Astro-nn.ru

Стройка и ремонт
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Обогрев бетона нагревательными проводами схема

Электропрогрев бетона с помощью провода ПНСВ — расчет и схема подключения

Во время сооружения монолитных бетонных конструкций используется несколько технологий, которые требуются для создания оптимальных температурных условий. Это может быть применение специальных проводов для обогрева или теплоавтоматов, а также тепляков. Первый вариант наиболее востребован, поскольку в сравнении с аналогами менее энергоемкий и финансово затратный.

Зачем нужен прогрев бетона

Электропрогрев бетона требуется в холодное время года, когда температура окружающей среды опускается ниже температуры замерзания воды, что влечет за собой гидратацию бетонного раствора. Смесь не затвердевает, как требуется, а частично замерзает.

С приходом тепла начинает активный процесс оттаивания, в результате монолитность конструкции нарушается, что отрицательно сказывается на долговечности и сопротивлении проникновения влаги в полости монолитных блоков.

Чтобы предотвратить нежелательные и опасные для здоровья и жизни человека последствия, обязательно осуществляют прогрев бетона в зимнее время специальными проводами. Расчет метража и схемы прокладки проводят на этапе проектирования здания.

Принцип работы и виды прогревочных проводов

Наиболее распространен греющий провод типа ПНСВ. Это обусловлено простотой установки и приемлемой ценой в сравнении с аналогами.

Еще часто используют аналог ПНСП. Его основное конструктивное отличие заключается в изоляционном материале. Состав – полипропилен, за счет которого обеспечивается возможность повышать максимальную мощность тепловыделителя.

В таблице приведены основные технические и физические характеристики проводов типа ПНСП и ПНСВ.

Марка проводаРасчетная масса 1 000 метров провода, кгОптимальная длина нагревательной секции при напряжении 220 В, мНоминальный наружный диаметр, ммНоминальное значение электрического сопротивления 1 метра нагревательной жилы, Ом
ПНСВ191102,80,12
ПНСВ18,5952,70,18
ПНСВ18802,60,22
ПНСП16,41302,80,11
ПНСП12,71002,60,12
ПНСП14,51102,70,14
ПНСП11,1852,50,18
ПНСП9,6752,40,22

Нагревательные провода типа ПНСП и ПНСВ используются также для организации полов с подогревом в жилых помещениях.

Основная сложность, с которой сталкиваются строители при использовании нагревательных проводов, – необходимость проводить расчет требуемой длины. Незначительные погрешности исправляются за счет регуляции напряжения, которое поступает на прогревочный трансформатор.

Разновидности и особенности кабелей КДБС и ВЕТ

Несмотря на широкое распространение описанные разновидности тепловых кабелей имеют весомый недостаток – необходимость использования специального дорогостоящего оборудования, которое регулирует мощность тепловыделения изменением напряжения.

Решением проблемы становится использование двухжильных секционных саморегулирующихся термокабелей. Отечественная модификация получила название КДБС, а европейская – ВЕТ (производитель – Финляндия). Для их полноценного и бесперебойного функционирования не требуется дополнительное оборудование, они подключаются напрямую к сети в 220 В.

Отличий в конструкции отечественной и европейской модели практически нет. В таблице приведен сравнительный анализ.

Технические особенностиКДБСВЕТ
Степень защитыIP67IP67
Размер секций, мОт 10 до 150От 3,3 до 85
Номинальный диаметр, мм76
Рекомендованный радиус изгиба3525
Сопротивление изоляционного материала, Мом/м103103
Линейная мощность, Вт/м40В зависимости от модели и длины колеблется в пределах 35-45
Рабочее напряжение, Вольт220-240220-230

Отечественные модели имеют свои особенности маркировки. Кодируются они в следующем виде: ХХКДБС YY, где ХХ – это показатели линейной мощности, а YY – длина секции.

Электропрогрев бетона проводом ПНСВ

После проведения и утверждения всех расчетов и схем приступают к прогреву. Технология следующая:

  1. Нагревательный элемент равномерно раскладывается в месте заливки. Важно, чтобы части кабеля не соприкасались друг с другом. Нагревательный объект не должен выходить за границы конструкции и взаимодействовать с опалубкой.
  2. Прежде чем выводить концы кабеля за границы обогрева, холодные концы надежно соединяют с нагревательными выходами методом пайки. Для максимальной защиты места пайки дополнительно оборачивают металлической фольгой.
  3. Проводится тест-проверка с использованием мегаомметра и измерение размеренной нагрузки тока по фазам.
  4. Если система работоспособная и нареканий в реализации проекта нет, конструкцию заливают бетонным раствором.
  5. Через понижающую трансформаторную подстанцию подается ток.

Это самый простой способ, позволяющий эффективно без нарушения особенностей эксплуатации прогреть бетон проводом.

Установка провода

Провод прокладывается внутри опалубки еще до начала заливки полостей бетоном. Как правило, его фиксируют мягкой алюминиевой проволокой к арматуре, но по правилам техники безопасности такой подход в реализации не приветствуется. Минимальный радиус закругления не менее 25 см, обусловлено это большой жесткостью стальной жилы. Это правило особенно актуально при понижении температуры окружающей среды, невзирая на то что виниловая изоляция сохраняет свои физические свойства при температуре до -30 градусов. При -10 градусах крутой изгиб может стать причиной нарушения целостности изоляционного слоя.

Для равномерного прогревания провода прокладывают параллельно друг другу с интервалом не более 15 см. Для 5 м.куб. бетона требуется около 30 м кабеля вида ПНСВ 1,2.

При напряжении в 220В требуется около 17 метров кабеля, а при 380В минимум 31 метр. При таком подходе вся система будет прогреваться равномерно. Если же будет проложена секция большей длины, выделение тепла будет происходить не дальше 5-6 метров от места подключения к питающей сети.

Подсоединение кабеля к питающей сети проводится за границами опалубки. Как правило, осуществляется это при помощи алюминиевых жил, которыми концы ПНСВ плотно обматываются несколькими витками.

Преимущества и недостатки

Таким способом прогревать монолитные бетонные конструкции выгодно за счет экономного энергопотребления и низкой стоимости кабелей. Отдельного внимания заслуживает устойчивость проволоки к химическому воздействию (кислотному и щелочному), что позволяет их применять при добавлении в строительную смесь разных присадок.

Несмотря на весомые достоинства, есть и недостатки:

  • необходимость в использовании специального оборудования – ПТ;
  • сложность в проведении расчетов требуемой длины кабеля.

Стоимость специального оборудования – понижающих станций – высока. Процесс использования недолгий, а стоимость аренды, как правило, составляет около 10% себестоимости агрегата. Применение сварочных аппаратов представляется возможным при обогреве небольших сооружений.

Монтаж секционного обогревочного кабеля

При установке секционного обогревочного кабеля не стоит вопрос с обрезкой, поскольку нагреватели реализуются готовыми секциями, а не в бухтах. Для бетонирования в зимнее время требуется рассчитать мощность обогревающего элемента на основании используемых кубов бетона в монолитной бетонной конструкции.

К технологии ТМО бетона прилагается инструкция, где указано, что на обогрев 1 м.куб. строительной смеси потребуется от 500 до 1500 Вт. Все зависит от погодных условий на улице. Если воспользоваться несколькими несложными техническими приемами, удастся существенно сократить расходы на оплату электроэнергии:

  • предварительно утеплить опалубку;
  • применять специальные насадки для смеси, которые позволяют понижать точку замерзания раствора.

Если предстоит залить перекрытия или балки, расчет требуемого материала проводится из 4 погонных метров на каждый квадратный метр поверхности. Если предстоит возвести объемные конструкции, например, двутавровые бетонные балки, электрообогрев укладывают ярусами с интервалом не более 0,4 метра. Защита греющих проводов позволяет их надежно приматывать к арматуре.

Интервал между электрообогревателем и поверхностями конструкции должен быть не менее 20 см. Для равномерного обогрева расстояние между кабелями должно быть одинаковым.

Достоинства и недостатки сегментированного кабеля

Сегментированные провода имеют неоспоримые преимущества в сравнении со своими аналогами:

  • несложный расчет длины требуемого обогревательного элемента, простота установки;
  • вероятность поражения электроэнергией минимальная;
  • для организации прогрева строительного материала не требуется дополнительное использование дорогостоящего оборудования.

К недостаткам можно отнести сравнительно высокую стоимость.

Постобработка бетона

Вскоре после прогрева бетонных монолитных конструкций нельзя приступать к их обработке. Предварительно строительный материал должен затвердеть и достичь оптимальных показателей марочной прочности.

Ударные нагрузки также противопоказаны. Допускается резка. Для этого применяют оборудование, оснащенное алмазными насадками, после которых не образуются трещины. В целом прогрев бетона греющими проводами напоминает работу и устройство теплых полов.

Использование нихромовых кабелей для прогрева бетонной смеси запрещено правилами техники безопасности. Кроме того, такой подход обойдется заказчику в большие финансовые затраты.

Прогрев бетона проводом ПНСВ схема укладки

Для обеспечения схватывания и оптимизации времени затвердевания бетона без противоморозных добавок зимой раствор должен иметь положительную температуру. При заливке опалубки в зимнее время вода в растворе бетона замерзает, и процесс гидратации цемента останавливается. Также при отрицательной температуре лед в бетонной смеси разрушает монолит бетона. При этом повышение температуры восстанавливает и ускоряет протекающие в растворе гидратационные процессы. Если объем бетона большой, а температура отрицательная, необходима укладка провода пнсв и подключение схемы обогрева к сети 380В или 220В. Но, в зависимости от объема бетонного раствора и наружной температуры, выделяющегося в нем тепла может хватить для естественного схватывания смеси.

При слишком низких температурах на стройплощадке для обогрева залитого объема бетона используется секционная укладка кабеля ПНСВ. Также этот способ применяют, если нет возможности сделать качественный слой теплоизоляции для опалубки, или если отношение площади бетонного слоя к объему раствора больше, чем 10 м -1 .

Бухта ПНСВ

Технические и эксплуатационные характеристики кабеля ПНСВ:

СвойствоЗначение
СтруктураОдна жила
Токоведущая жилаОцинкованная или простая сталь
Материал электрозоляцииПВХ, полиэтилен
Напряжение питания380/220В. При напряжении 220В мощность ограничивается 7КВт при запитывании от щитовой, 3,5 КВт — при подключении от электророзетки
Температура рабочей среды-60 0 С/+80 0 С
Площадь жилы0,6-4 мм 2

Обогревать бетон электричеством нужно не во всех случаях — технологическая карта разогрева бетонного раствора кабелем ПНСВ имеет некоторые особенности:

  1. Сталь в токоведущей жиле кабеля имеет высокое удельное сопротивление (ρ), поэтому кабель при прохождении токов средней силы нагревается намного сильнее, чем медный или алюминиевый кабель. Нормативное значение тока для забетонированного кабеля ПНСВ — 14-16А. Нужно помнить, что такое значение тока расплавит изоляцию в открытой схеме, не уложенной в бетон. Поэтому ПНСВ кабель необходимо подключать к источнику питания медным или алюминиевым кабелем, имеющим меньшее удельное сопротивление ρ. Если такого провода нет, допускается подключение схемы обогрева к напряжению сдвоенной жилой ПНСВ.
  2. Нельзя допускать перехлест или прокладку нескольких кабелей на расстоянии ≤ 15 мм, чтобы не возникло перегревание кабеля, повреждение электроизоляции и КЗ.
  3. Стальной провод имеет низкую гибкость, поэтому кабель необходимо прокладывать в бетоне с радиусом изгиба не менее 25 мм.
  4. Технологический процесс обогрева слоя бетона при помощи схемы с кабелем ПНСВ ограничивает укладку секции при уличной температуре выше -15 0 С. При морозе ниже -15 0 С тонкий слой пластиковой изоляции становится жестким и хрупким, и при изгибе часто ломается.
  5. Чтобы бетонный раствор прогревался равномерно, рекомендуется кабель ПНСВ предохранять слоем металлической фольги толщиной 0,25-0,5 мм.
  6. Электрическая схема нагревательной секции состоит из нескольких отрезков провода. Провода можно соединять друг с другом как при помощи соединительных колодок, так и обычными скрутками. Прогрев бетонного раствора всегда организуется как одноразовая и кратковременная мера, поэтому контактирующие поверхности не успевают окислиться во влажной среде. Тем не менее, контакты «холодного» провода (кабель, который идет к источнику напряжения) с проводом ПНСВ нужно усиливать пайкой или соединением на клеммах.

Простейшая электрическая схема укладки провода ПНСВ для прогрева массы бетона называется «змейка».

Секционная укладка ПНСВ

Механические и электрические характеристики электрического кабеля определяют методу прогрева бетона. При нагреве монолитного слоя температура будет увеличиваться со скоростью 10 0 С в час, после прекращения нагрева — опускаться со скоростью 5 0 С в час. Если неправильно рассчитать длину провода, то скорость нагрева будет больше, что приведет к росту внутренних напряжений и появлению микротрещин в бетоне. Регулируется напряжение при помощи электронной или электромеханической схемы в самом трансформаторе.

При напряжении питания 380 V через понижающий трансформатор главный фактор для ограничения тока – перегрев ПНСВ секции. Поэтому в схему укладки провода для прогрева бетона часто включают несколько параллельно включенных контуров.

Как рассчитать длину провода в секции

Чтобы рассчитать прогрев бетона проводом пнсв схема укладки учитывает две обязательных переменных:

  1. Бетон необходимо подогревать. Количество тепла, сохраняемого в бетоне, зависит от уличной температуры, от ветра, от правильно уложенной теплоизоляции, геометрии опалубки и марки цемента.
  2. Номинальная удельная мощность кабеля (P). Если бетон будет армироваться, то P ≈ 30-35 Вт/м, для обычного бетона P ≈ 35-40 Вт/м.
Читать еще:  Все об известковой штукатурке — описание и применение

Немного сложнее рассчитать максимальную длину отдельно взятого отрезка кабеля ПНСВ. Для расчета необходимо знать удельное сопротивление (ρ) металлической жилы разного сечения:

Сечение провода ПНСВСопротивление провода, Ом/км
0,6 мм 2550
1,1 мм 2145
1,2 мм 2140
1,4 мм 2100
1,8 мм 270

В идеале необходимо подать на секцию ток 14-16 А. Здесь пригодится закон Ома – U = I х R, где:

  • U – напряжение питания;
  • I – ток в цепи;
  • R – сопротивление участка.

Расположение провода в секции

Пример: при напряжении U = 75 В и токе I = 15 А после понижающего трансформатора требуется получить сопротивление секции R = 75 ˸ 15 = 5 Ом. Если сечение жилы равно 1,4 мм, то такое сопротивление будет у провода длиной 50 м. Расчет такой: 5 Ом ˸ 100 Ом/км = 0,05 км (50 м).

Это пример упрощенного метода расчета. В реальных условиях сопротивление кабеля будет изменяться при изменении температуры, поэтому необходимо будет вносить в результат поправки.

После набора прочности бетон можно обрабатывать механически – резать, сверлить, скалывать, но желательно все операции проводить инструментами с алмазным напылением, чтобы не вызвать образование микротрещин. Например, сверление сверлом с алмазной коронкой можно проводить и по армированному бетону.

Часто электроды используют для прогрева бетонной колонны или стены. Электроды вставляются в бетонный раствор группами после заливки в опалубку по схеме, приведенной ниже:

Схема подключения электродов

Также существует схема расположения струнных электродов вдоль опалубки:

Схема подключения электродов

Вода в бетонном растворе выступает как проводник, и в процессе гидратации и затвердевания бетона ток, протекающий через электроды, уменьшается. Катаная проволока, выполняющая роль электродов, после затвердевания бетона остается в армокаркасе. Такой метод прогрева имеет один недостаток – большое потребление электричества.

Применение провода ПНСВ в домашних условиях

Универсальным для домашних условий является метод прогрева слоя бетона зимой при помощи кабеля с высоким сопротивлением и понижающего трансформатора. При укладке армирующего каркаса сразу заделывается нагревательный элемент, причем геометрия и форма опалубки для бетона не имеет значения.

После укладки арматуры в бетон или укладки маяков под наливные полы кабель ПНСВ нужно уложить змейкой на расстоянии 15-20 см друг от друга. Длина петли — 28-36 м. В домашнем хозяйстве источником питания часто служит сварочный аппарат. Подключать провод ПНСВ к сварке нужно по такой схеме:

Провод ПНСВ

Важно! Нельзя подключать к трансформатору кабель, не уложенный в толщу бетона, так как без теплопоглощающего слоя жила расплавится из-за перегрева на открытом воздухе.

Чтобы не допустить выхода кабеля из строя, нужно сделать скрутку или клеммный переход с ПНСВ на кабель из алюминия или меди. Для этого выходные концы провода ПНСВ нужно выпустить из раствора на 10-15 см. Рекомендуемый ток в проводе 11-17 А контролируется специальными токовыми клещами. При домашнем использовании провода ПНСВ будет достаточно Ø 1,2 мм. Характеристики провода:

  • 0,15 Ом/м;
  • Ток через провод, погруженный в раствор — 14-16 А;
  • Уличная температура -25°C/-50°C.

На 1 кубический метр бетонного раствора расходуется около 60 погонных метров кабеля марки ПНСВ. Температура внутри бетона при таком методе нагрева — +80°C, контролировать температуру можно при помощи любого термометра. Также следует контролировать скорость набора температуры бетоном – она не должна быть выше, чем 10°С в час.

Некоторой экономии в расходах на электроэнергию можно добиться, накрывая участок опалубки с ПНСВ кабелем любым теплоизолирующим материалом. Например, можно засыпать бетон опилками или укрыть соломой. Чтобы получить требуемый результат, бетонный раствор перед заливкой в опалубку также рекомендуется подогреть. В любом случае, температура бетона перед заливкой должна равняться +5°C или выше.

Прогрев бетона в зимнее время: методы

Строительство бетонных монолитов при минусовых температурах осложняется неравномерным застыванием смеси. Вода быстро превращается в лед, процесс гидратации останавливается, в результате прочность готовой постройки нарушается. Прогрев бетона помогает избежать этих проблем.

Добиться необходимой температуры бетонной смеси можно пятью способами:

  1. электродным;
  2. проводом ПНСВ;
  3. электропрогревом опалубки;
  4. индукционным обогревом;
  5. инфракрасным теплом.

Рассказываем, в каких случаях используется каждый из них.

Электродный прогрев

Принцип действия основывается на способности бетонного раствора проводить ток. Электроды располагают внутри и на поверхности смеси. После подключения к трансформатору образуется электрическое поле и происходит нагрев. Добиться оптимальной температуры можно изменением выходных параметров трансформатора.

  • Простота монтажа и высокий КПД;
  • Позволяет прогреть конструкцию любой толщины и формы.

  • требует проведения расчетов и долгой подготовки;
  • высокие энергозатраты (не менее 1000 кВт на 3–5 м3 смеси).

    Что нужно знать об электродном прогреве

    1. По мере схватывания бетона, его электрическое сопротивление меняется нелинейно. Чтобы избежать потери тепла и влаги, после завершения установки электродов необходимо укрыть поверхность утеплителем. Им может стать фанера с прокладкой из пенопласта, шлаковата, картон, опилки, доски и т. д. Осуществлять работы без утепляющего материала нельзя.

    2. Прогрев с помощью сварочных аппаратов не рекомендуется по ряду причин:

    • при вживлении электродов в бетон ток проходит непосредственно через раствор – отсюда вытекает опасность поражения людей и животных;
    • допустимое напряжение – 36 В, в противном случае опасность удара током становится критичной;
    • сварочный трансформатор не предназначен для таких нагрузок и быстрее изнашивается.

    3. Постоянный ток при прогреве бетона электродами использовать недопустимо: он способствует электролизу. Вода разлагается и не кристаллизируется. Застывание смеси становится невозможным.

    4. Подходят электроды четырёх видов:

    Вид электродовОписаниеСхема подключения
    ПластинчатыеЭто металлические пластины, которые помещаются с разных сторон конструкции между бетоном и опалубкой.
    ПолосовыеПолосы металла 20–50 мм шириной. Подходят для прогрева горизонтальных элементов – например, плит или бетона, который соприкасается с грунтом. Подключаются по очереди к разным фазам с одной стороны конструкции, либо с разных сторон аналогично пластинчатым электродам.>
    СтрунныеРазмеры: 2–3 м в длину и 15 мм в ширину. Часто используются при прогреве колонн. Устанавливаются в центре конструкции. Электрическое поле образуется между опалубкой с токопроводящим листом и струной.
    СтержневыеПодходят для конструкций сложной формы. Вставляются прутья арматуры диаметром до 15 мм, после чего их подключают к различным фазам трансформатора. Обеспечивают сквозной прогрев.

    5. Трансформатор для прогрева бетона в зимнее время должен отличаться высокой мощностью, иметь защищенный корпус, быть удобным для транспортировки и выдерживать длительную работу при минусовых температурах.


    Отправить заявку

    Прогрев бетона проводом ПНСВ

    Один из самых эффективных и безопасных способов. При прохождении тока через провод ПНСВ выделяется тепло, нагревая смесь. Расход – в среднем 60 м на 1 м3 бетона. Этот провод часто используется как напольный обогреватель в частном секторе.

  • несложно предсказать «поведение» и отрегулировать температуру, бетон нагревается постепенно, набор прочности происходит плавно;
  • существенно ускоряет процесс застывания;
  • подходит для повторного использования;
  • устойчив к возгоранию за счёт покрытия изоляцией;
  • отличается прочностью и не перегибается;
  • эффективен при экстремальных температурах;
  • устойчив к воздействию кислотной и щелочной среды.

    требует точных расчетов и подготовительных работ.

    Что нужно знать о проводе ПНСВ

    1. Укладка кабеля в холодное года должна выполняться таким образом, чтобы он не касался опалубки, земли, а также не выходил за пределы бетона. После того, как опалубка будет залита бетонной смесью, дождитесь, пока она начнет застывать, затем подключите трансформаторную подстанцию и регулируйте температуру.

    2. Секции монтируются на одинаковом расстоянии нагревательных проводов относительно друг друга (примерно 15 см). Смесь прогреется равномерно.

    3. Закрепить провод на арматурном каркасе, вдоль которого он протянут, следует так, чтобы риски повредить его при подаче бетона в траншею отсутствовали.

    4. Температура смеси измеряется в процессе изотермического прогрева каждые два часа. Этот пункт входит в содержание технологической карты на электрообогрев нагревательными проводами монолитных конструкций.

    5. 70 В – напряжение, которым следует ограничиться при проведении работ. Поэтому при эксплуатации может потребоваться понижающий трансформатор (ПТ).

    Пример техники: Подстанция для прогрева бетона КТПТО-80
    Отправить заявку

    Электропрогрев опалубки (контактный метод)

    Этот способ предполагает изготовление опалубки, в которую заранее будут закладываться нагревательные элементы. Они отдают бетону свое тепло при нагреве и ускоряют твердение. Электропрогрев опалубки происходит снаружи, через контактную поверхность.

    Минусы: трудоемкость изготовления; низкий КПД (при заливке фундамента смесь нагревается лишь частично).

    Индукционный обогрев

    Применяется с армированными конструкциями. Металлические элементы, содержащиеся внутри них, станут сердечниками. Изолированный кабель выполняет роль индуктора и размещается петлями вокруг арматуры. Количество мотков провода и сечение необходимо рассчитать предварительно. Вдоль кабеля пускается переменный ток, образующий электромагнитное поле. Затем происходит нагревание армирующих элементов, от них тепло переходит к бетону, постепенно распространяясь по всей смеси.

    Расход электроэнергии достигает 150 кВт/ч на 1 м3 бетона.

    Плюсы: низкая цена; равномерный прогрев.

    Минусы: сложный расчет; ограниченность применения (балки, колонны и т. д.).


    Отправить заявку

    Инфракрасный подогрев

    Инфракрасные лучи нагревают поверхность непрозрачных объектов, распространяя тепло на весь объем. При применении инфракрасного подогрева бетонную конструкцию необходимо окутать прозрачной пленкой – она задержит тепло, пропустив лучи через себя. Подходит для прогрева железобетона.

    Плюсы: простота и доступность.

    Минусы: подходит только для небольших, тонких конструкций; инфракрасное тепло распространяется неравномерно.

    Инфракрасный нагреватель должен быть устойчивым к сильному ветру и способным долгое время работать без дозаправки.

    Прогрев бетона проводом ПНСВ

    Процедура заливки бетона заметно усложняется, если проводить ее в холодное время года. Связано это с возникновением вероятности замерзания воды, что не позволит раствору набрать необходимой технологической прочности. Даже если получится избежать такого эффекта, то рентабельность проводимых работ окажется под вопросом, так как высыхать состав будет на протяжении довольно длительного времени. Решить проблему можно с помощью прогрева бетона. Для этих целей используется провод ПНСВ.

    Электропрогрев позволяет придать материалу нужную твердость. Данная процедура регламентируется нормами СП 70.13330.2012. Его применение допускается в ходе выполнения абсолютно любых строительных работ. С экономической точки зрения целесообразно использовать дешевый провод ПНСВ, так как после затвердевания бетона он остается внутри конструкции.

    Применение

    С помощью кабеля ПНСВ можно решить сразу две проблемы, возникающие с бетоном в зимний период. Вода, входящая в состав раствора переходит в кристаллическое состояние. В результате полностью останавливается реакция гидратации. Всем известно из школьной программы, что при замерзании воды происходит ее расширение. В таких условиях сформировать прочные связи в бетоне невозможно, поэтому добиться нужной прочности не получится.

    Чтобы состав затвердел правильно, необходимо обеспечить температуру окружающей среды на уровне +20 0 С. При ее снижении до нулевых показателей данный процесс замедляется даже при условии выделении тепла в результате протекания гидратации. Для выдержки нужных параметров без провода ПНСВ не обойтись. Необходимость в прогреве бетона возникает в следующих случаях:

    • Недостаточная теплоизоляция монолита или опалубки.
    • Низкая температура воздуха.
    • Слишком большие размеры монолита.

    Характеристики провода

    Кабель ПНСВ состоит из жилы сечением 0,6-4 мм 2 и диаметром 1,2-3 мм. Некоторые марки покрываются оцинковкой для подавления негативного воздействия агрессивных составляющих раствора. В качестве дополнительного покрытия используется поливинилхлорид или полиэстер. Такая термоустойчивая изоляция отличается высокой прочностью и удельным сопротивлением, хорошо гнется, не повержена истиранию.

    Технические характеристики кабеля ПНСВ:

    • Диапазон рабочих температур – от -60 0 С до +50 0 С.
    • Удельное сопротивление – 0,15 Ом/м.
    • Расход провода – 60 м на каждый куб бетона.
    • Допустимая температура монтажа – -15 0 С.
    • Нижний температурный порог применения – -25 0 С.

    Кабель соединяется с холодными краями посредством алюминиевого провода АПВ. Питается провод от трехфазной сети 380В. В некоторых случаях при правильных расчетах допускается использование домашней сети 220В. Главное условие – длина кабеля должна быть минимум 120 м. Также необходимо, чтобы по системе протекал ток номинальной величиной 14-16 А.

    Процедура укладки и технология прогрева

    Прежде, чем устанавливать систему прогрева, необходимо смонтировать арматуру и опалубку. Только после этого можно приступать к раскладке ПНСВ. Интервал между поворотами должен составлять 80-200 мм. Конкретное расстояние выбирается в зависимости от наружной температуры, уровня влажности и скорости ветра. Провод не должен иметь натяжение. Для его крепления к арматуре нужно использовать специальные зажимы. Минимальный радиус изгиба – 25 см. Также необходимо позаботиться об отсутствии перехлестов жил, по которым передается ток. Они должны прокладываться на расстоянии 15 мм друг от друга. При нарушении этого правила возникает рис короткого замыкания.

    Читать еще:  Что такое транзистор

    Наибольшей популярностью пользуется схема укладки под названием «змейка». Укладка ПНСВ в данном случае чем-то напоминает процедуру монтажа теплого пола. При таком методе расход греющего кабеля будет минимальным, а обогреть получится максимальный объем массива. Заливать бетон нужно в сухую опалубку, при этом температура раствора должны быть выше +5 0 С, а схема подключена правильно. Также необходимо проверить, чтобы холодные концы были выведены на необходимую длину.

    Перед началом прогрева бетона необходимо ознакомиться с инструкцией, которая идет в комплекте с проводом ПНСВ. Подключение через секции шинопроводов может осуществляться двумя способами: через «звезду» или «треугольник». Первая схема подразумевает соединение трех проводов в один узел. Подключение к трансформатору выполняется через свободные контакты. Во втором случае система делится на 3 участка, каждый из которых подключается к выводам трехфазного трансформатора.

    Прогрев бетонной смеси с помощью кабеля ПНСВ выполняется в несколько этапов:

    1. Каждый час температура плавно повышается на 10 0 С. Так удастся обеспечить равномерность прогрева.
    2. В условиях постоянной температуры прогрев нужно осуществлять до момента набора смеси половины своей технологической прочности. Оптимальным показателем является 60 0 С, а максимальным – 80 0 С.
    3. Остывать бетон должен на 5 0 С в час. При несоблюдении данной рекомендации существует вероятность растрескивания монолита.

    Если все технологические требования были соблюдены, то материал наберет необходимую прочность. ПНСВ после завершения работ остается в массиве и выполняется функции дополнительного армира.

    Применять такие кабели, как ВЕТ или КДБС намного проще, так как их подключение производится напрямую в бытовую сеть или щитовую с напряжением 220В. Разделение на секции устраняет возможность перегрузок. Единственным недостатком таких этих кабелей является высокая стоимость. В связи с этим их реже используют при масштабном строительстве.

    Также довольно большой популярностью пользуется технология, при которой опалубка оснащается электродами и ТЭНами. В этом случае греющий кабель не нужен, однако данный способ требует больших энергозатрат. Связано это с тем, при затвердевании бетона его сопротивление повышается, что делает проводимость воды ниже.

    Расчет длины

    При расчете длины кабеля ПНСВ необходимо учитывать ряд факторов, основным из которых является количество тепла, подаваемое к монолиту с целью его качественного затвердевания. На данный параметр влияет температура воздуха, форма и размеры конструкции, влажность, а также наличие теплоизоляции.

    Также нужно определить шаг укладки провода, учитывая в расчетах среднюю длину петли (28-36 м). Если температура воздуха составляет -5 0 С, то шаг должен быть 200 мм, -10 0 С – 160 мм, -15 0 С – 120 мм.

    Рассчитывая длину кабеля, нужно знать его мощность. Для провода диаметром 1,2 мм – 0,015 Ом/м, 2 мм – 0,044 Ом/м, 3 мм – 0,02 Ом/м. Величина рабочего тока не должна превышать 16 А. В случае с ПНСВ 1,2 мм удельное сопротивление будет равняться 38,4 Вт. Для расчета суммарной мощности нужно это число умножить на длину использованного провода.

    Для расчета напряжения понижающего трансформатора используется эта же схема. Если диаметр ПНСВ составляет 1,2 мм, а всего его уложено 100 м, то общее сопротивление будет равняться 15 Ом. Сила тока все та же (16 А). Напряжение – это произведение сопротивления и силы тока. В рассматриваемом примере оно будет составлять 240 В.

    Заключение

    Прогрев бетонной смеси с помощью провода ПНСВ является одним из самых бюджетных способов. Однако использовать его лучше при наличии достаточного опыта в сфере строительства. Кроме этого, для укладки ПНСВ может понадобиться специальное оборудование. Этот вид кабеля можно использовать в быту. Главное, верно рассчитать потребляемую мощность. Для снижения расходов на прогрев бетона рекомендуется применять теплоизоляционные материалы. Они ускорят процесс и будут способствовать более равномерному остыванию, что положительно скажется на качестве монолита.

    Прогревание бетона проводом: технологии, расчеты, советы

    Ни одно строительство не обходится без такого материала, как бетон. Иногда он требует прогрева, а это процесс достаточно серьезный. Здесь важно знать в точности всю технологию процесса. От этого напрямую зависит прочность и долговечность изготавливаемого материала. Самый распространенный способ – прогрев бетона проводом.

    Зачем прогревают бетон?

    Строительство зданий, сооружений и прочих конструкций с использованием раствора в зимнее время не обходится без обогрева. Как правило, гидратация раствора при отрицательных температурах полностью не проходит. А еще вы можете прочитать про марку бетона для ленточного фундамента, его типы, технология заливки, самостоятельный расчет. Он затвердевает не целиком, некоторые участки смеси замерзают. После оттаивания связь смеси будет нарушена, что непременно скажется на качестве и долговечности сооружения.

    Зимой электрический прогрев конструкции обязателен. Процесс затвердевания смеси ускоряется в определенных (плюсовых) температурных условиях. При этом не нарушается структура связующей смеси, и не страдает прочность непосредственно самой конструкции. Вот зачем прогревают бетон проводом в холодное время года.

    Каким материалом воспользоваться?

    Самым распространенным материалом для этого является провод нагревательный ПНСВ. Он прост в применении, к тому же сравнительно недорогой. Состоит из оцинкованной или стальной однопроволочной жилы, имеющей круглую форму, и полиэтиленовой или ПВХ пластикатовой изоляции. Такой материал используют для прогрева в температурных условиях от + 5 градусов и ниже. На этой странице вы сможете узнать про пропорции для приготовления бетона, его компоненты и параметры.

    Способ прогрева бетона проводом ПНСВ достаточно прост. ПНСП сильно нагреваются и передают тепло конструкции. Для проведения процедуры одного нагревательного элемента не достаточно. Понадобится трансформаторная подстанция (понижающая), которая имеет систему, отвечающую за регулировку тепловой силы. Исходя из внешних изменений температурного режима, устройство регулирует тепловую мощность. Именно от такой подстанции и будет происходить нагрев. Такая установка позволяет нагревать смесь до 30 куб.м.

    Как рассчитать обогрев конструкции?

    Расчет прогрева бетона проводом заключается в следующем: на один кубический метр смеси понадобится примерно 60 метров ПНСВ. Учитывается так же площадь, вид конструкции, необходимая электрическая мощность. Необходимая длина секции нагревательного элемента также может завесить от напряжения трансформаторной подстанции. То есть чем ниже ее напряжение, тем меньше нужна длина. Перед тем как приступать к расчету, прочитайте про бетон для фундамента: состав, пропорции, основные марки. А так же про то, какой расход цемента в бетонной смеси: основные качества составляющих, пропорции цемента в различных марках бетона, допустимые погрешности.

    Провод ПНСВ, будучи погруженным в раствор, нормально функционирует при рабочем токе в 14-16 Ампер. Поэтому преимущественно выбирать именно такой показатель рабочего тока. При этом на открытом воздухе с таким показателем нагревательный элемент достаточно быстро выходит из строя. Вследствие этого его холодные концы (часть, которая должна остаться за пределами конструкции) должны состоять из другого провода – АПВ. Их длина обычно составляет от полуметра до метра. Оптимальным напряжением будет третья ступень трансформаторной подстанции – 75 Вольт.

    Перед тем как прогреть бетон проводом, следует разработать субъективную для конкретной конструкции технологическую карту и составить схему укладки нагревательного элемента. Схема прогрева бетона проводом обычно выглядит так: чертеж конструкцией с обозначениями мест укладки провода. Он обычно укладывается змейкой, не соприкасаясь друг с другом. На чертеже обязательно следует определить точки выхода (холодных концов) нагревательного элемента.

    Технология прогрева: пошаговое руководство

    После того, как произведены все расчеты, составлена технологическая карта и схема, можно приступать к процессу прогрева:

    1. Нагревательный элемент следует уложить равномерно в места заливки. Он не должен соприкасаться с другими своими частями. Так же следует следить, чтобы нагревательный элемент не выходил за пределы конструкции и не касался опалубки.
    2. Прежде чем вывести концы кабеля за пределы обогрева, следует соединить холодные концы с нагревательными выходами, спаяв их. Для того, что бы тепловое поле хорошо сохранялось, рекомендуется участки пайки обвернуть металлической фольгой.
    3. При помощи мегомметра следует провести тест-проверку для того, чтобы обеспечить размеренную нагрузку тока по фазам.
    4. Заливают конструкцию раствором бетона.
    5. На этом этапе через трансформаторную подстанцию (понижающую) можно подавать ток.

    Это один из самых простых способов, как осуществить прогрев бетона проводом. Видео по теме поможет лучше разобраться и понять, что собой представляет технологический прогрев бетона.

    Обогрев конструкции без трансформатора

    Прогрев бетона проводом без трансформатора осуществляется при помощи специального финского кабеля «БЕТ» или электрической резиновой кабельной греющей секции. И «БЕТ», и греющий кабель работают от обычной розетки питания с напряжением 220 Вольт. Так же как и прогрев бетона проводом ПНСВ, процесс его прогрева без трансформатора прост: материал укладывается в места заливки по соответствующей схеме, бетонируется, а выведенные концы подключаются к сети.

    Из всего вышесказанного, следует вывод, что технология прогрева бетона проводом не представляет особой сложности. Главное в этом деле – правильный расчет и точная схема, по которой следует максимально точно распределить нагревательный элемент по бетонной конструкции. А здесь вы сможете узнать про бетон марки М200.

    Обогрев бетона нагревательными проводами схема

    Расход провода, п.м./м³

    Цикл термосного выдерживания конструкций, суток

    Указания по монтажу и эксплуатации провода нагрева ПНСВ:

    1. Прокладка проводов нагрева ПНСВ должна проводиться при температуре окружающего воздуха не ниже -25 °C.
    2. Режим работы проводов – повторно-кратковременный или длительный.
    3. Радиус изгиба проводов при монтаже должен быть не менее трех наружных диаметров. Минимальный радиус изгиба – 15 мм.
    4. Провода должны эксплуатироваться при фиксированном монтаже.
    5. Смонтированные провода не должны пересекаться или прикасаться к друг другу.
      Расстояние между проводами должно быть не менее 15 мм.
    6. Подводка питания к нагревательной секции осуществляется холодными концами. Места соединения нагревательного провода и холодного конца рекомендуется выводить за пределы обогреваемой зоны.
    7. Соединение холодного конца с нагревательными проводами рекомендуется проводить методом пайки с применением бандажа из медной проволоки посредством клеммных коробок. Допускается любой другой метод, обеспечивающий надежность соединения при эксплуатации.

    Электрообогрев можно начинать только после завершения укладки бетона и размещения всех греющих элементов и нижней части выводов в бетоне, а также выполнения указаний по технике безопасности. В конструкциях необходимо сделать скважины для замера температур, помощью токоизмерительных клещей измерить пусковую силу тока во всех греющих элементах. При показаниях, превышающих допустимые при пуске, необходимо понизить напряжение в сети. Измерение температуры и силы тока производить через 1 час в первые три часа, затем 1 раз в смену.
    Электрообогрев бетона необходимо выполнять с соблюдением требований техники безопасности СНиП 111-4-80/гл.11 и ГОСТ12.1.013-78 – бетонные и ж/бетонные работы и электробезопасность.

    Радиус изгиба при монтаже не менее 3 наружных диаметров провода. Провод поставляется в бухтах. Провод соответствует ТУ 16.К71-013 и имеет соответствующий сертификат.

    Дополнительное оборудование:

    • понижающий трансформатор;
    • магистральные кабели;
    • провода холодных концов;
    • средства тепловой защиты.

    Рекомендации п о выбору технологических параметров электропрогрева бетона

    и расчету нагревательных проводов

    1.2. Основным технологическим параметром является удельная электрическая (тепловая) мощность Р уд , приходящаяся на единицу площади обогреваемых конструкций

    где P – суммарная электрическая мощность нагревателей, Вт;

    F – площадь обогрева, м².

    При расчете определяют необходимую электрическую (тепловую) мощность, обеспечивающую нагрев бетона до требуемой температуры. При этом удельная мощность должна быть постоянной в течение всей продолжительности обогрева бетона для двух характерных случаев:

    — нагрева бетона до определенной температуры, получаемой подбором необходимой мощности для конкретных внешних условий теплообмена по так называемому саморегулирующемуся режиму, при котором отпадает надобность в устройствах для регулирования температуры бетона;

    — компенсаций тепловых потерь уложенной в опалубку бетонной смеси, предварительно разогретой по способу «управляемого термоса».

    1.3. Потребная удельная электрическая мощность проволочных нагревателей зависит от массивности обогреваемых монолитных конструкций, расчетной температуры наружного воздуха и скорости ветра, коэффициента теплопередачи утеплителя. Удельная мощность для обоих случаев может быть определена графически (рис. 2, 3).

    Пример пользования номограммой (см. рис. 2)

    Необходимо определить потребляемую удельную мощность проволочных нагревателей при двухстороннем обогреве протяженной монолитной стены толщиной 500 мм. Известно, что коэффициент теплопередачи утепленной опалубки К равен 1 Вт/(м²*°С), бетонная смесь с удельным расходом цемента составляет 350 кг/м², температура наружного воздуха — 30°С.

    Читать еще:  Как клеить гипсокартон – 3 технологии для любых стен

    Решение 1. Разница температуры бетона и наружного воздуха ΔТ составляет
    40 — (-30) = 70 °С

    Рис. 2. Номограмма для определения удельной мощности нагревателей
    при саморегулирующемся режиме.

    Рис. 3. График определения удельной мощности нагревателей
    при использовании предварительно разогретой бетонной смеси
    и применении метода «управляемого термоса».

    2. Модуль поверхности монолитной стены М п устанавливаем по формуле:

    М п = F/V = 2.0 / 0.5 = 4 м

    где F – площадь поверхности охлаждения стены, м²;

    V – объем при условной площади стены, равной 1 мР, м².

    Определяем удельную мощность нагревателей, руководствуясь последовательностью операций, указанных в ключе (см. рис. 2). Получаем 290 Вт/м².

    Пример пользования графиком (см. рис. 3).

    Следует определить потребляемую удельную мощность проволочных нагревателей для компенсации теплопотерь с 1 м² поверхности монолитной конструкции, имеющей температуру +5 °С. Температура наружного воздуха 40 °С, скорость ветра 5 м/с. В качестве утеплителя использованы минераловатные маты толщиной 50 мм.

    1. По таблице 2 определяем коэффициент теплопередачи утеплителя К. Он равен 1,31 Вт/(м²*°С).
    2. Температурный перепад между бетоном и наружным воздухом ΔТ равен 50 — (-40) = 90 °С
    3. На графике от значения 90 °С на оси ординат проводим перпендикуляр до аппроксимированной прямой, соответствующей значению коэффициента теплопередачи 1,31 Вт/(м²´°С). Из точки пересечения опускаем перпендикуляр на ось абсцисс. Получаем 0,12 кВт/м².

    1.4. Другим важным технологическим параметром является равномерность температурного поля на обогреваемой поверхности конструкции, обеспечиваемая необходимой плотностью укладки нагревательного провода, или расстоянием (шагом) между смежными витками провода.

    1.5. Шаг b проволочных нагревателей и количество рядов нагревателей в монолитной конструкции обусловлены требуемой удельной мощностью по расчету. Шаг проволочных нагревателей можно определить по формуле:

    где Pуд – удельная мощность, Вт/м².

    1.6. В монолитных конструкциях шаг нагревателей должен находиться в пределах 50 – 150 мм. Для конструкций, контактирующих с грунтом (подготовки под полы, каменные и искусственные основания и т.п.), шаг может приниматься равным 150 – 200 мм.

    1.7. В стыках сборных железобетонных элементов, цементно-песчаных подливках под колонны и оборудование, местных заделках шаг нагревателей обычно принимают 25 – 70 мм.

    1.8. В ответственных монолитных элементах и несущих конструкциях при шаге нагревателей менее 300 мм и их многорядном размещении возможность закладки провода в бетон должна быть согласована с проектной организацией.

    1.9. Эффективность обогрева зависит от качества и толщины утеплителя. При возведении монолитных конструкций толщину, а также вид утеплителя (или теплозащитные свойства разных видов утеплителя) в опалубке и уложенного на открытые бетонные поверхности, рекомендуется принимать одинаковыми.

    1.10. Коэффициенты теплопередачи основных теплоизоляционных материалов различной толщины, характеристики которых приведены в приложении 3, определяют по формуле:

    где δi – толщина слоя теплоизоляционного материала, м,

    λi – коэффициент теплопроводности материала слоя, Вт/(м*°С),

    αλ – коэффициент передачи теплоты от утеплителя и опалубки излучением, принимаемый равным 2,5 Вт/(м²*°С),

    αk – коэффициент передачи теплоты конвекцией, принимаемый равным при скорости ветра:

    до 5 м/с – 19 Вт/(м²*°С),

    до 10 м/с – 30 Вт/(м²*°С),

    до 15 м/с – 43 Вт/(м²*°С).

    1.11. Средние значения коэффициента теплопередачи утеплителей различных видов, используемых для укрытия открытых горизонтальных бетонных поверхностей, приведены в таблице 2.

    Вид утеплителя нормальной
    влажности с пленочным укрытием

    Коэффициент теплопередачи К, Вт/(м²´°С),
    при скорости ветра, м/с

    Сосновые опилки толщиной 100 мм
    по слою толя

    Минераловатные маты
    на синтетическом связующем
    толщиной 50 мм

    Шлак толщиной слоя 150 мм

    Деревянные доски толщиной

    1.12. Коэффициент теплопередачи стальных опалубочных щитов, утепленных минераловатными матами различной толщины, может быть определен по номограмме (рис. 4).

    Пример.

    Требуется определить коэффициент теплопередачи стального опалубочного щита размером 3 *1,5 м, утепленного минераловатными матами толщиной 40 мм и фанерой толщиной 3 мм. Скорость ветра 3 м/с, площадь поверхности открытых ребер щита – 600 см².

    Решение.

    Отношение периметра ребер каркаса (9 м) к площади щита (4,5 м²) составляет 2:1. Определим коэффициент теплопередачи щита, пользуясь ключом к номограмме. Получаем 2,5 Вт/(м²*°С).

    1.13. В качестве утеплителя рекомендуется использовать минераловатные маты и плиты ПП на синтетическом связующем, холстопрошивной стекломатериал (ХПС), а для щитов опалубки также заливную теплоизоляцию на основе пенополиуретана и фенопластов. При устройстве теплоизоляции следует закрыть утеплителем все промежуточные ребра каркаса щита, являющиеся «мостиками холода». Коэффициент теплопередачи утепленных щитов не должен превышать 3,5 Вт/(м²*°С).

    Рис. 4. Номограмма для определения коэффициентов теплопередачи
    стальных опалубочных щитов.

    1.14. При обеспечении максимально допускаемой температуры обогрева для характерных типов монолитных конструкций следует выдерживать режимы обогрева, приведенные на рис. 5, 6, 7. Продолжительность термообработки и выдерживания бетона должна, при необходимости, корректироваться работниками строительной лаборатории путем сопоставления фактического режима обогрева с рекомендуемым. Приведенные режимы обеспечивают набор прочности бетона к концу выдерживания 50 – 70 % R28. Температура контролируется на поверхности бетона конструкции.

    Рис. 5. Номограмма для определения продолжительности термообработки монолитных стен и перекрытий.

    Рис. 6. Номограмма для определения продолжительности термообработки монолитных колонн, ригелей, балок и фундаментов средней массивности
    столбчатого типа высотой более 1 м.

    Рис. 7. Номограмма для определения продолжительности термообработки монолитных фундаментов столбчатого типа высотой более 1 м.

    2. ЭЛЕКТРИЧЕСКИЙ РАСЧЕТ НАГРЕВАТЕЛЬНЫХ ПРОВОДОВ

    2.1. Электрический расчет сводится к определению рабочего напряжения при минимально допустимой длине проволочного нагревателя и максимально допустимой на него нагрузки.

    Выбор длины проволочного нагревателя является не только технической, но и экономической задачей, так как завышение длины сверх оптимальной приводит к перерасходу провода, более плотной навивке в монолитной конструкции, к увеличению трудоемкости работ, а в ряде случаев затрудняет укладку бетонной смеси. Уменьшение длины провода приводит к его перегреву, возникновению опасных деструктивных явлений из-за больших температурных перепадов, местному пересушиванию бетона и в конечном результате к снижению его качественных характеристик.

    2.2. Основным расчетным параметром при определении длины проволочного нагревателя является линейная (погонная) электрическая нагрузка, приходящаяся на единицу его длины. Для условий теплоотдачи в твердеющем бетоне оптимальная погонная нагрузка р на проволочные нагреватели определена экспериментально и составляет:

    • для армированных монолитных конструкций 30 – 35 Вт/м,
    • для неармированных конструкций 35 – 40 Вт/м.

    2.3. Максимальная погонная нагрузка на провод не должна превышать 45 – 50 Вт/м, так как при большей величине нагрузки температура его превышает 100 °С. Это может привести к структурным нарушениям и снижению качественных характеристик бетона. Такую нагрузку в течение всей продолжительности электротермообработки монолитного бетона выдерживают нагревательные провода с поливинилхлоридной и другими видами теплостойкой изоляции в отличие от проводов с полиэтиленовой изоляцией, у которых ее повреждение из-за перегрева приводит к короткому замыканию токонесущей жилы на стальную арматуру и закладные детали.

    2.4. Длину электронагревателей lопределяют по формуле

    где U – рабочее напряжение питания, В;

    S – сечение токонесущей жилы, мм²;

    p t – удельное сопротивление жилы при рабочей температуре, Ом*мм²/м;

    P – оптимальная погонная нагрузка на провод, Вт/м.

    2.5. Учитывая, что удельное сопротивление нагревательных проводов различных марок может значительно меняться в зависимости от химического состава и качества токопроводящих жил, длину нагревателя рекомендуется рассчитывать в каждом отдельном случае, уточнив предварительно величину удельного сопротивления.

    2.6. Сопротивление токонесущей жилы провода при нагреве увеличивается. Сопротивление нагретой жилы Rt в зависимости от рабочей температуры t определяют по формуле:

    где R – сопротивление жилы при нормальной (20 °С) температуре, Ом;

    α – температурный коэффициент сопротивления, стальной жилы 0,0046 °С -1 .

    2.7. Сопротивление стальных токонесущих жил постоянному току при нормальной температуре R нагревательных проводов может быть определено по таблице 3.

    Стальная оцинкованная жила

    Электрическое
    сопротивление
    при 20 °С, Ом, км

    Как происходит прогрев бетона — схема укладки провода ПНСВ

    Работа с бетоном при отрицательных температурах сопряжена со сложностями. Невозможно достичь технической прочности застывшего материала, если вода в растворе замёрзнет, а зимой увеличивается срок высыхания бетона. Электропрогрев позволит решить задачу при низких финансовых расходах. При установке обогревающего оборудования важно соблюдать схему укладки провода ПНСВ для прогрева бетона.

    Сферы применения метода

    Невысокая стоимость и универсальность провода ПНСВ позволяют использовать этот способ подогрева бетона повсеместно. В соответствии с нормами СП 70.13330.2012, технология подходит для всех видов строительства. После затвердения материала кабель остаётся внутри, поэтому возможность приобрести недорогое и надёжное изделие позволит рассчитывать на максимальную выгоду. В зимнее время низкие температуры становятся источником дискомфорта для строителей и останавливают гидратацию цемента. Образовавшийся лёд повреждает связи в растворе, материал теряет прочность.

    Чтобы бетон затвердел быстро и его характеристики не снижались, температура раствора должна составлять около 20 °C. Неоптимальные условия сделают процесс застывания долгим. Прогрев бетона ПНСВ проводом или аналогичными кабелями незаменим в таких случаях:

  • утепление монолита и опалубки отсутствует либо недостаточно;
  • значительный объем монолитной конструкции исключает равномерный прогрев;
  • неблагоприятные погодные условия;
  • важно строгое выполнение сроков строительства.
  • С должным подогревом, технические условия будут соблюдены.

    Оптимальные характеристики кабеля

    Проверенные схемы прогрева бетона допускают использование кабеля со стальной жилой достаточной толщины — не менее 0,6 мм². Диаметр провода должен находиться в пределах 1,2−3 мм. Если в растворе содержатся агрессивные компоненты, лучше отдать предпочтение оцинкованному нагревательному элементу. Изоляция — ПВХ или полиэстер, что гарантирует высокое удельное сопротивление, обладает прочностью, устойчивостью к истиранию, не повреждается при сгибании. Технические свойства ПНСВ провода:

    1. Удельное сопротивление — 0,15 Ом/м.
    2. Рабочий температурный режим в пределах от -60°C до 50 °C.
    3. Расход — не более 60 м кабеля на кубометр раствора.
    4. Безопасный монтаж при -15°C.

    Питание системы происходит посредством трехфазной сети 380 В. Для этого алюминиевый провод АВП подключают к холодным концам. Можно питать систему и с помощью бытовой сети 220 В, но важно сделать верные расчёты и использовать не менее 120 м кабеля.

    Особенности монтажа

    Кабель ПНСВ укладывается «змейкой» (схема сходна с системами «тёплый пол») после монтажа опалубки и арматуры. Интервал зависит от погодных условий и может составлять 8−20 см. В проводе не допускаются натяжения, изделие крепится к арматуре посредством зажимов. Важно, чтобы токоведущие жилы не соприкасались, а радиус изгиба не был меньше 25 см. Такой подход обеспечит качественный обогрев бетона нагревательными проводами. Схема позволяет расходовать кабель экономно.

    К заливке раствора приступают после вывода холодных концов и монтажа схемы подключения. Допустимо низкая температура бетона 5 °C. К проводу ПНСВ прилагается инструкция, с описанием вариантов подключения системы к источнику питания.

    Подсчет длины провода

    При расчёте прогрева бетона проводом ПНСВ важно учесть показатели влажности, температуры воздуха, формы будущей конструкции, её объёма, теплоизоляции. От этих нюансов зависит количество тепла, необходимое для корректного застывания бетона. Расстояние между жилами при укладке, а значит и длина нужного кабеля, изменяется исходя из температурного режима. Шаг равен 20 см, если на улице -5°C. Дальнейшее понижение температуры на 5 градусов приводит к уменьшению шага на 4 см.

    Потребляемая мощность также важна в подсчётах. Произведение удельного сопротивления на силу тока, возведённую в квадрат, позволит узнать этот показатель для 1 метра кабеля. Сила тока в системе не должна превышать 16 А, а удельное сопротивление для провода ПНСВ 1,2 мм составляет 0,15 Ом/м.

    Альтернативные системы

    Кабели ВЕТ и КДБС также позволяют добиться хороших результатов. Их преимущество — простое подключение к сети 220 В через розетку или щит. Перегрузки исключены, ведь провода разделены на секции. Но цена изделий выше, финансовые потери на строительстве крупных объектов будут ощутимыми.

    Технология опалубки с ТЕН и электродами заслуживает внимания. Посредством сварочного аппарата арматура в растворе подключается к сети. Подойдут понижающие трансформаторы прочих типов. Схема работает без провода, но расход электроэнергии возрастает. Вода — отличный проводник, а сопротивление раствора растёт во время процесса застывания.

    Подогрев бетона кабелем ПНСВ популярен благодаря доступной стоимости. Его использование в быту осложнено тем, что подключение системы невозможно без знаний и оборудования.

    Параллельно применяют теплоизоляцию, что ускорит процесс нагревания раствора, а снижение температуры сделает равномерным.

    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector