Диод шоттки принцип работы
Что такое диод Шоттки и принцип его работы
Большинство современных радиосхем использует диод Шоттки. Его действие основано на физическом эффекте, который открыл немецкий ученый Вальтер Шоттки, поэтому он и носит его имя. Этот элемент имеет много таких же параметров, как и обычные диоды, но есть у него и существенные отличия.
- Принцип действия и обозначение
- Положительные и отрицательные качества
- Сфера применения и популярные модели
- Диагностика возможных неисправностей
Принцип действия и обозначение
Если обычный полупроводниковый диод основан на свойствах p-n перехода, то принцип работы диода Шоттки основан на свойствах перехода при контакте металла и полупроводника. Такой контакт получил в физике получил название «барьер Шоттки». В качестве полупроводника чаще всего используется арсенид галлия (GaAs), а из металлов применяют в основном следующие:
вольфрам;
- платину;
- серебро;
- золото;
- палладий.
На радиотехнических схемах обозначение диода Шоттки похоже на обозначение обычного полупроводникового элемента, но есть заметное различие: со стороны катода, где есть небольшая перпендикулярная к основной линии черта, у нее дополнительно загибаются края в разные стороны под прямым углом или с плавным изгибом.
Иногда на принципиальных схемах затруднительно графически обозначить этот элемент, его рисуют, как обычный диод, а в спецификации дополнительно указывают тип.
Положительные и отрицательные качества
Полупроводниковый элемент Шоттки широко применяется в различных электронных и радиотехнических устройствах из-за своих положительных свойств. К ним относят следующие:
- очень низкое падение напряжения на переходе, максимальное значение которого составляет всего 0,55 В;
- большая скорость срабатывания;
- малая емкость барьера (перехода), что дает возможность применять диод Шоттки в схемах с высокой частотой тока.
Но есть и несколько отрицательных свойств, которые необходимо учитывать при использовании этого радиотехнического элемента. А именно:
- мгновенный необратимый выход из строя даже при кратковременном повышении обратного напряжения выше предельного значения;
- возникновение теплового пробоя на обратном токе из-за выделения тепла;
- часто встречаются утечки диодов, которые определить затруднительно.
Сфера применения и популярные модели
Полупроводниковый радиотехнический элемент Шоттки характеризуется отсутствием диффузной емкости из-за отсутствия неосновных носителей. Поэтому этот элемент в первую очередь — это СВЧ-диод широкого спектра применения. Его используют в роли следующих элементов:
- тензодатчик;
- приемник излучения;
- модулятор света;
- детектор ядерного излучения;
- выпрямитель тока высокой частоты.
Малое падение напряжения, к сожалению, наблюдается у большинства этих элементов при рабочем напряжении в пределах 55−60 В. Если напряжение выше этого значения, то диод Шоттки имеет такие же качества, как и обычный полупроводниковый элемент на кремниевой основе. Максимум обратного напряжения обычно составляет порядка 250 В, но есть особые модели, которые выдерживают и 1200 В (например, VS-10ETS12-M3).
Из сдвоенных моделей популярной среди радиолюбителей является 60CPQ150. Этот радиоэлемент имеет максимум обратного напряжения 150 В, а каждый отдельный диод из сборки рассчитан на пропускание тока в прямом включении силой 30 А. В мощных импульсных источниках питания иногда можно встретить модель VS-400CNQ045, у которой сила тока на выходе после выпрямления достигает 400 А.
У радиолюбителей пользуются популярностью диоды Шоттки серии 1N581x. Такие образцы, как 1N5817, 1N5818, 1N5819 имеют максимальный номинальный прямой ток 1 А, а обратное напряжение у них составляет 20−40 В. Падение напряжения на барьере (переходе) в диапазоне от 0.45 до 0.55 В. Также в радиолюбительской практике встречается элемент 1N5822 с прямым током до 3 А.
На печатных платах используют миниатюрные диоды серий SK12 — SK16. Несмотря на очень небольшие размеры, они выдерживают прямой ток до 1 А, а напряжение «обратки» составляет от 20 до 60 В. Есть и более мощные диоды, например, SK36. У него прямой ток доходит до 3 А.
Диагностика возможных неисправностей
Существует всего три вида возможных неисправностей. Это пробой, обрыв и утечка. Если первые два вида можно диагностировать самостоятельно в домашних условиях с помощью обычного мультиметра, то третья неисправность в домашних условиях практически не поддается диагностике.
Для надежного определения выхода из строя диода его необходимо выпаять из схемы, иначе шунтирование через другие элементы схемы будет искажать полученные показания. При пробое элемент ведет себя как обычный проводник. При замере его сопротивления в обоих направлениях измерительный прибор будет составлять «0». При обрыве деталь вообще не пропускает электрический ток в любом направлении. Его сопротивление равно бесконечности в каждом направлении.
Косвенным признаком утечки в элементе является его нестабильная работа. Иногда может срабатывать встроенная защита в блоке питания компьютера, монитора и т. д.
Мультиметром определить утечку невозможно, так как она возникает при работе элемента, а замеры необходимо производить при его отключении от схемы.
Принцип работы диода Шоттки
Что такое диод Шоттки? Это полупроводниковый элемент, название которого соответствует фамилии знаменитого физика и изобретателя, работавшего в Германии. Специфика диода Шоттки заключается в минимальном снижении напряжения. Эта низкая динамика наблюдается при прямом введении компонента в цепь. На практике используется при обратном напряжении с небольшими значениями (в среднем 3-10В), при возможности применять в промышленности с гораздо большими величинами значение может достигать до 1200В.
Внешний вид
Разновидности диодов Шоттки
Все полупроводниковые элементы, работающие по принципу барьера Шоттки, делятся по мощности на:
- высокой;
- средней;
- малой мощности.
Сдвоенный диод
На рисунке показан сдвоенный элемент, являющий собой по сути два элемента. Они расположены в едином корпусе, в одно целое соединены катодом или анодом. В этом случае чаще всего имеется три вывода диода. При идентичных параметрах собранных таким образом элементов обеспечивается надежность работы всего устройства, в первую очередь, за счет единой температуры.
Особенности и принцип работы диода Шоттки
Как работает диод Шоттки? В чем принципиальные отличия его работы от аналогов с другим барьерным переходом?
Устройство диода Шоттки имеет отличие от других элементов того же назначения использованием барьером в виде перехода между металлом и полупроводником. У аналогов обычно работает с этой же целью p-n переход. Так в первом случае имеется односторонняя электропроводность. В зависимости от того, какой конкретно металл выбран для перехода в элементе, различаются и характеристики элемента. Чаще всего выбирается кремний, возможно применение арсенида галлия. Реже могут применяться сплавы вольфрама, платины и других материалов.
Кремний — самый распространенный и надежный элемент в диодах Шоттки, с ним конструкция надежно работает в условиях высокой мощности. Изделие стабильнее в работе, чем другие полупроводниковые аналоги, а простота изготовления и устройства диода Шоттки делают его очень доступным вариантом.
Металл-полупроводник: принцип работы перехода
Структура элемента
Принцип работы диода Шоттки основан на особенностях барьера. Эффект Шоттки при контакте компонентов, из которых выполнен непосредственно полупроводник и металл заключается в образовании бедного электронами участка. Последний имеет вентильные характеристики, аналогичные p-n взаимодействию. Контактный слой останавливает носителей заряда. По сравнению с другими типами полупроводниковых вентилей такое решение обладает:
- минимальным обратным током;
- стремящейся к нулю собственной емкостью;
- обратным напряжением самой низкой допустимой величины;
- при прямом включении — меньшим снижением напряжения (до 0.5 В в сравнении с 2-3 В в случае аналога).
В переходной зоне нет лишних носителей заряда. Благодаря этому там не возникают диффузии и рекомбинации, что наблюдается в контактных слоях p-n перехода. Так обеспечивается минимальная собственная емкость диода Шоттки, что делает возможным с большей эффективностью использовать его в устройствах с высокими и сверхчастотами.
Преимущества и недостатки диода Шоттки
Несомненными преимуществами подобных полупроводниковых изделий являются:
- надежное удерживание электротока;
- минимальная емкость барьера обеспечивает длительную эксплуатацию;
- быстродействие.
Высокие показатели обратного тока — основной недостаток устройств с диодом Шоттки. Из-за этого при скачке обратного тока диод может выйти из строя.
Важно! При внедрении подобных диодов в цепи с высокой мощностью электротока создается риск теплового пробоя.
Маркировка и схема диода Шоттки
На схеме преподносится почти как стандартный полупроводниковый диод, но имеются и отличия.
Обозначения диодов
В маркировке используется набор символов, они всегда обозначаются сбоку изделия. Используются международные стандарты, но в зависимости от производителя маркировка может отличаться.
Сочетание цифр и букв на корпусе не всегда понятно, но в радиотехнических справочниках всегда можно найти точную расшифровку.
Работа в ИБП
Подобные элементы очень широко используются в импульсных схемах, в приборах для стабилизации напряжения, а также в блоках питания. Преимущественно выбираются сдвоенные элементы, имеющие в одном корпусе общий катод.
Использование в ИБП сдвоенного диода Шоттки с общим катодом является признаком высокого качества и надежности блока питания.
При этом сгоревший элемент относится к частым и типовым неисправностям импульсного устройства. Нерабочее состояние возникает при:
- утечке на корпус;
- электроприборе.
Встроенная защита приводит к блокировке ИБП в обоих случаях. При утечке возможно присутствие незначительных нестабильных пульсаций напряжения на выходе, а также слабые «подергивания» вентилятора. В случае пробоя напряжения в блоке питания полностью исключены. Так можно определить вероятную причину нерабочего состояния диода Шоттки, но для окончательного решения понадобится диагностика.
Для диагностики следует выполнить шаги:
- Выпаять элемент и схемы.
- Осмотреть на предмет механических повреждений, присутствия следов разрушительных химических реакций.
- Выполнить проверку мультиметром.
Проверка мультиметром
Отличие процедуры от диагностики обычных диодов заключается в необходимости демонтажа сборки или элемента, иначе проверить его состояние будет очень сложно. Утечку диагностировать сложнее. При использовании типичного мультиметра может отображаться полная работоспособность элемента при работе прибора в режиме «диод». Потому лучше устанавливать режим «омметр» и заменить элемент при демонстрации сопротивления. Показатель 5 кОм не устанавливает точно неисправность диода, но лучше считать его подозрительным и выполнить замену. Доступная стоимость диодов Шоттки позволяет сделать это практически в любой момент без особых трат.
Важно! Если для проверки работоспособности диода Шоттки используется типовой мультиметр, нужно учитывать указанный сбоку показатель электротока.
Применение
Отличительные особенности и принцип работы диода Шоттки обусловливают его широкое применение в быту и в промышленности. Кроме блоков питания компьютера, его часто можно встретить в схемах:
- бытовых электроприборов;
- стабилизаторов напряжения;
- во всем спектре радио- и телеаппаратуры;
- в другой электронике.
Подобные элементы используются в современных батареях и транзисторах, работа которых обеспечивается сенечной энергией.
Такое универсальное использование элемента связано с способностью полупроводникового диода с эффектом Шоттки во много раз усиливать работоспособность любого прибора и увеличивать его эффективность. Обратное сопротивление электротока восстанавливается, за счет чего он сохраняется в электрической сети. Потери динамики напряжения минимизируются. Также диод Шоттки вбирает несколько видов излучений.
Диод с барьером Шоттки — неприхотливый и простой элемент, обеспечивающий бесперебойную работу множества современных приборов. Доступный, надежный, отличается широкой сферой применения благодаря особенностям в своей конструкции.
Диод Шоттки принцип работы
На принципиальных схемах они обозначается почти как диод, мотри рисунок выше, но с небольшими графическими отличиями, кроме того достаточно часто попадаются сдвоенные диоды-шоттки.
Сдвоенный диод Шоттки – это два отдельных элемента собранных в одном общем корпусе причем выводы катодов или анодов этих компонентов объединены. Поэтому сдвоенный диод, обычно трех выводной. В импульсных и компьютерных блоках питания можно достаточно часто увидеть сдвоенные диоды Шоттки с общим катодом.
Так как оба диода размещены в едином корпусе и собраны при одинаковом технологическом процессе, то их технические параметры почти идентичны. При подобном размещение в одном корпусе, во время работе они будут находится в одном температурном режиме, а это один из главный факторов увеличения надежность работы устройства в целом.
Плюсы и минусы диодов Шоттки
Диоды Шоттки, как я уже отметил выше, активно используются в компьютерных блоках питания и импульсных стабилизаторах напряжения. Они используются в низковольтных и сильноточных частях схемы компьютерных ИБП на + 3,3 вольта и + 5,0 вольт. Чаще всего применяются сдвоенные диоды с общим катодом. Именно использование сдвоенных диодов считаться признаком высококачественного компьютерного блока питания.
Сгоревший диод Шоттки одна из наиболее типовых неисправностей при ремонте импульсных блоках питания. У диода может быть два нерабочих состояния: электрический пробой и утечка на корпус. При любом из этих состояний ИБП блокируется благодаря встроенной схеме защиты.
В случае электрического пробоя все вторичные напряжения в блоке питания отсутствуют. Во случае утечки вентилятор компьютерного БП может «подёргиваться» и на выходе могут появляются пульсации выходного напряжения, периодически пропадающие. То есть модуль защиты периодически срабатывает, но полной блокировки не происходит. Диоды Шоттки 100% сгорели, если радиатор, на котором они закреплены, очень теплый или сильно пованивает горелым от них.
Следует сказать пару слов о том, что при ремонте ИБП после замены диодов, особенно с подозрением на утечку на корпус, следует прозвонить все силовые транзисторы работающие в ключевом режиме. А также в случае замены ключевых транзисторов проверка диодов является обязательной и строго необходимой.
Методика проверки диода Шоттки такая же, как и стандартного типового диода. Но и тут есть небольшие отличия. Очень трудно проверить диод этого типа уже впаянный в схему. Поэтому, сборку или отдельный элемент необходимо сначала демонтировать из схемы для проверки. Достаточно просто можно определить полностью пробитый элемент. На всех пределах измерения сопротивления, мультиметр отобразит в обе стороны бесконечно низкое сопротивление или короткое замыкание.
Сложнее проверить с подозрением на утечку. Если проводить проверку типичным мультиметром, например DT-830 в режиме «диода» то мы увидим исправный компонент. Однако если сделать измерение в режиме омметра, то обратное сопротивление на пределе «20 кОм» определяется как бесконечно огромное (1). Если же элемент показывает какое-то сопротивление, например 5 кОм, то этот диод лучше считать подозрительный и заменить на точно работоспособный. Иногда лучше сразу заменить диодов Шоттки по шинам +3,3V и +5,0V в компьютерном ИБП.
Их иногда используют в приемники альфа и бета излучения (дозиметрах), фиксаторах нейтронного излучения, а кроме того на барьерных переходах Шоттки собирают панели солнечных батарей которые питают электроэнергией космические аппараты бороздящие просторы нашей необъятной вселенной .
Диод Шоттки
Обозначение, применение и параметры диодов Шоттки
К многочисленному семейству полупроводниковых диодов названных по фамилиям учёных, которые открыли необычный эффект, можно добавить ещё один. Это диод Шоттки.
Немецкий физик Вальтер Шоттка открыл и изучил так называемый барьерный эффект возникающий при определённой технологии создания перехода металл-полупроводник.
Основной «фишкой» диода Шоттки является то, что в отличие от обычных диодов на основе p-n перехода, здесь используется переход металл-полупроводник, который ещё называют барьером Шоттки. Этот барьер, так же, как и полупроводниковый p-n переход, обладает свойством односторонней электропроводимости и рядом отличительных свойств.
В качестве материала для изготовления диодов с барьером Шоттки преимущественно используется кремний (Si) и арсенид галлия (GaAs), а также такие металлы как золото, серебро, платина, палладий и вольфрам.
На принципиальных схемах диод Шоттки изображается вот так.
Как видим, его изображение несколько отличается от обозначения обычного полупроводникового диода.
Кроме такого обозначения на схемах можно встретить и изображение сдвоенного диода Шоттки (сборки).
Сдвоенный диод – это два диода смонтированных в одном общем корпусе. Выводы катодов или анодов у них объединены. Поэтому такая сборка, как правило, имеет три вывода. В импульсных блоках питания обычно применяются сборки с общим катодом.
Так как два диода размещены в одном корпусе и выполнены в едином технологическом процессе, то их параметры очень близки. Поскольку они размещены в едином корпусе, то и температурный режим их одинаков. Это увеличивает надёжность и срок службы элемента.
У диодов Шоттки есть два положительных качества: весьма малое прямое падение напряжения (0,2-0,4 вольта) на переходе и очень высокое быстродействие.
К сожалению, такое малое падение напряжения проявляется при приложенном напряжении не более 50-60 вольт. При дальнейшем его повышении диод Шоттки ведёт себя как обычный кремниевый выпрямительный диод. Максимальное обратное напряжение для Шоттки обычно не превышает 250 вольт, хотя в продаже можно встретить образцы, рассчитанные и на 1,2 киловольта (VS-10ETS12-M3).
Так, сдвоенный диод Шоттки (Schottky rectifier) 60CPQ150 рассчитан на максимальное обратное напряжение 150V, а каждый из диодов сборки способен пропустить в прямом включении 30 ампер!
Также можно встретить образцы, выпрямленный за полупериод ток которых может достигать 400А максимум! Примером может служит модель VS-400CNQ045.
Очень часто в принципиальных схемах сложное графическое изображение катода попросту опускают и изображают диод Шоттки как обычный диод. А тип применяемого элемента указывают в спецификации.
К недостаткам диодов с барьером Шоттки можно отнести то, что даже при кратковременном превышении обратного напряжения они мгновенно выходят из строя и главное необратимо. В то время как кремниевые силовые вентили после прекращения действия превышенного напряжения прекрасно самовосстанавливаются и продолжают работать. Кроме того обратный ток диодов очень сильно зависит от температуры перехода. На большом обратном токе возникает тепловой пробой.
К положительным качествам диодов Шоттки кроме высокого быстродействия, а, следовательно, малого времени восстановления можно отнести малую ёмкость перехода (барьера), что позволяет повысить рабочую частоту. Это позволяет использовать их в импульсных выпрямителях на частотах в сотни килогерц. Очень много диодов Шоттки находят своё применение в интегральной микроэлектронике. Выполненные по нано технологии диоды Шоттки входят в состав интегральных схем, где они шунтируют переходы транзисторов для повышения быстродействия.
В радиолюбительской практике прижились диоды Шоттки серии 1N581x (1N5817, 1N5818, 1N5819). Все они рассчитаны на максимальный прямой ток (IF(AV)) – 1 ампер и обратное напряжение (VRRM) от 20 до 40 вольт. Падение напряжения (VF) на переходе составляет от 0,45 до 0,55 вольт. Как уже говорилось, прямое падение напряжения (Forward voltage drop) у диодов с барьером Шоттки очень мало.
Также достаточно известным элементом является 1N5822. Он рассчитан на прямой ток в 3 ампера и выполнен в корпусе DO-201AD.
Также на печатных платах можно встретить диоды серии SK12 – SK16 для поверхностного монтажа. Они имеют довольно небольшие размеры. Несмотря на это SK12-SK16 выдерживают прямой ток до 1 ампера при обратном напряжении 20 – 60 вольт. Прямое падение напряжения составляет 0,55 вольт (для SK12, SK13, SK14) и 0,7 вольт (для SK15, SK16). Также на практике можно встретить диоды серии SK32 – SK310, например, SK36, который рассчитан на прямой ток 3 ампера.
Применение диодов Шоттки в источниках питания.
Диоды Шоттки активно применяются в блоках питания компьютеров и импульсных стабилизаторах напряжения. Среди низковольтных питающих напряжений самыми сильноточными (десятки ампер) являются напряжения +3,3 вольта и +5,0 вольт. Именно в этих вторичных источниках питания и используются диоды с барьером Шоттки. Чаще всего используются трёхвыводные сборки с общим катодом. Именно применение сборок может считаться признаком высококачественного и технологичного блока питания.
Выход из строя диодов Шоттки одна из наиболее часто встречающихся неисправностей в импульсных блоках питания. У него может быть два «дохлых» состояния: чистый электрический пробой и утечка. При наличии одного из этих состояний блок питания компьютера блокируется, так как срабатывает защита. Но это может происходить по-разному.
В первом случае все вторичные напряжения отсутствуют. Защита заблокировала блок питания. Во втором случае вентилятор «подёргивается» и на выходе источников питания периодически то появляются пульсации напряжения, то пропадают.
То есть схема защиты периодически срабатывает, но полной блокировки источника питания при этом не происходит. Диоды Шоттки гарантированно вышли из строя, если радиатор, на котором они установлены, разогрет очень сильно до появления неприятного запаха. И последний вариант диагностики связанный с утечкой: при увеличении нагрузки на центральный процессор в мультипрограммном режиме блок питания самопроизвольно отключается.
Следует иметь в виду, что при профессиональном ремонте блока питания после замены вторичных диодов, особенно с подозрением на утечку, следует проверить все силовые транзисторы выполняющие функцию ключей и наоборот: после замены ключевых транзисторов проверка вторичных диодов является обязательной процедурой. Всегда необходимо руководствоваться принципом: беда одна не приходит.
Проверка диодов Шоттки мультиметром.
Проверить диод Шоттки можно с помощью рядового мультиметра. Методика такая же, как и при проверке обычного полупроводникового диода с p-n переходом. Но и тут есть подводные камни. Особенно трудно проверить диод с утечкой. Прежде всего, элемент необходимо выпаять из схемы для более точной проверки. Достаточно легко определить полностью пробитый диод. На всех пределах измерения сопротивления неисправный элемент будет иметь бесконечно малое сопротивление, как в прямом, так и в обратном включении. Это равносильно короткому замыканию.
Сложнее проверить диод с подозрением на «утечку». Если проводить проверку мультиметром DT-830 в режиме «диод», то мы увидим совершенно исправный элемент. Можно попробовать измерить в режиме омметра его обратное сопротивление. На пределе «20кОм» обратное сопротивление определяется как бесконечно большое. Если же прибор показывает хоть какое-то сопротивление, допустим 3 кОм, то этот диод следует рассматривать как подозрительный и менять на заведомо исправный. Стопроцентную гарантию может дать полная замена диодов Шоттки по шинам питания +3,3V и +5,0V.
Где ещё в электронике используются диоды Шоттки? Их можно обнаружить в довольно экзотических приборах, таких как приёмники альфа и бета излучения, детекторах нейтронного излучения, а в последнее время на барьерных переходах Шоттки собирают панели солнечных батарей. Так, что они питают электроэнергией и космические аппараты.
Что такое диод Шоттки, его характеристики и способ проверки мультиметром
Развитие электроники требует все более высоких стандартов от радиодеталей. Для работы на высоких частотах используют диод Шоттки, который по своим параметрам превосходит кремниевые аналоги. Иногда можно встретить название диод с барьером Шоттки, что в принципе означает то же самое.
Конструкция
Отличается диод Шоттки от обыкновенных диодов своей конструкцией, в которой используется металл-полупроводник, а не p-n переход. Понятно, что свойства здесь разные, а значит, и характеристики тоже должны отличаться.
Действительно, металл-полупроводник обладает такими параметрами:
- Имеет большое значение тока утечки,
- Невысокое падение напряжения на переходе при прямом включении,
- Восстанавливает заряд очень быстро, так как имеет низкое его значение.
Диод Шоттки изготавливается из таких материалов, как арсенид галлия, кремний, намного реже, но также может использоваться – германий. Выбор материала зависит от свойств, которые нужно получить, однако в любом случае максимальное обратное напряжение, на которое могут изготавливаться данные полупроводники, не выше 1200 вольт – это самые высоковольтные выпрямители. На практике же намного чаще их используют при более низком напряжении – 3, 5, 10 вольт.
На принципиальной схеме диод Шоттки обозначается таким образом:
Но иногда можно увидеть и такое обозначение:
Это означает сдвоенный элемент: два диода в одном корпусе с общим анодом или катодом, поэтому элемент имеет три вывода. В блоках питания используют такие конструкции с общим катодом, их удобно использовать в схемах выпрямителей. Часто на схемах рисуется маркировка обычного диода, но в описании указывается, что это Шоттки, поэтому нужно быть внимательными.
Диодные сборки с барьером Шоттки выпускаются трех типов:
1 тип – с общим катодом,
2 тип – с общим анодом,
3 тип – по схеме удвоения.
Такое соединение помогает увеличить надежность элемента: ведь находясь в одном корпусе, они имеют одинаковый температурный режим, что важно, если нужны мощные выпрямители, например, на 10 ампер.
Но есть и минусы. Все дело в том, что малое падение напряжения (0,2–0,4 в) у таких диодов проявляется на небольших напряжениях, как правило – 50–60 вольт. При более высоком значении они ведут себя как обычные диоды. Зато по току эта схема показывает очень хорошие результаты, ведь часто бывает необходимо – особенно в силовых цепях, модулях питания – чтобы рабочий ток полупроводников был не ниже 10а.
Еще один главный недостаток: для этих приборов нельзя превышать обратный ток даже на мгновение. Они тут же выходят из строя, в то время как кремниевые диоды, если не была превышена их температура, восстанавливают свои свойства.
Но положительного все-таки больше. Кроме низкого падения напряжения, диод Шоттки имеет низкое значение емкости перехода. Как известно: ниже емкость – выше частота. Такой диод нашел применение в импульсных блоках питания, выпрямителях и других схемах, с частотами в несколько сотен килогерц.
Вольтамперная характеристика светодиода (ВАХ)
ВАХ такого диода имеет несимметричный вид. Когда приложено прямое напряжение, видно, что ток растет по экспоненте, а при обратном – ток от напряжения не зависит.
Все это объясняется, если знать, что принцип работы этого полупроводника основан на движении основных носителей – электронов. По этой же самой причине эти приборы и являются такими быстродействующими: у них отсутствуют рекомбинационные процессы, свойственные приборам с p-n переходами. Для всех приборов, имеющих барьерную структуру, свойственна несимметричность ВАХ, ведь именно количеством носителей электрического заряда обусловлена зависимость тока от напряжения.
Миниатюризация
С развитием микроэлектроники стали широко применяться специальные микросхемы, однокристальные микропроцессоры. Все это не исключает использования навесных элементов. Однако если для этой цели использовать радиоэлементы обычных размеров, то это сведет на нет всю идею миниатюризации в целом. Поэтому были разработаны бескорпусные элементы – smd компоненты, которые в 10 и более раз меньше обычных деталей. ВАХ таких компонентов ничем не отличается от ВАХ обычных приборов, а их уменьшенные размеры позволяют использовать такие запчасти в различных микросборках.
Компоненты smd имеют несколько типоразмеров. Для ручной пайки подходят smd размера 1206. Они имеют размер 3,2 на 1,6 мм, что позволяет их впаивать самостоятельно. Другие элементы smd более миниатюрные, собираются на заводе специальным оборудованием, и самому, в домашних условиях, их паять невозможно.
Принцип работы smd компонента также не отличается от его большого аналога, и если, к примеру, рассматривать ВАХ диода, то она в одинаковой степени будет подходить для полупроводников любого размера. По току изготавливаются от 1 до 10 ампер. Маркировка на корпусе часто состоит из цифрового кода, расшифровка которого приводится в специальных таблицах. Протестировать на пригодность их можно тестером, как и большие аналоги.
Использование на практике
Выпрямители Шоттки используется в импульсных блоках питания, стабилизаторах напряжения, импульсных выпрямителях. Самыми требовательными по току – 10а и более – это напряжения 3,3 и 5 вольт. Именно в таких цепях вторичного питания приборы Шоттки используют чаще всего. Для усиления значений по току их включают вместе по схеме с общим анодом или катодом. Если каждый из сдвоенных диодов будет на 10 ампер, то получится значительный запас прочности.
Одна из самых частых неисправностей импульсных модулей питания – выход из строя этих самых диодов. Как правило, они либо полностью пробиваются, либо дают утечку. В обоих случаях неисправный диод нужно заменить, после чего проверить мультиметром силовые транзисторы, а также замерить напряжения питания.
Тестирование и взаимозаменяемость
Проверить выпрямители Шоттки можно так же, как и обычные полупроводники, так как они имеют похожие характеристики. Мультиметром необходимо прозвонить его в обе стороны – он должен показать себя так же, как и обычный диод: анод-катод, при этом утечек быть не должно. Если он показывает даже незначительное сопротивление – 2–10 килоом, это уже повод для подозрений.
Проверка диода Шоттки мультиметром
Диод с общим анодом или катодом можно проверить как два обычных полупроводника, соединенных вместе. Например, если анод общий, то это будет одна ножка из трех. На анод ставим один щуп тестера, другие ножки – это разные диоды, на них ставится другой щуп.
Можно ли его заменить на другой тип? В некоторых случаях диоды Шоттки меняют на обычные германиевые. К примеру, Д305 при токе 10 ампер давал падение всего 0,3 вольта, а при токах 2–3 ампера их вообще можно ставить без радиаторов. Но главная цель установки Шоттки – это не малое падение, а низкая емкость, поэтому заменить получится не всегда.
Как видим, электроника не стоит на месте, и дальнейшие варианты применения быстродействующих приборов будет только увеличиваться, давая возможность разрабатывать новые, более сложные системы.
Диод Шоттки — характеристики и принцип работы
Очень часто в электротехнике или различных схемах электрических цепей встречается такое понятие, как диод Шоттки. Прежде всего, это специальный диод-полупроводник, имеющий при прямом включении маленькое падение напряжения,и состоящий из полупроводника и металла. Свое название получил в честь изобретателя из Германии Вальтера Шоттки, который изобрел этот электронный элемент.
Допустимое обратное напряжение в электронном элементе в промышленных целях ограничено 250 вольтами. На практике применяется в основном в низковольтных цепях, чтобы предотвратить течение тока в обратную сторону. По своей мощности разделяются на несколько групп: маломощные, среднемощные и мощные.
Само устройство состоит из металла — полупроводника, пассивации стеклом, защитного кольца и металла. Когда по цепи начинает идти электрический ток, то на защитном кольце и по всей области барьера-полупроводника будут скапливаться положительные и отрицательные заряды, но в разных частях корпуса, при котором будет возникать электрическое поле и выделяется тепло, что является большим плюсом для некоторых опытов в физике.
Отличие от других полупроводников
Этот электронный элемент отличается от других тем, что в нем в качестве преграды используется металл — полупроводник, который имеет одностороннюю электропроводимость, и обладающий многими другими отличительными свойствами. Такими металлами-полупроводниками могут быть арсенид галлий, золото, карбид кремния, вольфрам, германий, палладий, платина и так далее.
От выбранного металла будет зависеть и вся работа электронного элемента Шоттки. Особенно часто используют кремний, потому что он надежнее других, хорошо работает на больших мощностях. Также чаще других металлов используют полупроводник на основе арсенида галлия (GaAs) — химическое соединение мышьяка и галлия, реже — на основе германия (Ge). Технология изготовления этих электронных элементов очень проста, поэтому он и является самым дешевым.
Также диод Шоттки отличается от других стабильной работой при подаче тока. Для стабильности используют внедрение в корпус этого электронного элемента специальных кристаллов, что является очень тонкой работой, потому что халатность или невнимательность может привести к неисправности устройства. Этим редко занимаются люди, чаще всего эту работу выполняет специальный робот — автомат, запрограммированный для такой операции.
Диод Шоттки обозначение и маркировка
Как и все электронные детали и элементы имеют обозначения, на принципиальных схемах этот электронный элемент изображается вот так (см. рис. 1), что несколько отличается от обозначения обычного полупроводника.
Еще на схемах можно встретить изображение сдвоенного диода Шоттки (см. рис. 2). Это два смонтированных электронных элемента в одном общем корпусе. Аноды или катоды у них спаяны, поэтому имеют три вывода.
Этот электронный элемент, как и большинство, маркируется сбоку. И если непонятны буквы и цифры на обозначении, то можно посмотреть по радиотехническому справочнику их расшифровку.
Достоинства и недостатки
У этого устройства есть свои положительные стороны и свои недостатки.
- Хорошо удерживает электрический ток в цепи;
- Маленькая емкость барьера из металлов — полупроводников, что увеличивает долгосрочную работоспособность диода;
- В отличие от других полупроводников, в диоде Шоттки наблюдается низкое падение напряжения;
- В электрической цепи данный диод Шоттки быстро действует.
Большой минус в том, что бывает очень большим обратный ток. В некоторых случаях, например, превышение нужного уровня обратного тока даже на несколько ампер, электронный элемент просто ломается или выходит из строя в самый неподходящий момент вне зависимости от того, новый он или старый. Также часто можно наблюдать утечки диодов, что может привести в некоторых случаях к печальным последствиям, если относится к проверке полупроводников с пренебрежением.
Диод Шоттки применение
Эти электронные элементы, представленные выше, можно встретить в нашем мире практически везде: в компьютерах, стабилизаторах, бытовой технике, радиовещании, телевидении, блоках питания, солнечных батареях, транзисторах и во многих других приборах из всех сферах жизни.
Во всех случаях поднимает эффективность и работоспособность, уменьшает численность потерь динамики напряжения, восстанавливает обратное сопротивление тока, принимает на себя излучение альфа, бета и гамма- зарядов, позволяет работать достаточно много времени без пробоев, удерживает ток в напряжении электрической цепи.
Диагностика диодов Шоттки
Можно провести диагностику электронного элемента Шоттки, если возникнет такая необходимость, но на это уйдет немного времени. Прежде всего, необходимо выпаять один элемент из диодного моста или электронной схемы. Осмотреть визуально и проверить тестером. В результате этих простых технических операций узнаете исправный ли полупроводник или нет. Хотя и необязательно выпаивать всю сборку, ведь это лишняя работа, а самое главное — затраты времени.
Также можно проверить данный диод или диодный мост мультиметром, при этом учитывайте то, что на приборе изготовитель пишет ток сбоку. Мы включаем мультиметр и подводим его щупы к концам анода и катода, и он покажет нам напряжение диода.
Иногда бывает так, что диод Шоттки может стать неисправным по некоторым причинам. Рассмотрим их:
Если в полупроводниковом элементе возникнет пробоина, то он просто перестает держать ток и становится проводником.
- Если в полупроводнике или диодном мосту возникнет обрыв, тогда он вообще перестанет пропускать ток.
Причем в обоих случаях запаха гари вы не почувствуете и дыма не увидите, так как в корпусе встроена специальная защита против таких происшествий. Если вдруг в одном транзисторе сгорел вышесказанный диод, то убедитесь, что это единственное устройство, где вы нашли неисправность, потому что диоды обязательно нужно проверять все.
Хотя иногда может и не быть такой возможности для того, чтобы проверить диоды на исправность, когда это будет необходимо. Иногда бывает так, что компьютер начинает тормозить, включаться очень долго, «зависает». Возможно, дело связано именно с диодами, и каждый может разобрать процессор и посмотреть, что внутри случилось.
Нужно, прежде всего, обесточить компьютер и открыть блок питания в системном блоке. Сразу же можно заметить диоды. Проверьте, есть ли в них пробоины или обрывы. Если есть, то нужно их достать и заменить новым полупроводником, устранив неполадки самостоятельно, но лучше обратиться за помощью к профессионалам.
Полупроводники Шоттки в современном мире
Диоды Шоттки получили широкую популярность и распространение во всех сферах современной жизни, особенно в электронике. Их можно найти как сдвоенные выпрямительные диоды, где два полупроводника установлены в одном корпусе и концы анодов или катодов связаны между собой, так и простые, также бывают очень маленькими (например, очень часто встречается в мелких электрических деталях).
Этот полупроводник очень часто используют в импульсных блоках питания в бытовой технике, что значительно снижает потери и улучшает тепловой режим работы. Также данные электронные элементы используются в транзисторах в качестве выпрямителей тока, и в таких специальных диодах, которые используют для объединения параллельных источников питания.
Что такое диод Шоттки- подробное описание полупроводника.
В электроустановках, как вы знаете, имеет огромное применение силовые полупроводниковые приборы — промышленные диоды. Это стабилитроны, диоды Зенера и гость нашей статьи — диод Шоттки.
Что такое диод Шоттки(наречен в честь немецкого физика Вальтера Шоттки), могу сказать кратко – он отличается от других диодов принципом работы основанный на выпрямляющем контакте металл – полупроводник. Этот эффект может получиться в двух случаях: для диода n-типа –если в полупроводнике работа выхода меньше чем металла, для диода р-типа – если работа выхода полупроводника больше чем металла. Наибольшей популярностью пользуются диоды Шоттки вида n-типа из-за высокой подвижностью электронов, сравнимо с подвижностью дырок.
Рис 1. Вид диода Шоттки в разрезе
Плюсы и минусы
Для сравнения берем биполярный диод. Как говорится: сразу в огонь, начнем с недостатка, а он считаю самый важный. У диодов Шоттки огромный обратный ток.
С минусами все, теперь хорошее, плюсы.
- Во-первых, считаю, что диоды Шоттки являются наиболее быстродействующими. Так же можно учитывать плюсом прямое падение напряжения при таком же токе на несколько десятых вольта меньше как у биполярных.
- Во-вторых, можно добавить, что у данных диодов не накапливается не основные носители заряда, так как ток в полупроводнике проходит по принципу дрейфа. Про этот механизм расскажу в следующих статьях.
Структура диода Шоттки.
Огромное количество диодов Шоттки изготавливаются по планарной технологии с эпитаксиальным n-слоем, на поверхности которого создают оксидный слой, в котором образуются окна для формирования барьера. В роли последнего используются такие металлы: молибден, титан, платина, никель. По всей площади контактной области формируется кольцо кремния р-типа( рис 2 а), которое будет служить уменьшением краевых токов утечки.
Рис 2 а.,б.
Работает «охранное» кольцо таким способом: степень легирования и размеры р-области проектируется таким образом, чтобы при перенапряжениях на приборе ток пробоя протекал именно через р-n-преход, а не через контакт Шоттки.
Здесь мы видим, что области р-типа сформированы непосредственно в активной области перехода Шоттки. Поскольку в такой конструкции имеется два типа перехода – переход металл-кремний и р-n-переход,- по своим свойствам и характеристикам она занимает промежуточное положение. Благодаря переходу Шоттки, она имеет минимальные токи утечки, а из наличия р-n-перехода — большие напряжения при прямом смещении.
Также конструкция, приведенная на рисунке 2 б, обладает повышенной устойчивостью к действию разряда статического электричества. Это следует из принципа работы, который заключается в том, что объемные токи утечки замыкаются на обедненной области р-n-перехода, тем самым уменьшая электрическое поле на границе раздела металл-полупроводник при прямом смещении, области пространственного р-n-переходов имеют минимальную ширину, и вольт-амперная характеристика (ВАХ) рис.3 диода близка к ВАХ типовой конструкции диода. При обратных же напряжениях область обеднения р-n-перехода увеличивается по мере увеличения прикладываемого напряжения и ОПЗ соседних р-n-переходов смыкается, образуя своего рода «экран», защищающий контакт Me-Si высоких напряжений, которые могут вызвать большие объемные токи утечки.
Рис.3 Вольт-амперная характеристика диода Шоттки
Принцип действия
Вольт-амперная характеристика диода Шоттки, смещенного в прямом направлении, определяется формулой
которая по форме совпадает с ВАХ р-n-перехода, однако ток J0 гораздо выше, чем Js (типовые значения диода Шоттки Al-Si при 25 С J0 = 1.6 *10 -5 А/см 2 , а для р-n-перехода при Nd=Na=10 16 А/см 3 , Js=10 -10 А/см 2 )
При прямом смещении диода Шоттки к прямому падению напряжения на переходе добавляется напряжение на самом полупроводнике. Сопротивление этой области содержит две составляющие: сопротивление слаболегированной эпитаксиальной пленки (n — ) и сопротивление сильнолегированной подложки (n + ). Для диода Шоттки с низким допустимым напряжением (менее 40 В) эти два сопротивления оказываются одного порядка, поскольку n + область значительно длиннее (n — ) области (примерно 500 и 5 мкм, соответственно). Общее сопротивление кремния площадью 1 см 2 составляет в таком случае от 0,5 до 1 мОм, создавая падение напряжения в полупроводнике от 50 до 100 мВ при токе 100А.
Если диод Шоттки выполняется на допустимое обратное напряжение более 40 В, сопротивление слаболегированной области возрастает очень быстро, поскольку для создания более высокого напряжения требуется более протяженная слаболегированная область и еще более низкая концентрация носителей. В результате оба фактора приводят к возрастанию сопротивления (n — ) области диода.
Конструкторско-технологические приемы.
Большое сопротивление является одной из причин того, что обычные кремниевые диоды Шоттки не выполняются на напряжение свыше 200 В.
Для снижения обратных токов утечки, повышение устойчивости к разрядам статического электричества используются различные приемы.
Так, для снижения токов утечки и выхода годных диодов Шоттки в окне под барьерный слой делают углубление 0,05 мкм, а после формировании углубления в эпитаксиальном слое проводят отжиг при температуре 650 град. В среде азота в течении 2-6 часов.
Снижение обратных токов молибденовых диодов Шоттки добиваются путем создания геттерирующего слоя перед нанесением эпитаксиального слоя полированием обратной стороны подложки свободным абразивом, а после металлизации электрода Шоттки удаляют геттерирующий слой.
При выдерживании оптимальных соотношений между шириной и глубиной охранного кольца также можно существенно обратные токи утечки и повысить устойчивость к статики.
Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.