Astro-nn.ru

Стройка и ремонт
6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Реактор электрический принцип работы

Реактор электрический принцип работы

При коротком замыкании ток в цепи значительно возрастает по сравнению с током нормального режима. В высоковольтных сетях токи короткого замыкания могут достигать таких величин, что подобрать установки, которые смогли бы выдержать электродинамические силы, возникающие вследствие протекания этих токов, не представляется возможным. Для ограничения ударного тока короткого замыкания применяют токоограничивающие реакторы.

Устройство и принцип действия

Реактор — это катушка с постоянным индуктивным сопротивлением, включенная в цепь последовательно. В нормальном режиме на реакторе наблюдается падение напряжения порядка 3-4 %, что вполне допустимо. В случае короткого замыкания бо́льшая часть напряжения приходится на реактор. Значение максимального ударного тока короткого замыкания рассчитывается по формуле:

где IH — номинальный ток сети, Xp — реактивное сопротивление реактора. Соответственно, чем выше будет реактивное сопротивление, тем меньше будет значение максимального ударного тока в сети.

Реактивность прямо пропорциональна индуктивному сопротивлению катушки. При больших токах у катушек со стальными сердечниками происходит насыщение сердечника, что резко снижает реактивность, и, как следствие, реактор теряет свои токоограничивающие свойства. По этой причине реакторы выполняют без стальных сердечников, несмотря на то, что при этом, для поддержания такого же значения индуктивности, их приходится делать больших размеров и массы.

Виды реакторов

Бетонные реакторы

Получили распространение на внутренней установке и на напряжения до 35 кВ. Бетонный реактор представляет собой концентрически расположенные витки изолированного многожильного провода, залитого в радиально расположенные бетонные колонки. Бетон выпускается с высокими механическими свойствами. Все металлические детали реактора изготавливаются из немагнитных материалов. В случае больших токов применяют искусственное охлаждение.

Фазные катушки реактора располагают так, что при собранном реакторе поля катушек расположены встречно, что необходимо для преодоления продольных динамических усилий при коротком замыкании.

Масляные реакторы

Применяются в сетях с напряжением выше 35 кВ. Масляный реактор состоит из обмоток медных проводников, изолированных кабельной бумагой, которые укладываются на изоляционные цилиндры и заливаются маслом. Масло служит одновременно и изолирующей и охлаждающей средой. Для снижения нагрева стенок бака от переменного поля катушек реактора применяют электромагнитные экраны или магнитные шунты.

Электромагнитный экран представляет собой расположенные концентрично относительно обмотки реактора короткозамкнутые медные или алюминиевые витки вокруг стенок бака. Экранирование происходит за счет того, что в этих витках возникает встречное электромагнитное поле, которое компенсирует основное поле.

Магнитный шунт — это пакеты листовой стали, расположенные внутри бака около стенок, которые создают искусственный магнитопровод с магнитным сопротивлением, меньшим сопротивлением стенок бака, что заставляет основной магнитный поток реактора замыкаться по нему, а не через стенки бака.

Для предотвращения взрывов, связанных с перегревом масла в баке, согласно ПУЭ, все реакторы на напряжение 500кВ и выше должны быть оборудованы газовой защитой.

Литература

  • Родштейн Л. А. «Электрические аппараты: Учебник для техникумов» — 3-е изд., Л.:Энергоиздат. Ленингр. отд-ние, 1981.

Wikimedia Foundation . 2010 .

  • Электрический разъём
  • Электрический счетчик

Смотреть что такое «Электрический реактор» в других словарях:

электрический реактор — Индуктивная катушка, предназначенная для использования ее в силовой электрической цепи Примечание. Силовая электрическая цепь по ГОСТ 18311 80 [ГОСТ 18624 73] Недопустимые, нерекомендуемые дроссель Тематики реактор электрический Классификация… … Справочник технического переводчика

электрический реактор — elektrinis reaktorius statusas T sritis automatika atitikmenys: angl. reactor vok. Drosselspule, f rus. электрический реактор, m pranc. bobine de réactance, f; inductance, f … Automatikos terminų žodynas

электрический реактор. Реактор — 3.46 электрический реактор. Реактор: Индуктивная катушка, предназначенная для использования ее в силовой электрической цепи. Источник: СТО 17330282.27.140.008 2008: Системы питания со … Словарь-справочник терминов нормативно-технической документации

насыщающийся (электрический) реактор — трансреактор — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы трансреактор EN transductor … Справочник технического переводчика

электрический — 3.45 электрический [электронный, программируемый электронный]; Е/Е/РЕ (electrical/electronic/ programmable electronic; Е/Е/РЕ) основанный на электрической и/или электронной, и/или программируемой электронной технологии. Источник … Словарь-справочник терминов нормативно-технической документации

РЕАКТОР — (1) биологический (ферментёр) аппарат для получения в промышленном масштабе различных биологических продуктов при размножении микроорганизмов в питательной среде и стерильных условиях, при определённых температурах и др. параметрах… … Большая политехническая энциклопедия

РЕАКТОР ЭЛЕКТРИЧЕСКИЙ — высоковольтный электрический аппарат (в виде катушки индуктивности) для ограничения тока короткого замыкания (КЗ) и поддержания достаточного напряжения на шинах распределительного устройства при кратковременном коротком замыкании в сети … Большой Энциклопедический словарь

реактор без стали — Реактор без магнитопровода Примечание. Допускаются сокращенные наименования реакторов в соответствии с формой обмотки и способом защиты элементов реактора от вредных воздействий его магнитного поля или ослабления внешнего поля, в частности… … Справочник технического переводчика

реактор помехоподавления — Реактор, предназначенный для работы в устройстве ограничения радиопомех, включаемом последовательно в фазу или линию [ГОСТ 18624 73] реактор помехоподавления Ндп. радиореактор По ГОСТ 18624 73 [ГОСТ 19350 74] реактор помехоподавления [Лугинский Я … Справочник технического переводчика

реактор с линейной характеристикой — Реактор, веберамперная характеристика которого практически линейна при токах до значений, во много раз превышающих номинальный Примечание. Динамическая индуктивность не должна изменяться более чем на 5% при изменении тока от 2% номинального до… … Справочник технического переводчика

Токоограничивающие реакторы

Реактор – это катушка с неизменной индуктивностью, предназначенная для поддержания напряжения на шинах и ограничения токов короткого замыкания в случае возникновения аварийных режимов работы. Для более детального понимания давайте рассмотрим рисунок ниже:

Сборные шины 2 получают питание от генератора 1. От этих шин идут линии 3 к потребителю. Рассмотрим два случая – за выключателем 4 реактор не установлен, а за выключателем 5 установлен реактор 6.

В случае возникновения трехфазного короткого замыкания за выключателем 4 ток короткого замыкания Iк1 будет определяться в основном индуктивным сопротивлением генератора:

Введем понятие относительного индуктивного сопротивления генератора, выраженного в процентах:

Где Iн.г – номинальный ток генератора.

Воспользовавшись формулами (1) и (2) получим:

В таком случае напряжение на сборных шинах станет равно нулю и, соответственно, на всех отходящих линиях напряжения тоже не будет.

Стоит также отметить, что выключатель 4 должен быть выбран по току короткого замыкания Ik1.

В случае короткого замыкания на линии с реактором ток короткого замыкания будет определяться суммарным сопротивлением реактора и генератора:

Введем относительное реактивное сопротивление реактора в процентах:

Обычно от одного источника питаются несколько десятков потребителей электрической энергии. Поэтому значение номинального тока линии намного меньше номинального тока генератора. Длительный ток реактора выбирается исходя из длительного тока линии, откуда следует Iн.р > Хг. При этом можно написать:

При сделанных допущениях ток короткого замыкания будет определяться только параметрами реактора.

Реактор довольно надежный аппарат и его повреждение или выход из строя практически исключены. Поэтому выбор аппаратуры линии производят по току производят исходя из соотношения Ik2 > Xг, то в случае возникновения короткого замыкания практически все напряжение ложится на индуктивное сопротивление реактора и напряжение на шинах получается близким к номинальному (рисунок ниже а)):

В номинальном режиме работы через реактор проходит ток нагрузки. Потерю напряжения на реакторе можно определить по формуле:

Векторная диаграмма напряжения показана на рисунке выше б). При чисто индуктивной нагрузке φ = 90 0 потеря напряжения равна падению напряжения на реакторе. В случае работы на активную нагрузку с cosφ = 0,8 потеря напряжения равна 0,6 Хр%. Отсюда следует, что потеря напряжения на реакторе в длительном режиме невелика.

В настоящее время разработаны и успешно эксплуатируются специальные сдвоенные реакторы, у которых в номинальном режиме работы потеря напряжения еще меньше.

Поскольку выбор электрической аппаратуры распределительного устройства проводится с учетом ограничения тока короткого замыкания реактором, то к его надежности предъявляются особо высокие требования.

В номинальном режима работы обмотка реактора нагревается проходящим через него током. Мощность, которая выделяется в обмотке реактора, составляет несколько киловатт при малых токах, и несколько десятков киловатт при больших токах (Iн.р = 2000 А).

В случае короткого замыкания через реактор проходит ток во много раз превышающий номинальное значение. Данное явление приводит к быстрому повышению температуры реактора.

Поэтому в качестве основных параметров вводят длительный номинальный ток Iн и ток термической стойкости Iн.т, отнесенный к определенному времени tн.т. Иногда термическая стойкость задается произведением:

Если индуктивное сопротивление реактора превышает 3%, то наибольший ток короткого замыкания, проходящий через реактор, задается соотношением:

Данный ток берется за основу при расчете электродинамической и термической стойкости реактора.

Дугогасящий реактор принцип работы

Принцип работы дугогасящего реактора. Виды и особенности применения

В высоковольтных линиях передач при аварийном режиме возникают емкостные токи, происходит это, когда одна из фаз пробивает на землю. Эти емкостные токи образуют электрическую дугу при этом разрушая изоляцию подходящих кабелей и всю релейную защиту. Чтобы избежать этого, применяют дугогасящие реакторы. Они способствуют уменьшению действия электрической дуги.

Дугогасящий реактор

В современных схемах электроснабжения применяются многочисленные системы и аппаратура защиты. Чтобы избежать перебоев в электроснабжении потребителей, применяют одно из специальных средств защиты при однофазном замыкании на землю — дугогасящие реакторы. Они представляют собой электрические аппараты, предназначенные для компенсации емкостной составляющей тока при замыкании на землю.

Используются реакторы в основном в сетях с изолированной нейтралью напряжением от 6 до 35 кВ. В сетях напряжением от 110 до 750 кВ используют глухозаземленную нейтраль.

Виды и состав реакторов

Дугогасящие реакторы, как и любое специализированное оборудование, разделяют на несколько категорий.

По точности регулировки:

  • неуправляемые — не имеют возможности регулирования, их изготавливают индивидуально по заданным параметрам;
  • реакторы со ступенчатой регулировкой, имеют несколько определенных программ настройки;
  • аппараты с плавной регулировкой — это самый практичный тип дугогасящих реакторов, позволяет подбирать оптимальные параметры для лучшей защиты.

По способу настройки:

  • со ступенчатой регулировкой с отпайками от основной обмотки; регулировка происходит ступенчато — в зависимости от числа витков;
  • плунжерные позволяют регулировать индуктивность в зависимости от расположения сердечника в катушке;
  • реакторы с дополнительным подмагничиванием имеют сторонний источник индуктивности усиливающий основной.
  • Без управления. Реакторы довольно сложны в обслуживании, настройка индуктивности в них — это обычно длительный процесс, который предусматривает отключение самого реактора от сети. В основном это ступенчатые реакторы.
  • С управляемым приводом. Они позволяют регулировать индуктивность дистанционно, не отключая их от сети.
  • С автоматизированным управлением. Данный вид позволяет автоматически регулировать индуктивность в зависимости от условий работы сети.
Читать еще:  Виды, устройство, принцип работы, выбор сварочных аппаратов для дома и дачи

Дугогасящие реакторы представляют собой обычный трансформатор. В зависимости от условий, изготавливают сухие и маслонаполненные, с постоянным зазором между сердечником и катушкой, а также с изменяемым.

Принцип действия

Для того чтобы избежать перебоев в электроснабжении потребителей, применяют компенсацию активной составляющей путем выравнивания при помощи индуктивной составляющей.

На этом и основан принцип дугогасящего реактора. Индуктивный и емкостной токи противоположны по фазе, равны по значению, и по отношению к источнику энергии взаимно компенсируются в точке замыкания на землю, что приводит к затуханию электрической дуги.

Это позволяет сохранить токоведущие части в нетронутом состоянии, а также избежать выхода из строя оборудования при замыкании на землю.

Работа сети электрического тока с изолированной нейтралью не превышает 6 часов, чего вполне достаточно для того, чтобы найти и устранить неисправность на линии передач. Быстрое устранение неисправности — залог стабильной работы оборудования потребителей.

Применение

Принцип работы дугогасящих реакторов является современным технологическим процессом, обеспеченным цифровыми системами управления. Это позволяет более точно и легко дистанционно регулировать необходимые параметры, собирать все данные о замыкании, архивировать их и вести статистику. Все это дает возможность обслуживающему персоналу проводить анализ и в кратчайшие сроки находить и устранять неисправность. Дугогасящие реакторы очень важны в системах защиты, так как замыкание на землю в сети электрического тока является самым распространенным видом неисправности.

Компенсация сети по емкостной составляющей при помощи индуктивной является необходимой и распространенной мерой. Простой предприятия по причине отключения электроснабжения выливается для него в большие финансовые потери. Поэтому применение данного вида защиты очень важно.

Дугогасящие реакторы, их назначение и конструктивное исполнение

Дугогасящий реактор — электрический аппарат, предназначенный для компенсации емкостных токов в электрических сетях с изолированной нейтралью, возникающих при однофазных замыканиях на землю (ОЗЗ). Применяются для заземления нейтрали трехфазных сетей 6-35 кВ.При замыкании на землю одной фазы реактор оказывается под фазным напряжении и через место замыкания протекает емкостной и индуктивный токи, которые компенсируют друг друга и дуга в месте замыкания не возникает. Конструкция дугогасящего реактор похожа на конструкцию масленых трансформаторов и различается исполнением в магнитной системе.

Классификация:

2)Плунжерные ДГР с регулируемым воздушным зазором в магнитопроводе. Увеличение зазора уменьшает индуктивность;

3)ДГР с подмагничиванием

1)Без систем управления. Индуктивность постоянна, либо меняется вручную персоналом распредустройства. Зачастую изменение индуктивности такого реактора – трудоемкий процесс, требующий отключения реактора. К таким ДГР относятся, в основном, ступенчатые.

3)С измерителем емкости сети. Индуктивность реактора настраивается системой управления при любом изменении емкости сети автоматически.

Шунтирующие реакторы потребляют реактивную мощность. Вакуумно-реакторные группы применяются для ступенчатого автоматического регулирования напряжения, как правило, в узлах с повышенным напряжением. Шунтирующие реакторы компенсируют избыток реактивной мощности, снижают ее переток, при этом уменьшается ток в линиях и трансформаторах, соответственно снижаются активные потери. При снижении напряжения до нормальных значений увеличивается срок службы всего электротехнического оборудования на подстанции и примыкающих ЛЭП.

Для всех вариантов исполнения реакторов характерно применение плоскошихтованной магнитной системы и цилиндрических обмоток трансформаторного типа. В результате по конструкции и эксплуатационным характеристикам они мало чем отличаются от обычных силовых трансформаторов общего назначения.

Неуправляемый реактор не чувствует, перегружена сеть или напряжение упало. Он работает в одинаковом режиме и сильно уменьшает пропускную способность линии при ее максимальной загрузке, когда, собственно, реактивная мощность в ней минимальна. Кроме этого использование неуправляемых шунтирующих реакторов приводит к дополнительному износу генераторов.

В случае применения неуправляемых ШР изменение режима передачи мощности по ВЛ требует отключения части реакторов, т.е. отвечает весьма грубому регулированию реактивной мощности, генерируемой ВЛ, так как единичные мощности реакторов достаточно велики (180, 300 и 900 МВА для ВЛ 500, 750 и 1150 кВ соответственно).

Рис. 1. Конструкции однофазных реакторов 500 кВ: а — броневая конструкция, б — бронестержневая конструкция. 1 — обмотка, 2 — горизонтальные шунты, 3 — вертикальные шунты, 4 — диски горизонтальных шунтов, 5 — изоляционная опора, 6 — прессующие плиты и стяжные шпильки, 7— линейный ввод, 8 — экран ввода, 9 — линейный отвод, 10— бак, 11 — цилиндры главной изоляции, 12 — заземленный электростатический экран, 13 — электромагнитные экраны, 14 — амортизаторы, 15 — магнитные вставки стержня, 16 — немагнитные зазоры.

При проектировании и эксплуатации ВЛ ВН, оснащенных неуправляемыми шунтирующими реакторами, необходимо рассматривать не только нормальные режимы эксплуатации ВЛ, но и разного рода штатные и нештатные неполнофазные коммутации, неминуемо возникающие при эксплуатации, с тем чтобы не допускать возникновения квазистационарных резонансных режимов.

Кроме того, необходимо устанавливать силовые выключатели для подключения ШР к линиям. Наличие неуправляемых ШР ведет к возникновению коммутационных перенапряжений при коммутации реакторов и, соответственно, преждевременный износ изоляции высоковольтного оборудования и, прежде всего самих ШР, и ресурса выключателей.

Принцип действия

Для того чтобы избежать перебоев в электроснабжении потребителей, применяют компенсацию активной составляющей путем выравнивания при помощи индуктивной составляющей.

На этом и основан принцип дугогасящего реактора. Индуктивный и емкостной токи противоположны по фазе, равны по значению, и по отношению к источнику энергии взаимно компенсируются в точке замыкания на землю, что приводит к затуханию электрической дуги.

Это позволяет сохранить токоведущие части в нетронутом состоянии, а также избежать выхода из строя оборудования при замыкании на землю.

Работа сети электрического тока с изолированной нейтралью не превышает 6 часов, чего вполне достаточно для того, чтобы найти и устранить неисправность на линии передач. Быстрое устранение неисправности — залог стабильной работы оборудования потребителей.

Характеристики

В соответствии с правилами технической эксплуатации электрооборудования дугогасящие реакторы применяют в сетях 6-20 кВ при установке на железобетонных, а также металлических опорах, и во всех сетях выше 35 кВ при токе 10 А, в сетях, не имеющих железобетонных и металлических опор при напряжении для 6 кВ и токе 10 А, а также 10 кВ при токе 20 А.

Иногда допускается применять компенсацию емкостной составляющей при помощи индуктивной в сетях 6-10 кВ при токе ниже 10 А. Правилами также указывается, что при токе замыкания на землю более 50 А применяют не менее 2 реакторов.

Нейтраль, заземленная через дугогасящий реактор

Этот способ заземления нейтрали находит применение в разветвленных кабельных сетях промышленных предприятий и городов. При этом способе нейтральную точку сети получают, используя специальный трансформатор (рис.2).

Рис. 2. Схема двухтрансформаторной подстанции с нейтралью, заземленной через дугогасящий реактор.

Достоинства:

· отсутствие необходимости в немедленном отключении первого однофазного замыкания на землю;

· малый ток в месте повреждения (при точной компенсации – настройке дугогасящего реактора в резонанс);

· возможность самоликвидации однофазного замыкания, возникшего на воздушной линии или ошиновке (при точной компенсации – настройке дугогасящего реактора в резонанс);

· исключение феррорезонансных процессов, связанных с насыщением трансформаторов напряжения и неполнофазными включениями силовых трансформаторов.

Недостатки:

· возникновение дуговых перенапряжений при значительной расстройке компенсации;

· возможность возникновения многоместных повреждений при длительном существовании дугового замыкания в сети;

· возможность перехода однофазного замыкания в двухфазное при значительной расстройке компенсации;

· возможность значительных смещений нейтрали при недокомпенсации и возникновении неполнофазных режимов;

· возможность значительных смещений нейтрали при резонансной настройке в воздушных сетях;

· сложность обнаружения места повреждения;

· опасность электропоражения персонала и посторонних лиц при длительном существовании замыкания на землю в сети;

· сложность обеспечения правильной работы релейных защит от однофазных замыканий, так как ток поврежденного присоединения очень незначителен.

В России режим заземления нейтрали через дугогасящий реактор применяется в основном в разветвленных кабельных сетях с большими емкостными токами. Кабельная изоляция в отличие от воздушной не является самовосстанавливающейся. То есть, однажды возникнув, повреждение не устранится, даже, несмотря на практически полную компенсацию (отсутствие) тока в месте повреждения. Соответственно для кабельных сетей самоликвидация однофазных замыканий как положительное свойство режима заземления нейтрали через дугогасящий реактор не существует. При дуговом характере однофазного замыкания скважность воздействия перенапряжений на изоляцию сети ниже, чем при изолированной нейтрали, но и здесь существует возможность возникновения многоместных повреждений. В последние десятилетия сети 6-10 кВ разрослись, а мощность компенсирующих устройств на подстанциях осталась той же, соответственно значительная доля сетей среднего напряжения сейчас работает с существенной недокомпенсацией. Это ведет к исчезновению всех положительных свойств сетей с компенсированной нейтралью. Отметим дополнительно, что дугогасящий реактор компенсирует только составляющую промышленной частоты тока однофазного замыкания. При наличии в сети источников высших гармоник последние могут содержаться в токе замыкания и в некоторых случаях даже усиливаться.

Применение режима с нейтралью, заземленной через дугогасящий реактор, в таких странах, как Финляндия, Швеция, отличается от российского. В этих странах он применяется в сетях с воздушными линиями, где его применение наиболее эффективно. Кроме того, в этих странах существует значительное сопротивление грунта, состоящего в основном из скальных пород, и режим заземления нейтрали через дугогасящий реактор позволяет обнаруживать однофазные замыкания через значительные переходные сопротивления 3-5 кОм. Применение режима заземления нейтрали через дугогасящий реактор в таких странах, как Германия, Австрия, Швейцария, носит в некоторой степени традиционный характер (выше уже говорилось о немецком инженере – изобретателе этого способа). Тем не менее, и в этих странах этот режим заземления нейтрали применяется в основном в сетях с воздушными линиями. В сетях среднего напряжения зарубежных промышленных предприятий используется резистивное заземление нейтрали.

Нейтраль, заземленная через резистор (высокоомный или низкоомный)

Этот режим заземления используется в России очень редко, только в некоторых сетях собственных нужд блочных электростанций и сетях газоперекачивающих компрессорных станций. В то же время, если оценивать мировую практику, то резистивное заземление нейтрали – это наиболее широко применяемый способ в мире.

Резистор в отечественных сетях 6-10 кВ может включаться так же, как и реактор, в нейтраль специального заземляющего трансформатора (рис. 3).

Рис. 3. Схема двухтрансформаторной подстанции с нейтралью, заземленной через резистор.

Возможны и другие варианты включения резистора, когда нейтраль заземляющего трансформатора наглухо присоединяется к контуру заземления, а резистор включается во вторичную обмотку, собранную в разомкнутый треугольник (рис. 4), либо используется однообмоточный трансформатор (фильтр нулевой последовательности) с соединением обмотки ВН в зигзаг (рис. 4).

Читать еще:  Точечные светильники для ванной: 3 решающих фактора для установки

Рис. 4. Варианты включения резистора в нейтраль сети 6-10 кВ.

Токоограничивающий реактор: устройство и принцип действия

Токоограничивающий реактор представляет собой катушку со стабильным индуктивным сопротивлением. В цепь прибор подключен последовательно. Как правило, такие устройства не имеют ферримагнитных сердечников. Стандартным считается падение напряжения порядка 3-4%. Если происходит короткое замыкание, основное напряжение подается на токоограничивающий реактор. Максимально допустимое значение рассчитывается по формуле:

In = (2, 54 Ih/Xp) x100%, где Ih – номинальный сетевой ток, а Хр – реактивное сопротивление.

Бетонные конструкции

Электрический аппарат представляет собой конструкцию, которая рассчитана на длительную эксплуатацию в сетях с напряжением до 35 кВ. Обмотка сделана из эластичной проводки, которые демпфируют динамические и термические нагрузки посредством нескольких параллельных цепей. Они позволяют равномерно распределять токи, разгружая при этом механическое усилие на стационарную бетонную основу.

Режим включения катушек фаз выбирают так, чтобы получилось встречное направление магнитных полей. Это также способствует ослаблению динамических усилий при ударных токах КЗ. Открытое размещение обмоток в пространстве способствует обеспечению отличных условий для естественного атмосферного охлаждения. Если тепловые воздействия превышают допустимые параметры, либо происходит короткое замыкание, применяется принудительный обдув при помощи вентиляторов.

Сухие токоограничивающие реакторы

Эти приспособления появились в результате разработки инновационных изоляционных материалов, базирующихся на структурной основе из кремния и органики. Агрегаты успешно функционируют на оборудовании до 220 кВ. Обмотка на катушку наматывается многожильным кабелем с прямоугольным сечением. Он имеет повышенную прочность и покрывается специальным слоем кремнийорганического лакокрасочного покрытия. Дополнительный эксплуатационный плюс – наличие силиконовой изоляции с содержанием кремния.

По сравнению с бетонными аналогами, токоограничивающий реактор сухого типа имеет ряд преимуществ, а именно:

  • Меньшая масса и габаритные размеры.
  • Увеличенная механическая прочность.
  • Повышенная термостойкость.
  • Больший запас рабочего ресурса.

Масляные варианты

Данное электротехническое оборудование оснащается проводниками с изолирующей кабельной бумагой. Устанавливается оно на специальных цилиндрах, которые находятся в резервуаре с маслом или аналогичным диэлектриком. Последний элемент также играет роль детали для отвода тепла.

Для нормализации нагрева металлического корпуса в конструкцию включают магнитные шунты или экраны на электромагнитах. Они позволяют уравновесить поля промышленной частоты, проходящие по виткам обмотки.

Шунты магнитного типа изготавливаются из стальных листов, размещающихся в середине масляного резервуара, непосредственно возле стенок. В результате образуется внутренний магнитопровод, который на себе замыкает поток, создаваемый обмоткой.

Экраны электромагнитного типа создаются в виде короткозамкнутых витков из алюминия или меди. Устанавливаются они около стенок емкости. В них происходит индукция встречного электромагнитного поля, уменьшающего воздействие основного потока.

Модели с броней

Данное электротехническое оборудование создается с сердечником. Подобные конструкции требуют точного расчета всех параметров, что связано с возможностью насыщения магнитного провода. Также требуется тщательный анализ условий эксплуатации.

Сердечники с броней, изготовленные из электротехнической стали, дают возможность уменьшить габаритные размеры и массу реактора наряду со снижением стоимости прибора. Стоит отметить, что при использовании таких устройств требуется учитывать один важный момент: ударный ток не должен превышать предельно допустимого значения для данного рода приспособлений.

Принцип действия токоограничивающих реакторов

В основу конструкции входит катушечная обмотка, имеющая индуктивное сопротивление. Оно включено в разрыв главной питающей цепи. Характеристики этого элемента подбираются таким образом, чтобы при стандартных эксплуатационных условиях напряжение не падало выше 4% от общей величины.

Если в защитной схеме возникает аварийная ситуация, токоограничивающий реактор за счет индуктивности гасит преимущественную часть приложенного высоковольтного воздействия, одновременно сдерживая ударный ток.

Схема работы прибора доказывает тот факт, что при увеличении индуктивности катушки прослеживается снижение воздействия ударного тока.

Особенности

Рассматриваемый электрический аппарат оснащен обмотками, которые имеют магнитный провод из стальных пластин, служащий для повышения реактивных свойств. В таких агрегатах в случае прохождения больших токов по виткам наблюдается насыщение материала сердечника, а это приводит к снижению его токоограничивающих параметров. Следовательно, подобные приспособления не нашли широкого применения.

Преимущественно реакторы-токоограничители не оборудуются стальными сердечниками. Связано это с тем, что достижение необходимых характеристик индуктивности сопровождается значительным увеличением массы и габаритов приспособления.

Ударный ток короткого замыкания: что это?

Для чего нужен реактор токоограничивающий на 10 кВ и более? Дело в том, что при номинальном режиме питающая высоковольтная энергия расходуется на преодоление максимального сопротивления активной электросхемы. Она, в свою очередь, состоит из активной и реактивной нагрузки, обладающей емкостными и индуктивными связями. В результате создается рабочий ток, который оптимизируется при помощи полного сопротивления цепи, мощности и показателя напряжения.

При коротком замыкании происходит шунтирование источника посредством случайного подключения максимальной нагрузки в сочетании с минимальным активным сопротивлением, что характерно для металлов. При этом наблюдается отсутствие реактивной составляющей фазы. Короткое замыкание нивелирует равновесие в рабочей схеме, образуя новые типы токов. Переход от одного режима к другому происходит не мгновенно, а в затянутом режиме.

Во время этой кратковременной трансформации изменяются синусоидные и общие величины. После короткого замыкания новые формы тока могут приобретать вынужденную периодическую либо свободную апериодическую сложную форму.

Первый вариант способствует повторению конфигурации питающего напряжения, а вторая модель предполагает преобразование показателя скачками с постепенным убыванием. Формируется она посредством емкостной нагрузки номинального показателя, рассматриваемого как холостой ход для последующего короткого замыкания.

Реакторы. Принцип действия, конструкции, область применения

Реакторы служат для ограничения токов КЗ в мощных электро­установках, а также позволяют поддерживать на шинах определенный уровень напряжения при повреждениях за реакторами.

Основная область применения реакторов — электрические сети напряжением 6¾10 кв. Иногда токоограничивающие реакторы используются в установках 35 кВ и выше, а также при напряжении ниже 1000 В.

Рис. 3.43. Нормальный режим работы цепи с реактором:

а— схема цепи; б — диаграмма напряжений: в — векторная диаграмма

Схемы реактированной линии и диаграммы, характеризующие распределения напряжений в нормальном режиме работы, приведены на рис. 3.43.

На векторной диаграмме изображены: U1— фазное напряжение перед реактором, Uр — фазное напряжение после реактора и I — ток, проходящий по цепи. Угол j соответствует сдвигу фаз между напряжением после реактора и током. Угол y между векторами U1 и U2 представляет собой допол­нительный сдвиг фаз, вызванный индуктивным сопротивлением реактора. Если не учитывать активное сопротивление реактора, отрезок АС пред­ставляет собой падение напряжения в индуктивном сопротивлении реактора.

Реактор (рис. 3.44) представляет собой индуктивную катушку, не имеющую сердечника из магнитного материала. Благодаря этому он обладает постоянным индуктивным сопротивлением, не зависящим от протекающего тока.

Рис. 3.44. Фаза реактора серии РБ:

1 – обмотка реактора, 2 – бетонные колонны,

3 – опорные изоляторы

Для мощных и ответственных линий может применяться индивидуальное реактирование.

В электроустановках находят широкое применение сдвоенные бетонные реакторы с алюминиевой обмоткой для внутренней и наружной установки типа РБС.

Недостатком реакторов является наличие в них потерь мощности 0,15-0,4 % от проходящей через реактор и напряжения

, (4.30)

где хр%, Iн — паспортные данные реактора; I, sinj— параметры режима питающейся через реактор установки.

Рис. 3.8. Места установки реакторов: а — между секциями сборных шин электростанций; б — на отдельных отходящих линиях; в — на секции распределительного устройства подстанции (групповой реактор)

Для снижения потерь напряжения в нормальных режимах в качестве групповых реакторов применяются, как правило, сдвоенные реакторы. Сдвоенный реактор (рис. 4.9) отличается от обычного наличием вывода от середины обмотки. Обе ветви сдвоенного реактора располагаются одна над другой при одинаковом направлении витков обмотки.

Рис. 4.9. Схема сдвоенного реактора

Индуктивное сопротивление каждой ветви реактора при отсутствии тока в другой ветви

. (4.31)

Определим индуктивное сопротивление ветви сдвоенного реактора при протекании по его ветвям одинаковых токов нагрузки.

Падение напряжения в ветви реактора составит:

(4.32)

Таким образом, при протекании токов в обеих ветвях

. (4.33)

Обычно kсв = 0,4¸0,5.

При КЗ за одной ветвью и отключении другой ветви

. (4.34)

При подпитке КЗ со стороны второй ветви ток в последней меняет направление, изменит знак также и взаимная индукция между обмотками, а следовательно, сопротивление реактора увеличится:

. (4.35)

Реакторы выбирают по номинальным напряжению, току и индуктивному сопротивлению.

Номинальное напряжение выбирают в соответствии с номинальным напряжением установки. При этом предполагается, что реакторы должны длительно выдерживать максимальные рабочие напряжения, которые могут иметь место в процессе эксплуатации. Допускается исполь­зование реакторов в электроустановках с номинальным напряжением, меньшим номинального напряжения реакторов.

Номинальный ток реактора (ветви сдвоенного реактора) не должен быть меньше максимального длительного тока нагрузки цепи, в которую он включен:

Для шинных (секционных) реакторов номинальный ток подбирается в зависимости от схемы их включения.

Индуктивное сопротивление реактора определяют, исходя из условий ограничения тока КЗ до заданного уровня. В большинстве случаев уровень ограничения тока КЗ определяется по коммутационной способности выключателей, намечаемых к установке или установленных в данной точке сети.

Как правило, первоначально известно начальное значение периоди­ческого тока КЗ Iп.о., котороеспомощью реактора необходимо уменьшить до требуемого уровня.

Рассмотрим порядок определения сопротивления индивидуального реактора. Требуется ограничить ток КЗ так, чтобы можно было в данной цепи установить выключатель с номинальным током отключения Iном.отк. (действующее значение периодической составляющей тока отключения).

По значению Iном.отк определяется начальное значение периодической составляющей тока КЗ, при котором обеспечивается коммутационная способность выключателя. Для упрощения обычно принимают Iп.о.треб = Iном.отк.

Результирующее сопротивление, Ом, цепи КЗ до установки реактора можно определить по выражению

.

Требуемое сопротивление цепи КЗ для обеспечения Iп.о.треб.

Разность полученных значений сопротивлений даст требуемое сопротивление реактора

.

Далее по каталожным и справочным материалам выбирают тип реактора с большим ближайшим индуктивным сопротив­лением.

Сопротивление секционного реактора выбирается из условий наиболее
эффективного ограничения токов КЗ при замыкании на одной секции. Обычно оно принимается таким, что падение напряжения на реакторе при протекании по нему номинального тока достигает 0,08¾0,12 номи­нального напряжения, т. е.

.

В нормальных же условиях длительной работы ток и потери напря­жения в секционных реакторах значительно ниже.

Фактическое значение тока при КЗ за реактором определяется сле­дующим образом. Вычисляется значение результирующего сопротивления цепи КЗ с учетом реактора

Читать еще:  Расчет вентиляции помещения

,

а затем определяется начальное значение периодической составляющей тока КЗ:

Аналогично выбирается сопротивление групповых и сдвоенных реакторов. В последнем случае определяют сопротивление ветви сдвоенного реактора Xр = Xв.

Выбранный реактор следует проверить на электродинамическую и тер­мическую стойкость при протекании через него тока КЗ.

Электродинамическая стойкость реактора гарантируется при соблюде­нии следующего условия:

Термическая стойкость реактора гарантируется при соблюде­нии следующего условия:

Для установки в нейтрали силовых трансформаторов и присоединениях отходящих линий на напряжение 6¾35кВ рекомендуются к установке сухие токоограничивающие реакторы с полимерной изоляцией.

Дата добавления: 2015-05-08 ; Просмотров: 2606 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Для чего нужны РЕАКТОРЫ

Реакторы служат для ограничения токов КЗ в мощных электроустановках, а также позволяют поддерживать на шинах определённый уровень напряжения при повреждении за реакторами.

Основная область применения реакторов — электрические сети напряжением 6-10 кВ. Иногда токоограничивающие реакторы используются в установках 35 кВ и выше, а также при напряжении ниже 1000 В.

Реактор представляет собой индуктивную катушку, не имеющую сердечника из магнитного материала. Благодаря этому он обладает постоянным индуктивным сопротивлением, которое не зависит от протекающего тока.

В настоящее время наибольшее распространение получили бетонные реакторы с алюминиевой обмоткой марки РБ.

Алюминиевые проводники обмотки реакторов покрываются несколькими слоями кабельной бумаги и хлопчатобумажной оплёткой. Обмотка наматывается на специальный каркас, а затем в определённых местах заливается бетоном. Бетон образует колоны, которые закрепляют витки обмотки, предотвращая их смещение под действием собственной массы и электродинамических усилий при протекании тоев КЗ. Изоляция реактора от заземлённых конструкций, а при вертикальной установке и от соседних фаз осуществляется при помощи опорных фарфоровых изоляторов.

Наряду с рассмотренными выше реакторами обычной конструкции в электроустановках находят применение сдвоенные реакторы. Конструктивно они подобны обычным реакторам, но от средней точки обмотки имеется дополнительный вывод. В случае применения сдвоенных реакторов источник может быть присоединён к средней точке, а потребители — к крайним, или наоборот.

Преимуществом сдвоенного реактора является то, что в зависимости от схемы включения и направления токов в обмотках индуктивное сопротивление его может увеличиваться или уменьшаться. Это свойство сдвоенного реактора обычно используется для уменьшения падения напряжения в нормальном режиме и ограничения токов при КЗ.

Токоограничивающие реакторы бетонные одинарные

ТипПотери на фазу, кВтЭлектродинамическая стойкость, кАТермическая стойкость, кА
Для внутренней установки
РБ, РБУ, РБГ -10-400-0,351,69,83
РБ, РБУ, РБГ-10-400-0,451,99,83
РБ, РБУ, РБГ-10-630-0,252,515,75
РБ, РБУ-10-630-0,403,212,6
РБГ-10-630-0,403,2
РБ, РБУ, РБГ-10-630-0,569,45
РБ, РБУ, РБГ-10-1000-0,143,524,8
Окончание табл. 5.1
РБ, РБУ-10-1000-0,224,419,3
РБГ-10-1000-0,224,425,6
РБ, РБУ, РБГ-10-1000-0,285,217,75
РБ, РБУ, РБГ -10-1000-0,355,914,6
РБ, РБУ, РБГ-10-1000-0,456,611,4
РБ, РБУ, РБГ-10-1000-0,567,89,45
РБ, РБУ-10-1600-0,146,1
РБГ-10-1600-0,146,131,1
РБ, РБУ-10-1600-0,207,520,5
РБГ-10-1600-0,207,523,6
РБ, РБУ, РБГ-10-1600-0,258,319,3
РБ, РБУ, РБГ-10-1600-0,3514,6
РБД, РБДУ-10-2500-0.14
РБГ-10-2500-0.1431,1
РБД, РБДУ-10-2500-0.2020,5
РБГ-10-2500-0,2023,6
РБДГ-10-2500-0,2516,119,3
РБДГ-10-2500-0.3520,514,6
РБДГ-10-4000-0,10518,538,2
РБДГ-10-4000-0,1827.725,6
Для наружной установки
РБНГ-10-1000-0.457,211,4
РБНГ-10-1000-0.568,29,45
РБНГ-10-1600-0.259,819,3
РБНГ-10-1600-0.3512,814,6
РБНГ-10-2500-0.1413,531,1
РБНГ-10-2500-0.2016,823,6
РБНГ-10-2500-0.2519,719,3
РБНГ-10-2500-0.3523,914,6

Реакторы бетонные сдвоенные

ТипКоэффициент связиПотери на фазу, кВтЭлектродинамическая стойкость, кАЭлектродинамическая стойкость при встречных токах КЗ, кАТермическая стойкость, кА
Для внутренней установки
РБС, РБСУ, РБСГ-10-2 х 630-0,250,464,814,515,75
РБС, РБСУ-10-2 х 630-0,400,506,312,512,6
РБСГ-10-2 х 630-0,400,506,312,51,5
РБС, РБСУ, РБСГ-10-2 х 630-0,560,537,89,45
РБС, РБСУ, РБСГ-10-2 х 1000-0,140,496,424,8
РБС. РБСУ-10-2 х 1000-0,220,538,418,519,3
РБСГ-10-2 х 1000-0,220,538,418,525,6
РБС, РБСУ, РБСГ-10-2 х 1000 x 0,280,5317,75
РБСД, РБСДУ-10-2 х 1000-0,350,5511,514,6
РБСГ-10-2 х 1000-0,350,5511,514,6
РБСД, РБСДУ-10-2 х 1000-0,450,4913,113,511,4
РБСГ-10-2 х 1000-0,450,4913,113,511,4
РБСД, РБСДУ-10-2 х 1000-0,560,5015,79,45
РБСГ-10-2 х 1000-0,560,5015,79,45
РБС, РБСУ-10-2 х 1600-0,140,5611,5
РБСД, РБСДУ-10-2 х 1600-0,200,5114,320,5
РБСГ-10-2 х 1600-0,140,5611,531,1
РБСГ-10-2 х 1600-0,200,5114,323,6
РБСД, РБСДУ-10-2 х 1600-0,250,5216,719,3
РБСД Г-10-2 х 1600-0,250,5216,719,3
РБСДГ-10-2 х 1600-0,350,4618,514,6
РБСД Г-10-2 х 2500-0,140,5222,529,531,1
РБСДГ-10-2 х 2500-0,200,4632,123,6
Для наружной установки
РБСНГ-10-2 х 1000-0.450,4415,411,4
РБСНГ-10-2 х 1000-0.560,4117,59,45
РБСНГ-10-2 х 1600-0.250,5122,119,3
РБСНГ-10-2 х 2500-0.140,6029,331,1

1. Обозначение типа реактора: Р- реактор, Б- бетонный с естественным охлаждением, БД- бетонный с дутьём, С- сдвоенный, Н- для наружной установки, Г – горизонтальная установка фаз, У- установка фаз уступом, отсутствие Г и У- вертикальная установка фаз.

2. Первое число в типе – класс напряжения, кВ, второе – номинальный ток, третье — номинальное индуктивное сопротивление, Ом.

3. Время термической стойкости для всех реакторов 8 с.

4. В установках 6 кВ применяются реакторы с номинальным напряжением 10 кВ.

Для компенсации зарядной мощности ВЛ применяются шунтирующие реакторы.

Токоограничивающий реактор

Токоограничивающий реактор — электрический аппарат, предназначенный для ограничения ударного тока короткого замыкания. Включается последовательно в линию от 35 до 750 кВ и работает как индуктивное дополнительное сопротивление, при К.З. уменьшающее ударный ток, что увеличивает устойчивость генераторов и системы в целом.

Применение

При коротком замыкании ток в цепи значительно возрастает по сравнению с током нормального режима. В высоковольтных сетях токи короткого замыкания могут достигать таких величин, что подобрать установки, которые смогли бы выдержать электродинамические силы, возникающие вследствие протекания этих токов, не представляется возможным. Для ограничения ударного тока короткого замыкания применяют токоограничивающие реакторы.

Устройство и принцип действия

Реактор — это катушка с постоянным индуктивным сопротивлением, включенная в цепь последовательно. В нормальном режиме на реакторе наблюдается падение напряжения порядка 3-4 %, что вполне допустимо. В случае короткого замыкания большая часть напряжения приходится на реактор. Значение максимального ударного тока короткого замыкания рассчитывается по формуле:

где IH — номинальный ток сети, Xp — реактивное сопротивление реактора. Соответственно, чем выше будет реактивное сопротивление, тем меньше будет значение максимального ударного тока в сети.

Реактивность прямо пропорциональна индуктивному сопротивлению катушки. При больших токах у катушек со стальными сердечниками происходит насыщение сердечника, что резко снижает реактивность, и, как следствие, реактор теряет свои токоограничивающие свойства. По этой причине реакторы выполняют без стальных сердечников, несмотря на то, что при этом, для поддержания такого же значения индуктивности, их приходится делать больших размеров и массы.

Виды реакторов

Бетонные реакторы

Получили распространение на внутренней установке и на напряжения до 35 кВ. Бетонный реактор представляет собой концентрически расположенные витки изолированного многожильного провода, залитого в радиально расположенные бетонные колонки. Бетон выпускается с высокими механическими свойствами. Все металлические детали реактора изготавливаются из немагнитных материалов. В случае больших токов применяют искусственное охлаждение.

Фазные катушки реактора располагают так, что при собранном реакторе поля катушек расположены встречно, что необходимо для преодоления продольных динамических усилий при коротком замыкании.

Масляные реакторы

Применяются в сетях с напряжением выше 35 кВ. Масляный реактор состоит из обмоток медных проводников, изолированных кабельной бумагой, которые укладываются на изоляционные цилиндры и заливаются маслом. Масло служит одновременно и изолирующей и охлаждающей средой. Для снижения нагрева стенок бака от переменного поля катушек реактора применяют электромагнитные экраны или магнитные шунты.

Электромагнитный экран представляет собой расположенные концентрично относительно обмотки реактора короткозамкнутые медные или алюминиевые витки вокруг стенок бака. Экранирование происходит за счет того, что в этих витках возникает встречное электромагнитное поле, которое компенсирует основное поле.

Магнитный шунт — это пакеты листовой стали, расположенные внутри бака около стенок, которые создают искусственный магнитопровод с магнитным сопротивлением, меньшим сопротивлением стенок бака, что заставляет основной магнитный поток реактора замыкаться по нему, а не через стенки бака.

Для предотвращения взрывов, связанных с перегревом масла в баке, согласно ПУЭ, все реакторы на напряжение 500кВ и выше должны быть оборудованы газовой защитой.

Реакторы серии РОМП, РТО, ТРОС, РО, РСТ, РТС, РОБС, РТСТ на напряжение 10 кВ и токи 2,5 — 2000 А.

· Реакторы РОМР — Предназначены для ограничения тока при несимметричном КЗ в сети.

· Реакторы РТОС — Реакторы внутренней установки предназначены для ограничения тока и применяются в сетях 6-10 кВ.

· Реакторы РБ(У, Г) — Бетонные реакторы предназначены для ограничения тока в сетях.

· Реакторы ТРОС — Предназначены для закорачивания генераторов, генераторов-двигателей с погашенным полем ротора при электрическом торможении гидроагрегатов ГЭС и ГАЭС.

· Реакторы РТТ, РТЦ — Предназначены для ограничения токов КЗ в электрических сетях и поддержания уровня напряжения электрических установок при КЗ.

· Реакторы РОБС — Предназначены для работы в двухниточных рельсовых цепях переменного тока в качестве ограничивающих сопротивлений.

· Реакторы РТС (А, Л) — Предназначены для отключения и включения под напряжением участков электрической цепи высокого напряжения.

· Реакторы РДЗПОМ, РДЗСОМ — Предназначены для компенсации емкостных токов на землю в сетях с изолированной нейтралью.

Структура условного обозначения реакторов:

· РБ — реактор бетонный

· Х — С — сдвоенный реактор, отсутствие буквы — одинарный реактор

· Х — Вид охлаждения: Д — принудительно-воздушное, отсутствие буквы — естественное охлаждение

· Х — Расположение фаз: Г- горизонтальное, У-ступенчатое, отсутствие буквы — вертикальное расположение

· Х — Класс напряжения в киловольтах

· Х — Номинальный ток в амперах, у сдвоенных реакторов впереди помещается обозначение 2Х.

· Х — Номинальное индуктивное сопротивление в омах при частоте 50 Гц, у сдвоенных реакторов обозначается сопротивление ветви.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector