника, выход на закрытие стёкол и т.д.) сделать хороший мощный «минус» или «плюс», то тоже используем эту схему.
На контакт 85 подаём выход с сигнализации. На контакт 86 подаём «плюс». На контакт 87 подаём сигнал той полярности, который нам надо получить на выходе. В итоге на контакте 30 мы имеем ту полярность, которая на контакте 87.

Открытие багажника с брелока сигнализации.
Что такое реле, и как оно работает? Открытие багажника с брелока сигнализации Если в автомобиле стоит электрический привод багажника, то можно подключиться к нему автосигнализацией для открытия его с брелока сигнализации.
Если с сигнализации выходит слаботочный сигнал на открытие багажника (а чаще всего так и есть), то используем эту схему.
Прежде всего, находим провод на привод багажник, где появляется +12 Вольт при открытии багажника. Разрезаем этот провод. Тот конец разрезанного провода, который идёт к приводу, подцепляем к контакту 30. Другой конец провода подцепляем к контакту 87А. Выход с сигнализации подцепляем к контакту 86. Контакты 87 и 85 подцепляем на +12 Вольт.

Теперь, при подаче сигнала с сигнализации на открытие багажника, реле сработает и на провод электропривода багажника пойдёт «плюс». Привод сработает, и багажник откроется.
Это лишь немногие схемы подключения с использованием реле.

Ещё один элемент, который так же, как и реле, часто используется в установке автосигнализаций — диод.

Диод (от ди- и -од из слова электрод) — двухэлектродный электронный прибор, обладает различной проводимостью в зависимости от направления электрического тока. Электрод диода, подключённый к положительному полюсу источника тока, когда диод открыт (то есть, имеет маленькое сопротивление), называют анодом, подключённый к отрицательному полюсу — катодом.

Диоды бывают электровакуумными (кенотроны), газонаполненными (газотроны, игнитроны, стабилитроны), полупроводниковыми и др. В настоящее время в подавляющем большинстве случаев применяются полупроводниковые диоды.
У нас при установке автосигнализаций тоже применяются полупроводниковые диоды.

Полупроводниковые диоды используют свойство односторонней проводимости p-n перехода — контакта между полупроводниками с разным типом примесной проводимости, либо между полупроводником и металлом.

Полупроводниковый диод. Катод и анод диода. Полупроводниковый диод. Течение тока в диоде.

Полупроводниковые диоды — очень простые устройства. Кроме оценки силы тока диода, есть три основных вещи, которые вы должны держать в уме:
1. Катод (сторона с полосой)
2. Анод (сторона без полосы)
3. Диод пропускает «-» от катода к аноду (не пропускает «+») и «+» от анода к катоду (не пропускает «-»).

Подключение концевиков дверей с помощью диодов.
Немного про использование диодов при подключении автосигнализации к электропроводке автомобиля написано в статье Поиск концевиков.
Встречаются автомобили, у которых нет общей точки концевиков дверей, т.е. все концевики развязаны. Для каждой двери свой концевик. Например, Honda некоторые, Ford, GM и т.д.
При подключении автосигнализации в таких автомобилях можно подцепиться к плафону в салоне и запрограммировать функцию вежливой подсветки, можно тупо все провода концевиков связать вместе.
Первый способ не всегда может пройти. Почему, написано в статье Поиск концевиков.
Второй способ может подойти, если при таком виде подключения не нарушится функциональность некоторых приборов автомобиля. Если у вас на автомобиле на приборной панели показывается открытие каждой двери отдельно — такой способ не подойдёт. Если после установки автосигнализации у вас при открытии любой двери, а не только водительской, начинает пищать зуммер, указывающий об оставленном ключе в замке зажигания, значит, был применён вышеприведенный способ подключения концевиков.
В таких автомобилях при подключении автосигнализации правильнее всего использовать диоды.
Ниже приведены примеры подключения автосигнализации с использованием диодов к отрицательным и положительным концевикам дверей.

Полупроводниковый диод. Подключение отрицательных концевиков к автосигнализации при помощи диодов.Полупроводниковый диод. Подключение положительных концевиков к автосигнализации при помощи диодов.
Эти же схемы используются при подключении двух датчиков к одному входу (например, удара и наклонного).

Для соединения в схемах электрооборудования применяют автотракторные провода, которые делятся на провода низкого (до 48 В) и высокого напряжения. В качестве изоляции автотракторных проводов применяют попивинипхпоридный пластикат, который удовлетворяет следующим требованиям: масло-, бензо- и киспотостойкости, не распространением горения, работоспособности при высоких и низких температурах. Провода марок ПВА, ПВАЭ и ПВАЛ используют для соединений при температурах от -40 до + 105 С, провода остальных марок от -40 до +70 С. Если при соединении приборов требуется экранирование
провода, то применяют провода марок ПВАЭ и ПГВАЭ, а вспучае необходимости защиты проводов от
механических повреждений — провода с бронированной изоляцией марки ПГВАБ.
Для удобства отыскания соединений и цепей провода изготавливают следующих цветов: белого,
желтого, оранжевого, красного (бордо), розового, синего (голубого), зеленого, коричневого, черного,
серого и фиолетового. Сверху сплошного цвета допускается нанесение дополнительного цвета эмалью
ХС5103 в виде копец или полос (белой, черной, красной и голубой).
Для соединения подвижной пластины прерывателя в распределителе зажигания используют провод
марки ПЩОО сечением 0.5мм2.
В переносных пампах автомобилей применяют двухжильный провод марок ШПВУ и ПЛКТ. Соединение
аккумуляторной батареи с массой и двигателя производят медным неизолированным плетеным
проводом АМГ.
Срок службы проводов не менее 8 пет.
В зависимости от марки провода его сечение может быть следующих размеров: 0,5; 0,75; 1,0; 1,5; 2,5;
4,0; 6,0; 10; 16; 25; 35; 50; 70; и 95 мм2. Ниже приведена зависимость между сечением провода и его
сопротивлением.

Сечение провода. мм2 0.5 0.75 1.0 1.5 2.5 4.0 6.0
Электрическое сопротивление Ом’м х 10? 3.7 2.5 1.85 1.2 0.72 0.46 0.29

Допустимые значения сипы тока при длительных нагрузках роводов сечением 0.5-16 мм2 при одиночной прокладке должны быть не выше указанных в таблице

При прокладке проводов сечением 0.5 — 4.0 мм2 в жгутах, в поперечном сечении которых по трассе содержится от двух до семи проводов, сила допустимого тока в проводе 1=0,551 (где / — сила тока по таблице), а при наличии 8-19 проводов -1=0,381. Сечение проводов стартера подбирают так. чтобы падение напряжения в проводе не превышало 0.2 В на каждые ЮОА потребляемого стартером тока.
Провода высокого напряжения, применяемые для соединения в цепях зажигания, подразделяются на обычные ППВ с металлическим многожильным проводником и помехоподавительные провода марок ПВВО и ПВВП. При использовании проводов ПВВ необходимо устанавливать наконечники с подавительными резисторами. Резистивный провод ПВВО состоит из жилы-сердечника (изготовленной из хлопчатобумажной пряжи и пропитанной сажевым раствором) в хлопчатобумажной или капроновой оплетке и изоляции из поливинилхлоридного пластиката или одно- или двухслойной резины. Недостаток провода ПВВО — трудность обеспечения надежного контакта между проводом и наконечником. Реактивные провода марки ПВВП имеют в центре льняную нить, на которую нанесен слой ферропласта 7 (20% поливинилхлоридного пластиката ПДФ и 80% ферритового порошка). Поверх ферропластового слоя намотана проволока диаметром 0.12 мм2 из сплава 40Н. являющаяся токопроводящей жилой. На нее наложена изоляция ПВХ пластиката. Подавление помех в этом проводе осуществляется как слоем ферропласта. так и проводником-спиралью. Провода марки ПВВП соответствует требованиям ЕЭК ООН на допустимые пределы радиопомех.

Принцип работы диода. Вольт-амперная характеристика. Пробои p-n перехода.

05 Июн 2013г | Раздел: Радио для дома

Здравствуйте уважаемые читатели сайта sesaga.ru. В первой части статьи мы с Вами разобрались, что такое полупроводник и как возникает в нем ток. Сегодня мы продолжим начатую тему и поговорим о принципе работы полупроводниковых диодов.

Диод – это полупроводниковый прибор с одним p-n переходом, имеющий два вывода (анод и катод), и предназначенный для выпрямления, детектирования, стабилизации, модуляции, ограничения и преобразования электрических сигналов.

По своему функциональному назначению диоды подразделяются на выпрямительные, универсальные, импульсные, СВЧ-диоды, стабилитроны, варикапы, переключающие, туннельные диоды и т.д.

Теоретически мы знаем, что диод в одну сторону пропускает ток, а в другую нет. Но как, и каким образом он это делает, знают и понимают не многие.

Схематично диод можно представить в виде кристалла состоящего из двух полупроводников (областей). Одна область кристалла обладает проводимостью p-типа, а другая — проводимостью n-типа.

На рисунке дырки, преобладающие в области p-типа, условно изображены красными кружками, а электроны, преобладающие в области n-типа — синими. Эти две области являются электродами диода анодом и катодом:

Анод – положительный электрод диода, в котором основными носителями заряда являются дырки.

Катод – отрицательный электрод диода, в котором основными носителями заряда являются электроны.

На внешние поверхности областей нанесены контактные металлические слои, к которым припаяны проволочные выводы электродов диода. Такой прибор может находиться только в одном из двух состояний:

1. Открытое – когда он хорошо проводит ток;
2. Закрытое – когда он плохо проводит ток.

Прямое включение диода. Прямой ток.

Если к электродам диода подключить источник постоянного напряжения: на вывод анода «плюс» а на вывод катода «минус», то диод окажется в открытом состоянии и через него потечет ток, величина которого будет зависеть от приложенного напряжения и свойств диода.

При такой полярности подключения электроны из области n-типа устремятся навстречу дыркам в область p-типа, а дырки из области p-типа двинутся навстречу электронам в область n-типа. На границе раздела областей, называемой электронно-дырочным или p-n переходом, они встретятся, где происходит их взаимное поглощение или рекомбинация.

Например. Oсновные носители заряда в области n-типа электроны, преодолевая p-n переход попадают в дырочную область p-типа, в которой они становятся неосновными. Ставшие неосновными, электроны будут поглощаться основными носителями в дырочной области – дырками. Таким же образом дырки, попадая в электронную область n-типа становятся неосновными носителями заряда в этой области, и будут также поглощаться основными носителями – электронами.

Контакт диода, соединенный с отрицательным полюсом источника постоянного напряжения будет отдавать области n-типа практически неограниченное количество электронов, пополняя убывание электронов в этой области. А контакт, соединенный с положительным полюсом источника напряжения, способен принять из области p-типа такое же количество электронов, благодаря чему восстанавливается концентрация дырок в области p-типа. Таким образом, проводимость p-n перехода станет большой и сопротивление току будет мало, а значит, через диод будет течь ток, называемый прямым током диода Iпр.

Обратное включение диода. Обратный ток.

Поменяем полярность источника постоянного напряжения – диод окажется в закрытом состоянии.

В этом случае электроны в области n-типа станут перемещаться к положительному полюсу источника питания, отдаляясь от p-n перехода, и дырки, в области p-типа, также будут отдаляться от p-n перехода, перемещаясь к отрицательному полюсу источника питания. В результате граница областей как бы расширится, отчего образуется зона обедненная дырками и электронами, которая будет оказывать току большое сопротивление.

Но, так как в каждой из областей диода присутствуют неосновные носители заряда, то небольшой обмен электронами и дырками между областями происходить все же будет. Поэтому через диод будет протекать ток во много раз меньший, чем прямой, и такой ток называют обратным током диода (Iобр). Как правило, на практике, обратным током p-n перехода пренебрегают, и отсюда получается вывод, что p-n переход обладает только односторонней проводимостью.

Прямое и обратное напряжение диода.

Напряжение, при котором диод открывается и через него идет прямой ток называют прямым (Uпр), а напряжение обратной полярности, при котором диод закрывается и через него идет обратный ток называют обратным (Uобр).

При прямом напряжении (Uпр) сопротивление диода не превышает и нескольких десятков Ом, зато при обратном напряжении (Uобр) сопротивление возрастает до нескольких десятков, сотен и даже тысяч килоом. В этом не трудно убедиться, если измерить обратное сопротивление диода омметром.

Читать еще:  Бывает ли белый колер для краски

Сопротивление p-n перехода диода величина не постоянная и зависит от прямого напряжения (Uпр), которое подается на диод. Чем больше это напряжение, тем меньшее сопротивление оказывает p-n переход, тем больший прямой ток Iпр течет через диод. В закрытом состоянии на диоде падает практически все напряжение, следовательно, обратный ток, проходящий через него мал, а сопротивление p-n перехода велико.

Например. Если включить диод в цепь переменного тока, то он будет открываться при положительных полупериодах на аноде, свободно пропуская прямой ток (Iпр), и закрываться при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления – обратный ток (Iобр). Эти свойства диодов используют для преобразования переменного тока в постоянный, и такие диоды называют выпрямительными.

Вольт-амперная характеристика полупроводникового диода.

Зависимость тока, проходящего через p-n переход, от величины и полярности приложенного к нему напряжения изображают в виде кривой, называемой вольт-амперной характеристикой диода.

На графике ниже изображена такая кривая. По вертикальной оси в верхней части обозначены значения прямого тока (Iпр), а в нижней части — обратного тока (Iобр).
По горизонтальной оси в правой части обозначены значения прямого напряжения Uпр, а в левой части – обратного напряжения (Uобр).

Вольт-амперная характеристика состоит как бы из двух ветвей: прямая ветвь, в правой верхней части, соответствует прямому (пропускному) току через диод, и обратная ветвь, в левой нижней части, соответствующая обратному (закрытому) току через диод.

Прямая ветвь идет круто вверх, прижимаясь к вертикальной оси, и характеризует быстрый рост прямого тока через диод с увеличением прямого напряжения.
Обратная ветвь идет почти параллельно горизонтальной оси и характеризует медленный рост обратного тока. Чем круче к вертикальной оси прямая ветвь и чем ближе к горизонтальной обратная ветвь, тем лучше выпрямительные свойства диода. Наличие небольшого обратного тока является недостатком диодов. Из кривой вольт-амперной характеристики видно, что прямой ток диода (Iпр) в сотни раз больше обратного тока (Iобр).

При увеличении прямого напряжения через p-n переход ток вначале возрастает медленно, а затем начинается участок быстрого нарастания тока. Это объясняется тем, что германиевый диод открывается и начинает проводить ток при прямом напряжении 0,1 – 0,2В, а кремниевый при 0,5 – 0,6В.

Например. При прямом напряжении Uпр = 0,5В прямой ток Iпр равен 50mA (точка «а» на графике), а уже при напряжении Uпр = 1В ток возрастает до 150mA (точка «б» на графике).

Но такое увеличение тока приводит к нагреванию молекулы полупроводника. И если количество выделяемого тепла будет больше отводимого от кристалла естественным путем, либо с помощью специальных устройств охлаждения (радиаторы), то в молекуле проводника могут произойти необратимые изменения вплоть до разрушения кристаллической решетки. Поэтому прямой ток p-n перехода ограничивают на уровне, исключающем перегрев полупроводниковой структуры. Для этого используют ограничительный резистор, включенный последовательно с диодом.

У полупроводниковых диодов величина прямого напряжения Uпр при всех значениях рабочих токов не превышает:
для германиевых — 1В;
для кремниевых — 1,5В.

При увеличении обратного напряжения (Uобр), приложенного к p-n переходу, ток увеличивается незначительно, о чем говорит обратная ветвь вольтамперной характеристики.
Например. Возьмем диод с параметрами: Uобр max = 100В, Iобр max = 0,5 mA, где:

Uобр max – максимальное постоянное обратное напряжение, В;
Iобр max – максимальный обратный ток, мкА.

При постепенном увеличении обратного напряжения до значения 100В видно, как незначительно растет обратный ток (точка «в» на графике). Но при дальнейшем увеличении напряжения, свыше максимального, на которое рассчитан p-n переход диода, происходит резкое увеличение обратного тока (пунктирная линия), нагрев кристалла полупроводника и, как следствие, наступает пробой p-n перехода.

Пробои p-n перехода.

Пробоем p-n перехода называется явление резкого увеличения обратного тока при достижении обратным напряжением определенного критического значения. Различают электрический и тепловой пробои p-n перехода. В свою очередь, электрический пробой разделяется на туннельный и лавинный пробои.

Электрический пробой.

Электрический пробой возникает в результате воздействия сильного электрического поля в p-n переходе. Такой пробой является обратимый, то есть он не приводит к повреждению перехода, и при снижении обратного напряжения свойства диода сохраняются. Например. В таком режиме работают стабилитроны – диоды, предназначенные для стабилизации напряжения.

Туннельный пробой.

Туннельный пробой происходит в результате явления туннельного эффекта, который проявляется в том, что при сильной напряженности электрического поля, действующего в p-n переходе малой толщины, некоторые электроны проникают (просачиваются) через переход из области p-типа в область n-типа без изменения своей энергии. Тонкие p-n переходы возможны только при высокой концентрации примесей в молекуле полупроводника.

В зависимости от мощности и назначения диода толщина электронно-дырочного перехода может находиться в пределах от 100 нм (нанометров) до 1 мкм (микрометр).

Для туннельного пробоя характерен резкий рост обратного тока при незначительном обратном напряжении – обычно несколько вольт. На основе этого эффекта работают туннельные диоды.

Благодаря своим свойствам туннельные диоды используются в усилителях, генераторах синусоидальных релаксационных колебаний и переключающих устройствах на частотах до сотен и тысяч мегагерц.

Лавинный пробой.

Лавинный пробой заключается в том, что под действием сильного электрического поля неосновные носители зарядов под действием тепла в p-n переходе ускоряются на столько, что способны выбить из атома один из его валентных электронов и перебросить его в зону проводимости, образовав при этом пару электрон — дырка. Образовавшиеся носители зарядов тоже начнут разгоняться и сталкиваться с другими атомами, образуя следующие пары электрон – дырка. Процесс приобретает лавинообразный характер, что приводит к резкому увеличению обратного тока при практически неизменном напряжении.

Диоды, в которых используется эффект лавинного пробоя используются в мощных выпрямительных агрегатах, применяемых в металлургической и химической промышленности, железнодорожном транспорте и в других электротехнических изделиях, в которых может возникнуть обратное напряжение выше допустимого.

Тепловой пробой.

Тепловой пробой возникает в результате перегрева p-n перехода в момент протекания через него тока большого значения и при недостаточном теплоотводе, не обеспечивающем устойчивость теплового режима перехода.

При увеличении приложенного к p-n переходу обратного напряжения (Uобр) рассеиваемая мощность на переходе растет. Это приводит к увеличению температуры перехода и соседних с ним областей полупроводника, усиливаются колебания атомов кристалла, и ослабевает связь валентных электронов с ними. Возникает вероятность перехода электронов в зону проводимости и образования дополнительных пар электрон — дырка. При плохих условиях теплоотдачи от p-n перехода происходит лавинообразное нарастание температуры, что приводит к разрушению перехода.

На этом давайте закончим, а в следующей части рассмотрим устройство и работу выпрямительных диодов, диодного моста.
Удачи!

1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Горюнов Н.Н. Носов Ю.Р — Полупроводниковые диоды. Параметры, методы измерений. 1968г.

Диоды и их разновидности

Мы очень часто применяем в своих схемах диоды, а знаете ли вы как он работает и что из себя представляет? Сегодня в «семейство» диодов входит не один десяток полупроводниковых приборов, носящих название «диод». Диод представляет собой небольшую емкость с откачанным воздухом, внутри которой на небольшом расстоянии друг от друга находится анод и второй электрод — катод, один из которых обладает электропроводностью типа р, а другой — n.

Чтобы представить как работает диод, возьмем для примера ситуацию с накачиванием колеса при помощи насоса. Вот мы работаем насосом, воздух закачивается в камеру через ниппель, а обратно этот воздух выйти через ниппель не может. По сути воздух, это тот же электрон в диоде, вошел электрончик, а обратно выйти уже нельзя. Если вдруг ниппель выйдет из строя то колесо сдуется, будет пробой диода. А если представить что ниппель у нас исправный, и если мы будем нажимая на пипку ниппеля выпускать воздух из камеры, причем нажимая как нам хочется и с какой длительностью – это будет управляемый пробой. Из этого можно сделать вывод что диод пропускает ток только в одном направлении (в обратном направлении тоже пропускает, но совсем маленький)

Внутреннее сопротивление диода (открытого) — величина непостоянная, она зависит от прямого напряжения приложенного к диоду. Чем больше это напряжение, тем больше прямой ток через диод, тем меньше его пропускное сопротивление. Судить о сопротивлении диода можно по падению напряжения на нем и току через него. Так, например, если через диод идет прямой ток Iпр. = 100 мА (0,1 А) и при этом на нем падает напряжение 1В, то (по закону Ома) прямое сопротивление диода будет: R = 1 / 0,1 = 10 Ом.

Отмечу сразу, что вдаваться в подробности и сильно углубляться, строить графики, писать формулы мы не будем – рассмотрим все поверхностно. В данной статье рассмотрим разновидности диодов, а именно светодиоды, стабилитроны, варикапы, диоды Шоттки и др.

Диоды

Обозначаются на схемах вот так:

Треугольная часть является АНОД’ом, а черточка это КАТОД. Анод это плюс, катод – минус. Диоды например, используют в блоках питания для выпрямления переменного тока, при помощи диодного моста можно превратить переменной ток в постоянный, применяются для защиты разных устройств от неправильной полярности включения и т. п.

Диодный мост представляет собой 4 диода, которые подключаются последовательно, причем два диода из этих четырех включены встречно, посмотрите на рисунки ниже.

Именно так и обозначается диодный мост, правда в некоторых схемах обозначают сокращенным вариантом:

подключаются к трансформатору, на схеме это будет выглядеть вот так:

Диодный мост предназначен для преобразования, чаще говорят для выпрямления переменного тока в постоянный. Такое выпрямление называется двухполупериодным. Принцип работы диодного моста заключается в пропускании положительной полуволны переменного напряжения положительными диодами и обрезании отрицательной полуволны отрицательными диодами. Поэтому на выходе выпрямителя образуется немного пульсирующее положительное напряжение с постоянной величиной.

Для того, чтобы этих пульсаций не было, ставят электролитические конденсаторы. после добавления конденсатора напряжение немного увеличивается, но отвлекаться не будем, про конденсаторы можете почитать здесь.

Диодные мосты применяют для питания радиоаппаратуры, применяются в блоках питания и зарядных устройствах. Как уже говорил, диодный мост можно составить из четырех одинаковых диодов, но продаются и готовые диодные мосты, выглядят они вот так:

Диод Шоттки

Диоды Шоттки имеют очень малое падение напряжения и обладают повышенным быстродействием по сравнению с обычными диодами.

Ставить вместо диода Шоттки обычный диод не рекомендуется, обычный диод может быстро выйти из строя. Обозначается на схемах такой диод так:

Стабилитрон

Стабилитрон препятствует превышению напряжения выше определённого порога на конкретном участке схемы. Может выполнять как защитные так и ограничительные функции, работают они только в цепях постоянного тока. При подключении следует соблюдать полярность. Однотипные стабилитроны можно соединять последовательно для повышения стабилизируемого напряжения или образования делителя напряжений.

Стабилитроны на схемах обозначаются следующим образом:

Основным параметром стабилитронов является напряжение стабилизации, стабилитроны имеют различные напряжения стабилизации, например 3в, 5в, 8.2в, 12в, 18в и т.п.

Варикап

Варикап (по другому емкостной диод) меняет своё сопротивление в зависимости от поданного на него напряжения. Применяется как управляемый конденсатор переменной емкости, например, для настройки высокочастотных колебательных контуров.

Тиристор

Тиристор имеет два устойчивых состояния: 1) закрытое, то есть состояние низкой проводимости, 2) открытое, то есть состояние высокой проводимости. Другими словами он способен под действием сигнала переходить из закрытого состояния в открытое.

Тиристор имеет три вывода, кроме Анода и Катода еще и управляющий электрод — используется для перевода тиристора во включенное состояние. Современные импортные тиристоры выпускаются и в корпусах ТО-220 и ТО-92.

Тиристоры часто используются в схемах для регулировки мощностей, для плавного пуска двигателей или включения лампочек. Тиристоры позволяют управлять большими токами. У некоторых типов тиристоров максимальный прямой ток достигает 5000 А и более, а значение напряжений в закрытом состоянии до 5 кВ. Мощные силовые тиристоры вида Т143(500-16) применяются в шкафах управления эл.двигателями, частотниках.

Симистор

Симистор используется в системах, питающихся переменным напряжением, его можно представить как два тиристора, которые включены встречно-параллельно. Симистор пропускает ток в обоих направлениях.

Светодиод

Светодиод излучает свет при пропускании через него электрического тока. Светодиоды применяются в устройствах индикации приборов, в электронных компонентах (оптронах), сотовых телефонах для подсветки дисплея и клавиатуры, мощные светодиоды используют как источник света в фонарях и т.д. Светодиоды бывают разного цвета свечения, RGB и т.д.

Обозначение на схемах:

Подробнее про светодиоды можно почитать здесь.

Инфракрасный диод

Инфракрасные светодиоды (сокращенно ИК диоды) излучают свет в инфракрасном диапазоне . Области применения инфракрасных светодиодов это оптические контрольно-измерительные приборы, устройства дистанционного управления, оптронные коммутационные устройства, беспроводные линии связи. Ик диоды обозначаются так же как и светодиоды.

Инфракрасные диоды излучают свет вне видимого диапазона, свечение ИК диода можно увидеть и посмотреть например через камеру сотового телефона, данные диоды так же применяют в камерах видеонаблюдения, особенно на уличных камерах чтобы в темное время суток была видна картинка.

Фотодиод

Фотодиод преобразует свет попавший на его фоточувствительную область, в электрический ток, находит применение в преобразовании света в электрический сигнал.

Фото диоды (а так же фоторезисторы, фототранзисторы) можно сравнить с солнечными батареями. Обозначаются на схемах так:

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector