Astro-nn.ru

Стройка и ремонт
171 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Фазировка электрической линии как считать

Название книги

Эксплуатация электрических подстанций и распределительных устройств

Красник В. В.

Глава 9. Фазировка электрического оборудования

9.1. Общие понятия и определения

Фазировка заключается в проверке совпадения по фазе напряжения каждой из трех фаз включаемой электроустановки с соответствующими фазами напряжения сети, и включает в себя следующие операции:

проверка и сравнение порядка следования фаз включаемой электроустановки и сети;

проверка совпадения по фазе одноименных напряжений, отсутствие между ними углового сдвига;

проверка одноименности (расцветки) фаз, соединение которых предполагается выполнить. Целью этой операции является проверка правильности соединения между собой всех элементов электроустановки, то есть правильности подвода токопроводящих частей к включающему аппарату.

Фаза — проводник, пучок проводов, ввод, обмотка или иной элемент многофазной системы переменного тока, являющийся токоведущим при нормальном режиме работы (ГОСТ 24291—90).

Трехфазная система представляет собой совокупность трех симметричных напряжений, амплитуды которых равны по значению и сдвинуты по фазе на один и тот же угол.

Под фазой трехфазной системы понимают также отдельный участок трехфазной цепи, по которому проходит один и тот же ток, сдвинутый относительно двух других по фазе. Исходя из этого, фазой называют обмотку генератора, трансформатора, электродвигателя, провод трехфазной линии, чтобы подчеркнуть принадлежность их к определенному участку трехфазной цепи.

Элементы оборудования, принадлежащие фазе А, окрашивают в желтый цвет, фазы В — в зеленый и фазы С — в красный.

Трехфазные системы напряжений и токов могут отличаться друг от друга порядком следования фаз.

Если фазы следуют друг за другом в порядке А, В, С, это называется прямым порядком следования фаз. Если фазы следуют друг за другом в порядке А, С, В, это называется обратным порядком фаз.

В случаях несовпадения порядка следования фаз или порядка чередования фаз электроустановки и сети при включении выключателя происходит КЗ.

Возможен лишь единственный вариант, при котором возникновение КЗ исключено: когда совпадают и то, и другое.

Под совпадением фаз при фазировке понимают именно этот вариант, когда на вводы выключателя, попарно принадлежащие одной фазе, поданы одноименные напряжения, а обозначения (расцветка) вводов выключателя согласованы с обозначением фаз напряжений.

Фазировка может быть предварительной, выполняемой в процессе монтажа и ремонта оборудования, и при вводе его в работу, производимая непосредственно перед первым включением в работу нового или вышедшего из ремонта оборудования, если при ремонте фазы могли быть переставлены местами.

Предварительной фазировкой проверяется чередование фаз соединяемых между собой элементов оборудования. Произвольное соединение токоведущих жил может нарушить порядок чередования фаз, что приведет к необходимости менять местами жилы у концевых муфт или изменять монтаж шин в ячейке РУ. Такие операции не только нежелательны, но и зачастую невыполнимы. Поэтому перед соединением жил предварительно проверяют их фазировку.

Предварительная фазировка производится на оборудовании, не находящемся под напряжением. Основные виды оборудования фазируются визуально, «прозвонкой», при помощи мегаомметра или импульсного искателя.

Независимо от предварительной фазировки она обязательно проводится при вводе электрооборудования в эксплуатацию. Причем фазировка при вводе в работу электрооборудования производится только электрическими методами.

9.2. Методы и порядок выполнения фазировки

Различают прямые и косвенные методы фазировки оборудования при вводе его в работу.

Прямыми называются такие методы фазировки, при которых она производится на вводах оборудования, находящегося непосредственно под рабочим напряжением. Такие методы широко применяют в установках напряжением до 110 кВ.

Косвенными называются такие методы фазировки, при которых она производится не на рабочем напряжении установки, а на вторичном напряжении ТН, присоединенных к фазируемым частям установки. Такие методы фазировки менее наглядны, чем прямые, но их применение не ограничивается классом напряжения установки.

Из прямых методов фазировки наибольший практический интерес представляют методы фазировки трансформаторов и ЛЭП.

На практике широко применяется прямой метод фазировки трансформатора с обмотками НН до 380 В без установки перемычки между зажимами.

Этим методом фазируют силовые трансформаторы, вторичные обмотки которых соединены в звезду с выведенной нулевой точкой, а также измерительные ТН, имеющие вторичные обмотки с заземленной нейтралью.

Фазировку производят вольтметром со стороны обмотки НН, который должен быть рассчитан на двойное фазное напряжение, поскольку возможно появление такого напряжения между зажимами фазируемых трансформаторов.

Перед началом фазировки следует проверить:

заземлены ли или присоединены к общему нулевому проводу нулевые точки вторичных обмоток;

симметричность напряжений трансформаторов;

если значения измеренных напряжений значительно отличаются друг от друга, проверяется положение переключателей ответвлений обоих трансформаторов. Переключением ответвлений уменьшают разницу напряжений до допустимого значения 10 %.

Сущность фазировки заключается в отыскании выводов, между которыми разность напряжений близка к нулю. Для этого провод от вольтметра присоединяют к одному выводу первого трансформатора, а другим выводом поочередно касаются трех выводов второго трансформатора. Дальнейшие действия зависят от полученных результатов. Если при одном измерении, например, между выводами а1 — а2 показание вольтметра будет близким к нулю, то эти выводы отмечают и вольтметр присоединяют ко второму выводу, например, b1 первого трансформатора и измеряют напряжение между выводами b1 — b2; b1 — c2. Если одно из показаний вольтметра, например, между выводами b1 — b2 опять окажется близким к нулю, то фазировка закончена. Необходимости в измерении напряжения между выводами с1 — с2 нет, поскольку при двух предыдущих нулевых показаниях вольтметра напряжение между третьей парой фаз должно быть также близким к нулю.

Если после измерения напряжений а1 — а2; а1 — b2; а1 — с2; b1 — a2; b1 — b2; b1 — c2 ни одно из показаний вольтметра не было близким к нулю, то фазируемые трансформаторы принадлежат к разным группам соединений и их включение на параллельную работу недопустимо.

При фазировке КЛ и ВЛ 6-10 кВ пользуются индикаторами. На рис. 9.1 показана последовательность операций при фазировке линий 10 кВ индикатором типа УВНФ.

Для проверки исправности индикатора щупом трубки, содержащей резистор, касаются заземления, а щуп другой трубки подносят к одному из зажимов аппарата, находящегося под напряжением (рис. 9.1, а); при этом должна загореться неоновая лампа. Затем щупами обеих трубок касаются одной токопроводящей части (рис. 9.1, б). При этом лампа индикатора гореть не должна. Проверяется напряжение на всех шести выводах коммутационного аппарата (рис. 9.1, в). Такая проверка производится для того, чтобы исключить ошибку при фазировке линии, имеющей обрыв. Абсолютные значения напряжения между фазой и землей роли не играют, так как при фазировке присоединение индикатора будет производиться или на линейное напряжение (несовпадение фаз), или на малую разность напряжений между одноименными фазами (совпадение фаз). Поэтому о наличии напряжения на каждой фазе судят по свечению лампы индикатора.

Процесс собственно фазировки состоит в том, что щупом одной трубки индикатора касаются любого крайнего вывода аппарата, например, фазы С, а щупом другой трубки — поочередно трех выводов со стороны фазируемой линии (рис. 9.1, г). В двух случаях касаний (С — A1 и С — В1) лампа ярко загорается, а в третьем (С — С1) гореть не будет, что укажет на одноименность фаз.

После определения первой пары одноименных выводов щупами поочередно касаются других пар, например, А — A1 и А — В1. Отсутствие свечения лампы индикатора в одном касании укажет на одноименность следующей пары выводов. Совпадение фаз третьей пары выводов В — В1 проверяют лишь для контроля — фазы должны совпасть.

Одноименные фазы соединяют на параллельную работу. Если одноименные пары у разъединителей или выключателей не находятся друг против друга, установка отключается и шины пересоединяются в том порядке, который необходим для совпадения фаз.

Прежде чем приступить к фазировке, следует убедиться в выполнении требований безопасности по подготовке рабочего места и соблюдать специальные требования по работе с измерительными штангами на оборудовании, находящемся под напряжением.

Работы с индикатором напряжения необходимо производить только в диэлектрических перчатках. При фазировке нельзя приближать соединительный провод к заземленным частям. Фазировку нельзя производить во время дождя, снегопада и при тумане, так как изолирующие части индикатора напряжения могут увлажниться и будут перекрыты.

Косвенным методом обычно фазируют трансформаторы и линии всех классов напряжения, чаще всего при двойной системе шин.

В РУ, где обе системы шин находятся в работе, для выполнения фазировки освобождают одну систему шин, выводя ее в резерв.

При включенном шиносоединительном выключателе вольтметром проверяют совпадение фаз вторичных напряжений ТН рабочей и резервной систем шин. Затем отключают шиносоединительный выключатель и снимают с его привода оперативный ток. На резервную систему шин включают цепь, для которой следует произвести фазировку. По фазируемой цепи с противоположного конца подают напряжение и производят фазировку на выводах вторичных цепей ТН рабочей и резервной систем шин.

Для трехобмоточных трансформаторов фазировку выполняют в два приема: со стороны обмотки НН и со стороны СН.

Сначала трансформатор включают на резервную систему шин НН и подают на него напряжение со стороны ВН. Фазировку выполняют на зажимах ТН, принадлежащих шинам НН. При совпадении фаз трансформатор отключают со стороны НН, включают на резервную систему шин СН и выполняют фазировку на этом напряжении.

После получения положительных результатов в обоих случаях фазировки трансформатор считается сфазированным и его включают в работу.

При фазировке шинных трансформаторов необходимо учитывать схему заземления вторичных обмоток ТН, так как заземленной может быть как нейтраль, так и одна фаза.

В первом случае для фазировки можно применять вольтметр со шкалой на двойное фазное напряжение, во втором — на двойное линейное напряжение. Кроме того, фазировку ТН, у которых заземлена фаза вторичных обмоток, выполняют при помощи фазоуказателя, что допустимо, так как фазы фазируемых напряжений жестко соединены и требуется установить лишь совпадение напряжения одноименных фаз, а также любой другой фазы. Если они не совпадают, диск фазоуказателя при подаче на его выводы напряжения от первого ТН будет вращаться в одном направлении, а при подаче напряжения от второго ТН — в другом.

На практике имеют место случаи, когда фазируемые электроустановки имеют разные порядки следования фаз.

Читать еще:  Где должен быть установлен электрический столб в садоводческом товариществе

Например, необходимо провести фазировку и включить на параллельную работу две электроустановки, в одной из которых прямой, а в другой — обратный порядок следования фаз. Их соединяет ЛЭП. Для включения двух электроустановок на параллельную работу необходимо, чтобы одна из них по отношению к другой имела один и тот же порядок следования фаз — только в этом случае возможна их синхронизация.

Для того чтобы порядки следования фаз электроустановок совпали, то есть чтобы обратный порядок следования фаз одной электроустановки по отношению к другой стал прямым, на ЛЭП изменяют порядок чередования фаз. Это может быть осуществлено перемещением на линии проводов фаз на одной опоре, то есть изменением их чередования в пространстве.

Таким образом, изменением порядка чередования фаз на линии изменяется порядок следования фаз векторов напряжений одной электроустановки по отношению к другой, хотя абсолютные порядки следования фаз векторов напряжений электроустановок остаются прежними. В этом заключается взаимозависимость понятий порядка следования и чередования фаз.

Проверка фазировки: зачем это нужно и что нужно знать?

Проверке фазировки подлежат распределительные устройства и электрооборудование, работающее на трехфазном токе (трансформаторы, линии электропередач, синхронные компенсаторы, холодильные камеры и др.) как перед вводом в эксплуатацию, так и после ремонта. Также контроль фазировки производится при проведении планово-предупредительных ремонтов (ППР) оборудования. Почему?

Содержание

  1. Зачем нужно проверять фазировку?
  2. Проверка фазировки распределительных устройств
  3. Порядок работы
  4. Проверка фазировки электрического оборудования
  5. Приборы для фазировки

Зачем нужно проверять фазировку?

Цель проверки фазировки заключается в контроле напряжения на каждой из токоведущих жил электрооборудования на предмет совпадения с напряжением на соответствующих жилах электросети.. Ведь в случае несоблюдения, возникают нежелательные явления, такие как перекос фаз. В промышленных электрических приборах (например, холодильных камерах) происходит существенное понижение мощности. А В быту это явление может привести к выходу из строя бытовой техники и различных электроустановок.

Выполнять такие работы по действующему законодательству должны специалисты в количестве не менее двух человек, прошедшие обучение, знающие требования нормативно-технической документации на проводимые работы, имеющие группу по электробезопасности 3 и выше.
При этом они должны обязательно ознакомиться с паспортными данными на подключаемое к сети оборудование и иметь необходимые для проведения таких работ средства измерения.

Проверка фазировки распределительных устройств

Проверка фазировки распределительных устройств (РУ) заключается в определении правильности порядка следования и чередования фаз в соответствии с фазами оборудования вводимого в эксплуатацию.
Оборудование, работающее от трехфазной сети, подлежит обязательной фазировке перед первичным запуском в работу, после проведения капитального ремонта и др. работ, связанных с нарушением порядка чередования фаз и их следования. Проще говоря, проверяется совпадение по фазе напряжения каждой из фаз электроустановки с фазами напряжения электрической сети.
Перед запуском электрооборудования в эксплуатацию проверяют:

  • целостность жил и изоляции проводников;
  • фазировку жил;
  • чередование фаз.

Порядок работы

Работы проводятся в таком порядке лицензированной РТН электролабораторией:

  • проверяется отсутствие напряжения на вводимом в эксплуатацию оборудовании;
  • отсоединяется кабель от шин;
  • заземляется одна из жил проводника;
  • измеряется сопротивление изоляции жил проводника относительно земли;
  • выполняется маркировка жилы, сопротивление которой относительно земли будет нулевым;
  • выполняется фазировка остальных жил кабеля;
  • выполняется подключение кабеля к РУ согласно маркировке;
  • выполняется операция прозвонки;
  • производится фазировка под напряжением. Проверка осуществляется между одноимёнными фазами и остальными. Если между одноименными фазами напряжение отсутствует, а между разноименными имеется, то такой кабель включается в работу, а следовательно и распределительное устройство.

Компания Перестройка МСК имеет все необходимые разрешения и специалистов, которые выполнят услугу по проверке фазировки РУ и электрооборудования в кратчайшие сроки по самым выгодным ценам в Москве и МО. Заказчику выдается документ, удостоверяющий качество проведенных работ.

Проверка фазировки электрооборудования

Электрооборудование трехфазного тока (трансформаторы, генераторы, кабельные линии электропередач) подлежит обязательной фазировке, перед тем как оно впервые будет включено в сеть или же по окончании очередного ремонта, в результате которого могло произойти нарушение порядка чередования, следования фаз.
Фазировка заключается в проверке совпадения по фазе напряжений каждой из 3-х фаз включаемой электроустановки с соответствующими напряжениями сети. Подобного рода проверка, безусловно, необходима, ведь в процессе сборки, монтирования и ремонта электрооборудования фазы могли быть переставлены местами.
У электромашин, например, не исключается и ошибочное обозначение силовых выводов статорных обмоток; у кабелей в соединительных муфтах могут быть между собой соединены жилы разноимённых фаз.
Во всех этих случаях единственным выходом считается выполнение фазировки. Как правило, эта технологическая операция состоит из 3-х основных перечисленных ниже этапов.
Проверка и сравнение порядка чередования фаз у электрической установки и сети.

Данная операция выполняется перед непосредственным включением на параллельную работу нескольких сетей, работающих независимо, нового генератора и генератора, прошедшего капитальный ремонт, при котором могла измениться схема присоединения обмоток статора к сети.
Лишь при получении положительных результатов, полученных при фазировке, генераторы или, скажем трансформаторы синхронизируются и включаются на параллельную работу.

Проверка одноимённости или расцветки фазных проводников, которые впоследствии надо будет соединить. Эта операция ставит перед собой цель проверить правильность соединения всех элементов установки между собой. Проще говоря, выверяется правильность подвода токоведущих жил к включающему аппарату.

Проверка совпадения по фазе одноимённых напряжений, то есть отсутствия между ними угла сдвига фаз. В электрических сетях во время фазировки линий электропередач и силовых трансформаторов, которые принадлежат одной электрической системе, достаточно выполнить 2 последние операции, поскольку у всех генераторов, работающих синхронно с сетью, порядок следования фаз одинаков.

Приборы для фазировки

Сегодня существует множество методик, которые зависят от прямого назначения электрооборудования, схем соединения обмоток и от используемых приспособлений и приборов.

К основным приборам и приспособлениям можно отнести:

  • Вольтметры переменного тока, используемые при фазировки электроустановок до 1 кВ и подключаемые непосредственно к выводам электрооборудования.
  • Фазоуказатели, принцип действие которых похож на принцип действия АД (асинхронного двигателя), когда при подключении катушки приборов к 3-х фазной сети токов происходит образование вращающегося магнитного поля, которое заставляет вращаться рабочий диск. При этом по направлению вращения диска можно судить о правильности порядка следования фаз токов, проходящих по катушкам.
  • Универсальные приборы (портативные вольтамперфазоиндикаторы, универсальные фазоуказатели).
  • Мегаомметры, представляющие собой переносные приборы, необходимые для измерения сопротивлений изоляции в широких диапазонах, что очень хорошо себя зарекомендовало при производстве фазировки.
  • Указатели напряжения для фазировки. Данные устройства хорошо подходят для фазировки электроустановок выше 1 кВ. При выполнении операции на отключенный аппарат (разъединитель, выключатель) на каждую сторону подаются фазируемые напряжения. При этом, щупы прибора подносятся к токоведущим частям фазируемого аппарата, и дальше осуществляется наблюдение за свечением сигнальной лампы на устройстве. Стоит учесть, что горение лампы говорит о несовпадении фаз, а отсутствие свечения лампочки – о согласованном включении и возможности включения коммутационного аппарата.

Сметы на ПНР по Электроснабжению

Уважаемые Коллеги добрый день.
Столкнулся с немного не свойственной мне задачей, разобраться с тем как составляются сметы на ПНР по Эл.

Давайте сразу попрошу пожалуйста не комментировать вопросы типа: зачем это нужно, пусть специальные сметчики считают или что-то типа такого. Нет у нас специальных сметчиков, есть самые обычные, которые не знают как составить сметы на ПНР и нам поставлена задача сначала грамотно в этом разобраться, затем взять себе сметчика и совместно подготовить локальные сметы на большой объем ПНР по системам электроснабжения.

Еще один важный момент (для тех кто в курсе сметного дела)- на данном этапе нас интересуют не цены, а чел./часы, т.е. применяем не ФЭР и т.п., а ГЭСН.

В чем я смог разобраться на сегодняшний день:
1. Есть такая : МЕТОДИКА ОПРЕДЕЛЕНИЯ СТОИМОСТИ СТРОИТЕЛЬНОЙ ПРОДУКЦИИ НА ТЕРРИТОРИИ РОССИЙСКОЙ ФЕДЕРАЦИИ (МДС 81-35.2004).
2. В этой методике указывается, что Эл. считается по данным ГЭСНп 81-05-01-2017 , и приводятся определенные коэффициенты в зависимости от условий производства работ.
3. Лично в моем понимании эти ГЭСН составляли очень не обдуманно, кучу мелких (не нужных) проработок по генераторам , трансформаторам и лифтам, но совершенно плохо (а по моему ни как) не рассмотрены вопросы ПНР групповых сетей, щитов и т.п. Но это эмоции, которые мешают делу, ничего другого нет и нужно исходить из того, что есть.

Например попробовал расчитать ПНР щита 0.4 кВ. с выкатными ячейками . Каждая ячейка содержит: и силовые автоматы, и цепи управления внешним эл. оборудованием (например эл. двигателями), и индикацию, и обмен данными с АСУТП.
4.Из того, что смог найти на форумах сметчиков, в пояснениях к ГЭСН и примерах найденных мною смет — берешь спецификацию на щит и подбираешь из ГЭСН подходящие расценки под каждый элемент из спецификации щита. Плюс еще есть разного рода расценки на проверку взаимной (межблочной) работоспособности элементов или обмен сигналами с АСУТП.

Вопрос это правильный подход, в смысле просто берешь по спецификации все, что есть и погнал? В щите много автоматов, кнопок, релюшек, пускателей, индикаторов и т.п.

ЩИТ был собран на заводе, проверен и «прогружен» на заводе и поставлен на площадку и согласно программе нам нужно выполнить в принципе стандартные полевые проверки: проверить функциональность узлов и элементов, и выполнить измерения изоляции, заземления и т.п.

Например у АСУшников предусмотрен ГЭСНп 81-05-02-2017, так там ситуация другая- для щитов и панелей предусмотрены определенные категории сложности и количество каналов..

Если у кого-то есть опыт в этом деле, помогите пожалуйста разобраться:
1. как правильно считать смету для ПНР щитов (не просто с набором автоматов, а немного по сложнее)?
2. как правильно считать смету для ПНР системы освещения (например), ведь там не только измерения сопротивления изоляции и заземление, но у функциональная проверка оборудования и измерения токов и напряжений в каждом оборудовании.

Проверка фазировки

Время на чтение:

Проверять фазировку необходимо на устройствах, работающих с электрическим оборудованием от 3-фазного тока. Это необходимо для трансформаторов, линий электропередач, компенсаторов и холодильников. Делается она до ввода электроприбора в эксплуатацию и после произведения ремонта. Контроль значений фазы должен проверяться и при проведении планово-предупредительных работ. В этом материале рассмотрено, что такое фазировка кабеля, и зачем она осуществляется более подробно.

Читать еще:  Сетевые шуруповёрты: Независимый Топ-5

Зачем нужно проверять

Выполняют проверку фаз кабелей и электроприборов для того, чтобы проконтролировать электронапряжение на каждой точке токопроводящей жилы какого-либо электрооборудования. Оно должно соответствовать электрическому напряжению этих же жил в электросети. Если подобное не соблюдается, то могут появляться такие явления, как перекос фаз проводов. Из-за этого в промышленных установках может происходить снижение мощности, а в быту это приводит к выходу из строя даже новой и защищенной бытовой техники и электроприборов.

Прибор для определения фаз

К сведению! Согласно действующим нормативным документам, проверку фаз должны осуществлять специалисты в количестве от двух и более человек. Требования к ним таковы: прохождение обучения, понимание требований нормативных и технических документов на выполнение работ, а также наличие группы электробезопасности от 3 и выше.

Какие есть приборы для проверки

Существуют два способа выполнения проверки фаз:

  • прямой. Метод, при котором проверка производится на вводах электроприборов, находящихся под рабочим электронапряжением. Обычно его применяют для приборов до 110 кВ;
  • косвенный. Метод, при котором процесс проводится на вторичном электронапряжении. Такую проверку обычно выполняют при наличии напряжения от 110 кВ и выше.

Схема фазировки трансформаторов с установкой перемычки

Приборов, используемых при проверке, не так много. Среди них популярны:

  • вольтметры. Обычно применяются в приборах с напряженностью до 1 кВ. Они подключаются непосредственно к выводам оборудования или частям устройств, которые проводят ток. Что касается точности, то она от таких приборов не требуется;
  • фазоуказатель. Следования фаз и их порядок определяют индукционными фазоуказателями. Они состоят из нескольких катушек, внутри которых расположены ферромагнитные сердечники и диск из алюминия. Принцип действия аппарата схож с действием электродвигателя асинхронного типа. При подключении его к трехфазной сети все катушки начинают вращения электромагнитного поля вокруг них. Из-за этого начинает вращаться диск, что показывает последовательность фаз сети.

Как правильно проверять

Порядок проверки фазировки трехфазного напряжения, согласно нормативным документам, таков:

  1. Проверить отсутствие напряжения на оборудовании, которое вводится в эксплуатацию.
  2. Отсоединить кабеля от шин.
  3. Заземлить одну из жил.
  4. Измерить сопротивление изоляционного слоя жил относительно земли.
  5. Промаркировать жилу, сопротивление которой равняется нулю (относительно заземления).
  6. Выполнить фазировку других жил.
  7. Подключить кабель к распределительному устройству согласно отмеченной ранее маркировке.
  8. Прозвонить кабеля.
  9. Произвести фазировку под напряжением.

Важно! Сама проверка делается между одинаковыми фазами. Если между ними напряженности нет, а между разными оно есть, то этот кабель меняют.

Таким образом, выполнять фазировку важно и нужно перед введением электрических приборов в работу, а также в ходе ремонта электроустановок. Делается это при четком соблюдении всех норм электробезопасности и нормативных документов.

Что такое чередование фаз и как его проверить?

Большинство трехфазных электродвигателей и других устройств учитывают такой параметр, как чередование фаз. На практике, несоответствие данного параметра изначальным настройкам может привести к различным аварийным ситуациям, некорректной работе электрических приборов и к травмированию персонала.

Что такое чередование фаз?

Под чередованием фаз следует понимать последовательность, в которой напряжение нарастает в каждой из них. Во всех трехфазных цепях напряжение представляет собой синусоидальную кривую. В каждой линии напряжение отличается на 120º от остальных.

Рис. 1. Напряжение в трехфазной сети

Как видите, на рисунке 1, там где а) — показаны кривые напряжения во всех фазных проводах, смещенные на 120º. На соседнем рисунке б) изображена векторная диаграмма этих напряжений, На обоих рисунках показана разница между фазным и линейным напряжением.

Если взять за основу, что из нулевой точки на рисунке а) выходит U­A, то эта фаза является первой, на диаграмме б) наглядно стрелками показано, что очередность нарастания напряжения переходит от U­A к U­B, а за ним к U­C. Это означает, что фазы чередуются в порядке A, B, C. Такой порядок чередования считается прямым.

Прямое и обратное чередование фаз

В трехфазной сети порядок чередования фаз может отличаться в зависимости от способов подключения к силовым трансформаторам на подстанциях, от последовательности включения обмоток генератора, из-за несоответствия выводов кабеля и по прочим причинам.

Рисунок 2: Прямая и обратная последовательность

Обратите внимание, цветовая маркировка определяет последовательность в соответствии их очередностью в алфавите по первым буквам цвета:

  • Желтый – первый;
  • Зеленый – второй;
  • Красный – третий.

На рисунке 2 изображен классический вариант прямой последовательности A – B – C (где A имеет желтый цвет и является первой, B – зеленый и является второй, а C – красный и является третей) и классический вариант обратной последовательности C – B – A. Но, помимо них на практике могут встречаться и другие варианты, прямого: B – C – A, C – A – B, и обратного чередования: A – C – B, B – A – C. Соответственно, в каждом из приведенных примеров чередование фаз будет начинаться с первой.

Зачем нужно учитывать порядок фаз?

Последовательность чередования играет значительную роль в таких ситуациях:

  • При параллельном включении в работу – ряд устройств (трансформаторы, генераторы и прочие электрические машины), могут соединяться в параллельную работу для повышения надежности системы или для обеспечения большего резерва мощности. Но, в случае неправильного подключения из-за соединения разноименных фаз произойдет короткое замыкание.
  • При подключении трехфазного счетчика – так как его работа основана на совпадении фаз с соответствующими выводами прибора, то при нарушении правильности подключения может произойти сбой и самопроизвольное движение в отсутствии какой-либо нагрузки. Из-за чего такое подключение электросчетчика приведет к необходимости оплаты потребителем киловатт, которые он не расходовал.
  • При включении двигателя – следование фаз в сети определяет для электрической машины и направление вращения двигателя. В случае отсутствия правильной фазировки изменится и направление движения элементов, механически соединенных с ротором. Из-за чего может произойти нарушение технологического процесса или возникнуть угроза жизни персонала.

С целью предотвращения негативных последствий от перекоса фаз и других несовпадений, на практике выполняют проверку чередования и устанавливают защиту.

Как выполнить проверку?

Проверка может производиться несколькими способами. Целесообразность выбора того или другого варианта осуществляется в зависимости от параметров электрической сети и задач, которые необходимо решить. Так чередование можно узнать при помощи фазоуказателя, мегаомметра, мультиметра или по расцветке изоляции кабеля. Рассмотрите каждый из вариантов более подробно.

С помощью фазоуказателя

По принципу действия, фазоуказатель можно сравнить с обычным асинхронным двигателем. Рассмотрим в качестве примера наиболее распространенную модель фазоуказателя — ФУ-2 .

Рисунок 3: Принципиальная схема работы ФУ-2

Как видите на рисунке 3, у указателя последовательности фаз присутствуют три обмотки, которые подсоединяются к одноименным фазам в сети или устройстве. Между обмотками находится вращающийся ротор Р, который приводит в движение диск фазоуказателя Д.

На практике, после подсоединения к зажимам фазоуказателя соответствующих проводов, работник нажимает кнопку К, которая замыкает цепь обмоток. В зависимости от порядка чередования фаз, диск Д начнет вращаться по часовой или против часовой стрелки.

На самом приборе имеется стрелка, показывающая прямое чередование. Если при нажатии кнопки диск вращается в том же направлении, что и показано стрелкой, то эта трехфазная нагрузка имеет прямое чередование. Если диск начнет крутиться в противоположную от стрелки сторону, то чередование фаз обратное. Следует отметить, что этот прибор не способен определить, какая фаза на каком проводе находится, он может определить лишь порядок их чередования.

С помощью мегаомметра

Как один из способов прозвонки жил широко используется прибор для измерения сопротивления – мегаомметр.

Рис. 4: Прозвонка кабеля мегаомметром

Посмотрите на рисунок 4, для реализации такой схемы, вам понадобится отключить кабель от сети и от потребителя. При этом, с одного конца кабеля фазы поочередно соединяются с землей З, как и металлическая оболочка у бронированных кабелей. С другой стороны присоединяется мегаомметр М, один из зажимов которого заземляется, а второй поочередно подводится к каждой из фаз. На той, где мегаомметр покажет нулевое сопротивление, и будет одним проводом.

На концах одноименного провода устанавливается соответствующая маркировка. Недостатком такого способа прозвонки является большой объем трудозатрат. Так как каждая жила заземляется поочередно, после чего выполняется проверка. При этом на обоих концах кабеля должны устанавливаться ответственные сотрудники. Между ними должна обеспечиваться связь, для согласования действий и предупреждения подачи напряжения на работников.

По расцветке изоляции жил

Если в каком-либо устройстве имеется подключение разноцветными жилами, то фазировку оборудования можно выполнять по цветам. Для определения нахождения одноименных напряжений тех или иных фаз необходимо добраться до каждой жилы кабеля. Если на каждом проводе присутствует изоляция разных цветов, то сравнив их с местом присоединения к трансформатору или распедустройству, можно определить, где какая фаза находится.

Недостатком такого метода следует отметить ложную цветовую маркировку, так как производитель кабеля не всегда обеспечивает один и тот же цвет для каждой жилы на всей протяженности провода. Поэтому предварительно его все равно рекомендуется прозванивать и маркировать.

При помощи мультиметра

Для этого метода используется обычный мультиметр. Он наиболее актуален в тех ситуациях, когда необходимо включить в параллельную работу два смежных устройства и их шины расположены поблизости.

Рис. 5: фазировка мультиметром

Необходимо выполнить сравнение фазных напряжений в соседних линиях, на рисунке 5 приведен пример для фаз А и А1. Коммутационная аппаратура при этом должна быть разомкнута. Перед тем как пользоваться мультиметром, на нем выставляется класс напряжения, для линии, на которой будет производиться замер. Щупы подводятся к выводам фаз, при этом их изоляция должна обеспечивать защиту от напряжения, а на руки надеваются диэлектрические перчатки.

Если при подключении щупов к выводам A — A1 стрелка останется на нулевой отметке, то это значит, что фазы одинаковые. Если стрелка отклонится на величину линейного напряжения, вы меряете разноименные фазы.

Защита от нарушения порядка чередования

Для защиты электрического оборудования от неправильного чередования на практике применяется реле контроля фаз. Это реле настроено на работу двигателя или другого устройства в его прямом включении. Если из-за каких-то неполадок или неправильного подключения чередование нарушается, то трехфазное реле сразу отключит устройство. Его работа основана на анализе трехфазных токов и напряжений и последующем контроле этих параметров.

Читать еще:  Чем обработать деревянный пол на веранде; выбор состава

Подключение может выполняться через трансформаторы тока или напрямую, в зависимости от модели и класса напряжения в сети. Такая защита нашла широкое применение при подключении счетчиков индукционного типа, электрических машин и другого высокоточного оборудования.

Тематическое видео



Фазировка электрической линии или трансформатора с сетью напряжением: до 1 кВ

ФЕДЕРАЛЬНАЯ ЕДИНИЧНАЯ РАСЦЕНКА ФЕРп 01-11-024-01

НаименованиеЕдиница измерения
Фазировка электрической линии или трансформатора с сетью напряжением: до 1 кВ1 фазировка

ЗНАЧЕНИЯ РАСЦЕНКИ

Расценка содержит только прямые затраты работы на период 2000 года (цены Москвы и Московской области), которые рассчитаны по нормативам 2009 года. Для составления сметы, к стоимости работы нужно применять индекс пересчёта в цены текущего года.

Вы можете перейти на страницу расценки, которая рассчитана на основе нормативов редакции 2014 года с дополнениями 1

Всего (руб.)Оплата труда рабочихЭксплуатация машинОплата труда машинистовСтоимость материаловТрудозатраты (чел.-ч)
12,8112,811

ВСЕГО ПО РАСЦЕНКЕ: 12,81 Руб.

Посмотрите стоимость этого норматива в текущих ценах открыть страницу

Посмотрите ресурсную часть расценки в нормативе ГЭСНп 01-11-024-01

При использовании в смете, расценка требует индексации для перевода в текущие цены.
Расценка составлена по нормативам ГЭСН-2001 редакции 2009 года в ценах 2000 года.

Фазировка кабельных и воздушных линий

Дополнительно по теме

ПРЯМЫЕ МЕТОДЫ ФАЗИРОВКИ

КОСВЕННЫЕ МЕТОДЫ ФАЗИРОВКИ

ПРЯМЫЕ МЕТОДЫ ФАЗИРОВКИ

Фазировка кабельных и воздушных линий 6-10 кВ, имеющих между собой электрическую связь.

Принципиальная схема, поясняющая метод фазировки, представлена на рис. 29. В качестве указателя напряжения используется указатель типа УВН. Фазировка производится в следующей последовательности. На выводы разъединителя или выключателя с каждой из его сторон подают фазируемые напряжения. Проверяют исправность указателя напряжения. Для этого щупом трубки, содержащей резистор, касаются заземления, а щуп другой трубки на несколько секунд подносят к одному из зажимов аппарата, находящемуся под напряжением (рис. 30, а). При этом неоновая лампа должна загореться. Затем щупами обеих трубок касаются одной токоведущей части (рис. 30,6). Лампа указателя при этом не должна гореть. Проверяют напряжение на всех шести выводах коммутационного аппарата, как показано на рис. 30,в. Проверка производится для того, чтобы исключить ошибку в случае фазировки линии, имеющей обрыв (например, вследствие перегорания предохранителя). Абсолютные значения напряжений между фазой и землей здесь не играют роли, так как при фазировке присоединение указателя будет производиться или на линейное напряжение (несовпадение фаз) или на разность напряжений между одноименными фазами (совпадение фаз), которая практически близка к нулю. Поэтому о наличии напряжения судят просто по свечению лампы указателя.

Рис. 29. Схема фазировки линий, имеющих непосредственную электрическую связь (не через трансформатор).

Рис. 30. Последовательность операций при фазировке линий 10 кВ указателем УВН. а — проверка исправности указателя при встречном включении; б — то же при согласном; в — проверка наличия напряжения; г — фазировка.

Процесс собственно фазировки состоит в том, что щупом одной трубки указателя касаются любого крайнего вывода аппарата, например фазы С, а щупом другой трубки — поочередно к трем выводам со стороны фазируемой линии (рис. 30, г). В двух случаях касаний (С — А1 и С — В1) лампа будет ярко загораться, в третьем (С- C1) гореть не будет, что укажет на одноименность фаз.

После определения первой пары одноименных выводов щупами поочередно касаются других пар выводов, например А — А1 и А — В1. Отсутствие свечения лампы в одном из касаний укажет на одноименность следующей пары выводов.

Совпадение фаз третьей пары выводов В — В1 можно уже не проверять — фазы должны совпасть.

Одноименные фазы соединяют на параллельную работу. Если одноименные фазы у разъединителя или выключателя не находятся друг против друга, то с установки снимают напряжение и пересоединяют шины в том порядке, который необходим для совпадения фаз.

Фазировка кабельных и воздушных линий 6-10 кВ, не имеющих между собой непосредственной электрической связи.

Метод применяют при фазировке линий, отходящих от разных подстанций, которые в свою очередь питаются от одной синхронно работающей сети. Иногда этот метод представляют как фазировку двух трансформаторов по линиям, проложенным между ними. Однако в отличие от фазировки трансформаторов напряжением до 380 В в данном случае не требуется ни заземления нулевых точек обмоток, ни установки временных перемычек между выводами. Замкнутые контуры для прохождения тока через прибор образуются благодаря присутствию в схеме элементов, обладающих электрической емкостью. Схема фазировки двух линий показана на рис. 31. Из схемы видно, что через прибор при подключении его к разноименным фазам будет проходить ток, равный геометрической разности емкостных токов фазируемых частей установки.

Рис. 31. Схема прохождения тока через прибор при фазировке линий, не имеющих между собой непосредственной электрической связи.

В качестве прибора — индикатора напряжения при фазировке — применяют указатель напряжения типа УВН. Его сигнальная лампа светится при встречном включении и гаснет при согласном включении, когда фазы совпадают. Последовательность и содержание операций по фазировке не отличаются от тех, которые были описаны при изложении метода фазировки кабельных и воздушных линий 6-10 кВ, имеющих между собой электрическую связь.

Помимо фазировки линий этот метод применяют и для фазировки силовых трансформаторов.

Фазировка кабельных и воздушных линий 35 — 110 кВ.

Для фазировки применяют указатель напряжения типа УВНФ-35-110 (рис. 18). Фазировку производят на отключенных разъединителях (или отделителях), выводы которых находятся под напряжением: с одной стороны от шин РУ, с другой — от фазируемой линии. Сначала на всех фазах разъединителей проверяют наличие

напряжения прикосновением щупов указателя к фазе и к заземленной конструкции. При наличии напряжения лампа указателя должна загораться. Затем на крайних фазах разъединителей проверяют совпадение напряжений по фазе (рис. 33). На средней фазе проверку не производят. Если лампа указателя не загорается при фазировке на крайних фазах, то фазировку считают законченной — фазы совпадают. При свечении лампы указателя на обоих крайних фазах или только на одной фазировку прекращают — фазы не совпадают.

Рис. 33. Подключение указателя к выводам разъединителей при фазировке линии 35-110 кВ.

Путь прохождения тока через указатель зависит от того, в каком режиме работает установка. В сетях с заземленной или с компенсированной нейтралью ток проходит через нулевые точки трансформаторов, в сетях с изолированной нейтралью — через емкости на землю токоведущих частей установки. Фазировка возможна при отсутствии в сети замыкания на землю.

Фазировка на подстанциях с упрощенной схемой.

Фазировка оборудования указателем напряжения возможна на всех подстанциях, однако наиболее целесообразно применение его на подстанциях, включаемых по упрощенным схемам (рис. 34). На стороне высшего напряжения (110 кВ) таких подстанций, как правило, отсутствуют не только выключатели, но и трансформаторы напряжения, что исключает применение косвенного метода фазировки со стороны ВН. Кроме того, включение нового оборудования в работу часто производится поэтапно: сначала включают в работу одну линию и один трансформатор, а потом с ростом нагрузки — другой трансформатор и другую линию. В этих условиях фазировка оборудования косвенным методом на стороне НН также не может быть выполнена без отключения потребителей и освобождения секции сборных шин. При отсутствии возможности отключения потребителей фазировку оборудования выносят на смежные подстанции, используя для этого соединяющие подстанции воздушные линии. Но это требует создания сложных схем с обязательным выделением резервной системы шин на смежной подстанции.

Рис. 34. Схема подстаниии 110 кВ с отделителями и короткозамыкателями.

Недостатки косвенных методов отсутствуют в случае фазировки оборудования прямым методом. Покажем это на примере. Пусть на подстанции (рис. 34) включены в работу трансформатор Т1 и потребители, питающиеся от 1 и 2 секций сборных шин 10 кВ. Подготовлен к включению трансформатор Т2. Необходимо сфазировать шинный мост 110 кВ и трансформатор Т2. Для этого по шинному мосту 110 кВ подают напряжение на зажимы отделителя ОД2. Включением отделителя ОД2 опробуют напряжением трансформатор Т2. Затем отключают отделители ОД2 и запирают их привод. Трансформатор Т2 включают на х.х. со стороны НН. При этом предварительно должны быть проверены уставки на реле максимальной токовой защиты работающего трансформатора Т1, так как от наложения броска намагничивающего тока на ток нагрузки может произойти его отключение. Фазировку шинного моста и трансформатора Т2 производят указателем напряжения на зажимах крайних фаз отделителей ОД2. После фазировки отключают выключатель В2 и включение на параллельную работу трансформатора Т2 производят обычным порядком, т. е. отделителем ОД2 со стороны ВН, а затем выключателем В2.

Условия безопасности при производстве фазировки указателями напряжения.

Прежде чем приступить к производству фазировки, необходимо убедиться в выполнении как общих требований техники безопасности по подготовке рабочего места, так и специальных требований по работе с измерительными штангами на оборудовании, находящемся под напряжением.

Электрические аппараты, на выводах которых будет производиться фазировка, еще до подачи на них напряжения должны быть надежно заперты и приняты меры, предотвращающие их включение.

Указатели напряжения перед началом работы под напряжением должны быть подвергнуты тщательному наружному осмотру. При этом обращается внимание на то, чтобы лаковый покров трубок, изоляция соединительного провода и лампа — индикатор напряжения не имели видимых повреждений и царапин. Срок годности указателя проверяется по штампу периодических испытаний. Не допускается применять указатели, срок годности которых истек.

При работах с указателем напряжения обязательно применение диэлектрических перчаток. В ходе фазировки не рекомендуется приближать соединительный провод к заземленным частям. Располагать рабочие и изолирующие части указателей следует так, чтобы не возникала опасность перекрытия по их поверхности между фазами или на землю.

Фазировку указателем напряжения нельзя производить во время дождя, снегопада, при тумане, так как изолирующие части его могут увлажниться, что приведет к их перекрытию.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector