Astro-nn.ru

Стройка и ремонт
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Почему контакты выключателей делали с серебром

Где применяют серебряные контакты и как за ними ухаживать

Серебряные контакты широко используются в процессе изготовлении электронных деталей. Это связано с тем, что такие детали слабо подвержены окислению. Окись данного металла обладает хорошей электропроводностью, что способствует отличному соединению даже при незначительном давлении. Применение технического металла в радиодеталях способствует увеличению надежности и срока службы изделий.

Особенности контактов из серебра

В контактах электронных деталей может содержаться разное количество чистого материала. Соединения из него можно условно разделить на группы:

  1. Не обладающие способностью к намагничиванию. В этом их виде содержится большая доля чистого материала.
  2. Намагничивающиеся. Такой вид содержит меньшую долю чистого металла.
  3. На меди. Напайки на таких контактах представляют собой пластинку меди, покрытую тонким слоем металла.

Серебряные контакты применяют в маломощных устройствах. Кроме того, в небольших и ответственных контактных электрических аппаратах используют золото, платину и другие драгоценные материалы.

Можно выделить несколько видов деталей, содержащих в своем составе данный материал:

  • электромагнитные пускатели;
  • электрические автоматы;
  • реле;
  • термодатчики;
  • серебряно-цинковые аккумуляторы.

На поверхности деталей и контактов с содержанием этого благородного металла, которые соприкасаются с серосодержащими резинами, а также эбонитом, происходит образование сульфида серебра в виде мелких кристаллов.

Этот процесс также сопровождается коррозией. Под воздействием двуокиси серы из контактов в ходе атмосферной коррозии образуется сульфат серебра.

Уход за деталями

Необходимо периодически проверять, в каком состоянии находятся серебряные контакты. В случае появления загрязнений осуществляется очистка замшевой или тканевой салфеткой, слегка смоченной в бензине. Также для очистки допускается использование жесткой волосяной щетки. В случае возникновения наплывов на серебряных контактах их следует аккуратно удалить напильником с мелкой насечкой.

Серебро в радиодеталях зачастую встречается в форме крупных серебряных контактов или посеребренных покрытий. Извлечение белого металла из электронных комплектующих — непростой процесс. Это драгоценный металл с высокой степенью инертности. Он неохотно вступает в химическую реакцию с другими элементами и совсем не вступает в реакцию с кислотами и щелочами.

Химическая инертность серебра создает трудности при его извлечении из радиозапчастей. Выгодно ли извлечение серебра из них с целью последующей продажи? Извлечение его из электронных частей целесообразно лишь в том случае, когда оно содержится в больших составляющих и агрегатах, потому как посеребренные части в своем составе имеют низкую долю металла. Зачастую крупные детали в радиоэлектронике — это серебро в форме соединений с другими элементами. Мелкие детали или поверхности, покрытые серебряным слоем, содержат, в основном, серебро в чистом виде. Серебро в радиодеталях используется уже достаточно давно.

Как отделить серебро от больших деталей? Стоит помнить, что серебро хорошо взаимодействует с азотной кислотой (имеющей в своем составе кислород). Извлечь данный материал из больших элементов радиодеталей (например, пускателей и автоматов) можно с использованием азотной кислоты.

Для того чтобы ускорить реакцию, кислоту следует подогреть. Для подогрева необходимо тару с кислотой поставить в теплую воду (водяная баня).

Следует учесть, что в тару не стоит наливать очень большой объем кислоты. Процесс реакции серебра и азотной кислоты сопровождается значительным подогреванием. В случае если в емкости будет слишком много кислоты, она будет переливаться через край.

Аффинаж медно-серебряных контактов.

Приветствую Вас дорогие читатели!Из этой статьи Вы узнаете как сделать Аффинаж медно-серебряных контактов.Проще говоря снять серебро с медного основания контактов, всевозможных реле или магнитных пускателей. Самым простым и менее затратным на мой взгляд способом, даже в домашних условиях.

Единственный недостаток этого метода, по сравнению с другими это слишком много времени занимает.

Что нам понадобится?

1. Первое , что вам для этого понадобится (Резиновые перчатки, Очки, одежда прикрывающая открытые участки тела и постарайтесь избежать попадания кислоты на кожу, Хорошая вытяжка, либо проводить работы на открытом воздухе в безветренную погоду.)

2. Азотная кислота.

3. Дистиллированная вода.

4. Стеклянная ёмкость.

5. Стеклянная или пластиковая палочка.

6. Медная шина или трубка.

Сырьё

Контакты на медной основе (подложке) из реле и пускателей.

Серебро содержится не только в контактах но и деталях радио электронной аппаратуры (резисторы,конденсаторы,диоды, и тд.) особенно аппаратура времён СССР. Современная и импортная всё меньше содержат драгоценные металлы.

Аффинаж серебряных контактов.

1. На фото выше снятые контакты с контактных пластин с помощью кусачек, также там есть несколько магнитных (которые берутся магнитом) . Потом эти контакты хорошо промываются (высыпал их в пол литровую банку, налил горячей воды и средство для мытья посуды, малярной кисточкой перемешивал, можно добавить и соды и хорошо прополоскал в проточной воде), чтобы избавиться пыли, масла и прочей мазуты. Вес контактов 240 грамм.

2. Берем стеклянную ёмкость и смешиваем кислоту с дистиллированной водой 1:1

Внимание: кислота льется в воду, а не наоборот.

120 мл кислоты и 120 мл воды.И хорошо перемешиваем стеклянной палочкой. Из 240 грамм контактов мы не можем знать сколько там грамм серебра и сколько меди, просто разделил пополам получил 120 гр. Взял приблизительно 120 мл кислоты, из расчета 1 мл кислоты на 1 грамм серебра. Лучше взять меньше, и по мере необходимости добавлять до полного растворения. На практике уйдет больше кислоты. И так в ёмкость с разбавленной кислотой погружаем наши контакты.

Как видно на фото, медь с кислотой образуется бурная реакция с выделением большого количества тепла и двуокиси азота. Чтобы незначительно но всё таки уменьшить расход кислоты, накройте слегка сосуд пластиковой крышкой, чтобы избежать разбрызгивания и улетучивания двуокиси азота. Термостойкой посуды у меня нет, так что всё делалось в обыкновенной банке. И чтобы труды были не напрасны и не потерять всё наше серебро, которое уже растворилось. Банку поставил в квадратную тексталитовую ёмкость на случай если она не дай Бог лопнет, ибо нагревается довольно сильно.

Периодически помешивая следим за реакцией и в случае прекращения, доливаем по 20 — 50 мл кислоты. Можно поставить на песочную баню, я не рискнул, а просто по чуть чуть наливал кипятка тексталитовую ёмкость и погружал банку. При повышении температуры скорость растворения увеличивается. И так наша цель растворить все контакты, бывают конечно исключения, магнитные, которые полностью не растворяются, а также всевозможная керамика, которая не подается воздействию кислоты.

Фильтрация.

Когда растворятся все контакты, понадобится воронка, фильтра кофейные или на крайний случай салфетка и емкость куда будет стекать отфильтрованный раствор.

После того как отфильтровали раствор, доливаем горячей дистиллированной воды, чтобы не начал образовываться нитрат серебра.

Осаждение серебра.

Далее заранее приготовленные и очищенные от окиси куски меди, будь то трубка,шина или проволока как в этом случае, опускаем в раствор.

Осаждение серебра из раствора.

Как только вы положите медь в раствор. Сразу же на ней будет оседать серебро, в виде таких вот кораллов, которые периодически надо стряхивать.Если медь растворилась добавляем ещё. Сам раствор при этом будет темнеть насыщаясь медью.

Теперь нам надо поставить ёмкость в укромное место или прикрыть наш раствор чем нибудь от пыли, листьев, дождя если вы делаете на открытом воздухе. И можете смело заниматься другими делами. Ибо реакция будет идти долго, может день, может сутки. Всё зависит от количества аффинажного материала, от температуры, летом быстрее, зимой дольше и надо будет нагревать.

И так реакция прекратилась, раствор стал тёмно-синим и на медь больше не оседает серебро,извлекаем из раствора оставшиеся куски меди , но серебро ещё может там содержаться.
И, чтобы проверить отбираем в другую посуду приблизительно 50 — 100 мл раствора и насыпаем щепотку соли. Если появятся белые хлопья, значит в растворе ещё содержится серебро. Его надо будет сливать в отдельную ёмкость и осаждать хлоридом. Если в растворе ничего не изменится значит серебра там нет.

Затем раствор хорошо перемешиваем и даем отстоятся (серебро тяжёлое и быстро выпадает в осадок ). Далее грушей аккуратно, чтобы не взмутить на дне осадок серебра, отсасываем сколько возможно раствор в другую ёмкость и заливаем горячей дистиллированной воды. Перемешиваем даём отстояться и грушей аккуратно отсасываем. И так эту процедуру промывки повторяем 5 — 8 раз, чтобы избавиться от кислоты. И когда вы будете полоскать в последний раз, вода должна быть прозрачная. Далее, когда сольёте воду, осадок серебра можно собрать в нержавеющую посуду (кастрюльку, миску) и выпаривать. Либо можно другим способом, слив воду оставить осадок серебра в банке накрыть тёмной тканью и поставить на солнце, вода сама испарится. В банке останется порошок серебра (серебряный цемент), затем кисточкой извлекаем его на лист бумаги или газету.

Теперь можно сплавлять.НО!

Прессованный серебряный цемент.

Но, чтобы порошок серебра не развеяло струёй газа из горелки. Его можно спрессовать и получить такие вот таблетки и спокойно плавить.

Металлический цилиндр для прессовки.

Для этого был взят металлический цилиндр диаметром 40 мм, со сквозным отверстием 20 мм по всей длине и стержень под диаметр отверстия. Далее…

Находим жесткую поверхность желательно гладкую металлическую, застилаем листом бумаги и и вертикально ставим цилиндр. Засыпаем в отверстие серебро примерно больше половины и стержнем слегка трамбуем, затем пару ударов молотком и серебро прессуется. Потом переворачиваем цилиндр и стержнем выбиваем прессованное серебро. А всё, что рассыпалось или не спрессовалось останется на бумаге, которую вы застилали.

Плавка серебра.

Для плавки надо иметь тигель, а если его нет, как и у меня!
Плавить пробовал на красном кирпиче но он при нагревании лопал. Пришлось использовать огнеупорный.

Желобок в огнеупорном кирпиче.

Сделав болгаркой в кирпиче желобок, прогреваем его и обрабатываем бурой.

Плавление серебра горелкой.

Положим серебро в желобок кирпича и нагреваем. Как только начинает сплавляться посыпаем бурой. Она покрывает серебро пленкой не давая ему выгорать.

Результат

Аффинаж медно-серебряных контактов.

Вес полученного серебра.

В результате сплавления получаем металлическое серебро довольно высокой пробы. Но три девятки получить можно, только Электролитическим методом аффинажа.
Вот и провели химический Аффинаж медно-серебряных контактов, и из полученного металла теперь можно делать для себя всевозможные изделия либо подвергнуть дальнейшей очистке электролизом.

PS.

(После того как вы извлекли осадок серебра из раствора не спешите его выливать. Там осталась растворенная медь из контактов и это видно по темно-синему цвету раствора. Для её извлечения нужно нагреть раствор до 100 градусов и бросить в него кусочки алюминия. Медь будет осаждаться и раствор из темно-синего цвета станет прозрачным. Потом медь промывают и используют по назначению.)

Какой пробы серебро на контактах?

Какой пробы серебро на контактах – раскрываем все секреты.

Серебро используется не только для создания украшений в ювелирном искусстве. Незаменимо оно и в промышленной сфере, для создания электроники, радиотехнических приборов. Драгметалл выступает главным конкурентом золоту и широко применяется для функционирования радиотехнических деталей. Часто возникает вопрос, какой пробы серебро на контактах использует производитель. На промышленное производство уходит 80% серебра от всех объемов ежегодной добычи. Только 8% серебросодержащих веществ уходит на банковскую сферу и 10% забирают ювелирные предприятия. Запасы серебра восполняются не только первичной добычей, но и переработкой вторсырья.

Читать еще:  Как сделать трубогиб своими руками: примеры лучших самоделок

Почему драгметалл используется, и какая проба серебра на контактах применяется?

Запасы серебра восполняются не только первичной добычей, но и переработкой вторсырья. Почему драгметалл используется, и какая проба серебра на контактах применяется.

Физико-химические секреты серебра

У серебра отличительные черты от всей линейки металлов, оно обладает теплопроводностью электропроводимостью. Серебро не поддается коррозии и влиянию факторов. В качестве покрытия, когда требуется высокая отражательная способность, также используется серебро. Союз химических инерционных качеств, электропроводимости сделали серебро востребованным в разных сферах и особенно в промышленности. У любителей радиоаппаратуры самостоятельно разбирающихся технику возникает вопрос: серебро какой пробы применяют на контактах, и почему именно этот материал используется. Ответ продиктован в особенностях прибора.

В разных вариантах техники может быть использовано серебро в чистом виде или в сплавах. В восьмидесятые годы в СССР придумали технологию по экономии серебра в слаботочных контактах. Если задаться вопросом, серебро какой пробы на контактах применяют, чаще всего специалисты дают следующий ответ. Обычно это металл 999 пробы с процентным содержанием от 15 до 95% в зависимости от изделия.

Объясняется частое применение серебросодержащего вещества его физико- техническими свойствами металла, его хорошей устойчивости к коррозии, к температурным перепадам и долговечностью. Контакты, созданные на основе серебра, функционируют исправно и длительное время.

В коллекционных монетах этот вариант серебра достигает по стоимости до десятков тысяч руб. В ломбарде же за 1 грамм дадут до 30 рублей. Техническое серебро востребовано ввиду его плавких качеств, и оно относится к разряду высокопрочного серебра металла. Электротехническое серебро отличается от ювелирного выполнением технических функций, и эстетическую опцию оно не несет.

Гривенник 1701 года -отчеканена в Кадашевском Монетном Дворе. Гривенник имеет вес 2,85 г, монета с гладким гуртом, разновидность по нумизматике «ГРИ / ВЕННИКЪ», «ЯWA». Серебро высшего качества. Цена продажи гривенника (стоимость монеты) -72500 руб.

Материалы, используемые для изготовления электрических контактов

От материала контакта в сильной степени зависят его срок службы и надежность работы.

Требования, предъявляемые к материалам контактных соединений:

2. Стойкость против коррозии.

3. Стойкость против образования пленок с высоким r.

4. Малая твердость материала, для уменьшения силы нажатия.

5. Высокая твердость для уменьшения механического износа при частых включениях и отключениях.

7. Высокая дугостойкость (температура плавления).

8. Высокое значение тока и напряжения, необходимые для дугообразования.

9. Простота обработки и низкая стоимость.

Перечисленные требования противоречивы, и почти невозможно найти материал, который удовлетворял бы всем этим требованиям.

Для контактных соединений применяются следующие материалы:

Медь. Удовлетворяет почти всем перечисленным выше требованиям, за исключением коррозионной стойкости. Оксиды меди имеют низкую проводимость. Медь — самый распространенный контактный материал, используется как для разборных, так и для коммутирующих контактов. В разборных соединениях применяют антикоррозионные покрытия рабочих поверхностей.

В коммутирующих контактах медь применяется при нажатиях свыше 3 Н для всех режимов работы, кроме продолжительного. Для продолжительного режима медь не рекомендуется, но если она применена, то следует принять меры по борьбе с окислением рабочих поверхностей. Медь может использоваться и для дугогасительных контактов. При малых контактных нажатиях (Р

Серебро. Очень хороший контактный материал, удовлетворяющий всем требованиям, за исключением дугостойкости при значительных токах. При малых токах обладает хорошей износостойкостью. Оксиды серебра имеют почти такую же проводимость, как и чистое серебро. Серебро используется для главных контактов в аппаратах на большие токи, для всех контактов продолжительного режима работы. В контактах на малые токи при малых нажатиях (контакты реле, контакты вспомогательных цепей).

Серебро обычно применяется в виде накладок — вся деталь выполняется из меди или другого материала, на который приваривается (припаивается) серебряная накладка, образующая рабочую поверхность.

Алюминий. По сравнению с медью обладает значительно меньшими проводимостью и механической прочностью. Образует плохо проводящую твердую оксидную пленку, что существенно ограничивает его применение. Может использоваться в разборных контактных соединениях (шинопроводы, монтажные провода). Для этого контактные рабочие поверхности серебрятся, меднятся или армируются медью.

Следует, однако, иметь в виду невысокую механическую прочность алюминия, вследствие чего соединения могут со временем ослабнуть и контакт нарушится (не следует завышать контактное нажатие). Для коммутирующих контактов алюминий непригоден.

Платина, золото, молибден. Применяются для коммутирующих контактов на очень малые токи при малых нажатиях. Платина и золото не образуют оксидных пленок. Контакты из этих металлов имеют малое переходное сопротивление.

Вольфрам и сплавы из вольфрама. При большой твердости и высокой температуре плавления обладают высокой электрической износостойкостью. Вольфрам и сплавы вольфрам — молибден, вольфрам — платина, и другие применяются при малых токах для контактов с большой частотой размыкания. При средних и больших токах они используются в качестве дугогасительных контактов на отключаемые токи до 100 кА и более.

Металлокерамика — механическая смесь двух практически не сплавляющихся металлов, получаемая методом спекания смеси их порошков или пропиткой одного расплавом другого. При этом один из металлов имеет хорошую проводимость, а другой обладает большой механической прочностью, является тугоплавким и дугостойким. Металлокерамика, таким образом, сочетает высокую дугостойкость с относительно хорошей проводимостью.

Контакты реле. Материалы контактов электромагнитных реле

Контакты реле. Материалы контактов электромагнитных реле

Контакты реле из неблагородных металлов (вольфрам, молибден, рений)

Как известно, устойчивость против эрозии разрывных контактов повышается с увеличением твердости и температур плавления, сублимации и кипения материала контактов, что связано с ростом прочности его межатомных связей. Поэтому для контактов, коммутирующих токи больше тока возникновения дуги и повышенные напряжения, наиболее подходящими являются более твердые и тугоплавкие металлы и их сплавы типа твердых растворов: вольфрам, рений, молибден, платино-иридий, палладий-серебро и т. п.
Вольфрам отличается большой твердостью и хрупкостью, очень высокой температурой плавления и потому в несколько раз более устойчив против эрозии и переноса, чем платина. Контакты реле из вольфрама не свариваются, не поддаются механическому износу и обеспечивают очень большой срок службы при больших напряжениях и индуктивных нагрузках (при токе до 3-5 ампер).

Фотография 4. Вольфрамовые контакты реле РСАМ

Основным недостатком вольфрама является его подверженность атмосферной коррозии с образованием оксидных и сульфидных пленок, поэтому контакты из вольфрама имеют высокое переходное сопротивление и требуют больших контактных давлений (больше 40-60 Г), особенно при низких напряжениях. Иногда наблюдается отказ в работе вольфрамовых контактов после длительного их пребывания в условиях влажности и воздействия паров фенола, формальдегида, аммиака и других веществ вследствие интенсивной коррозии вольфрама.
Контакты из вольфрама не могут быть приклепаны непосредственно к контактным пружинам, они предварительно припаиваются или привариваются к стальной или медной «ножке», которая затем приклепывается к пружине. Посторонние примеси в вольфраме не должны превышать 0,2-0,5%. Более прочными и износоустойчивыми являются резаные (с продольным волокном) контакты. Они дают также более постоянное переходное сопротивление, чем штампованные.
В слаботочных реле применяется серебряно-вольфрамовый сплав 30% серебра – 70% вольфрама (ВС-70).
Вольфрамовые контакты встречаются у реле РСАМ, РКС-3, РС, М237, РВМ 2В-110, РПН, РП-4, РП-5, РП-7, 64П, РПС-33, РПС-11 и других.
Молибден имеет меньшую твердость, чем вольфрам, и более низкий минимальный ток дуги. Окислы молибдена образуют рыхлый осадок, вследствие чего проводимость контактов может внезапно нарушиться. Для защиты против образования непроводящих пленок контакты из вольфрама и молибдена следует помещать в вакуум, чистый водород или чистый азот.
Большую износоустойчивость при нагрузке 0,3 ампера и 160 вольт и очень больших сроках службы (10 9 циклов) имеют контакты из карбида вольфрама с небольшим содержанием кобальта.
Вольфрам и молибден из-за подверженности атмосферной коррозии непригодны для эксплуатации в условиях тропического климата; в этих условиях хорошим заменителем вольфрама является металл рений, близкий к вольфраму по своим свойствам, но более коррозионно-устойчивый и более пластичный.
Контакты из рения имеют более низкое переходное сопротивление в нормальных условиях; величина этого сопротивления сравнительно мало изменяется после длительного пребывания в условиях тропического климата и морской атмосферы, а также после нагрева при повышенных температурах до +1000° С. Однако эрозионная устойчивость рения значительно меньше, чем вольфрама.

Пары контактов реле из разных материалов

В вибрационных аппаратах (регуляторах напряжения, вибропреобразователях и т. п.) при токах, не превышающих 1,2 ампера, и сравнительно небольших давлениях иногда применяются пары контактов из разных материалов; например, вольфрам (на минусе) и серебро (на плюсе), вольфрам и серебро-никель (СН40) или молибден-серебро. В этом случае пленка окислов вольфрама пропитывается серебром, что значительно уменьшает переходное сопротивление и повышает надежность работы контактов. При больших токах и значительных давлениях применяется пара карбид вольфрама-серебро.
Например, контактная пара вольфрам-серебро, сплав ВС-70 (на минусе) и палладиево-циркониево-хромовый сплав (ПдСрХр-1) (на плюсе) значительно увеличивает срок службы поляризованных реле типа РП-4 в телеграфном режиме работы (работа на передачу).

Фотография 5. Пара контактов, вольфрам (неподвижный контакт) и серебро (подвижный контакт), силовое реле РС

Металлокерамические композиции (металлокерамические контакты)

Для контактов реле, работающих в особо тяжелых условиях длительное время при больших нагрузках, необходим материал, отличающийся большой износоустойчивостью, тугоплавкостью, малой эрозией, малой склонностью к привариванию, высокой электро- и теплопроводностью.
Сочетание всех этих свойств не встречается в контактных металлах и их сплавах, оно может быть достигнуто только в композициях.
Композиции изготовляются большей частью из смесей двух не сплавляющихся между собой компонентов методами металлокерамики (порошковой металлургии), путем спекания смеси порошков металлов без образования жидкой фазы с последующей механической обработкой (ковкой, прокаткой и т. п.) или прессопористых заготовок из порошка тугоплавкого металла (вольфрам, молибден) с последующей их пропиткой более легкоплавкими металлами (серебро, медь).
Стойкость композиции против эрозии основывается на том, что при расплавлении одного компонента он удерживается силами капиллярности в порах (скелете) второго, более тугоплавкого компонента, который к тому же препятствует свариванию контактов. Композиции, кроме того, не имеют склонности к иглообразованию.
Тугоплавкий скелет может быть образован не только металлами, но и карбидами, нитридами и даже окислами металлов, так как их электропроводность принципиально не имеет значения.
В композиции серебро-окись кадмия роль тугоплавкой составляющей играет окись кадмия. Окись кадмия отличается высокой электропроводностью, при температурах дуги она разлагается взрывообразно на кислород и пары кадмия (770° С). Это явление, по-видимому, оказывает выдувающее и деионизирующее действие.
Кроме того, применяются композиции серебро-карбид вольфрама, медь-карбид вольфрама и др.
Физические свойства металлокерамических композиций зависят от процента содержания составляющих компонентов.
Содержание тугоплавкого металла в композициях для контактов большей частью находится в пределах от 40 до 85% по весу.

Таблица 2. Физические параметры некоторых композиций для контактов реле

Твердость по Бринеллю
нВ, кг/мм 2
не менее

Читать еще:  Газовая колонка в ванной комнате разрешение

Композиция серебро-никель была разработана для контактов реле со сравнительно небольшими контактными давлениями взамен серебра и платины, непригодных при больших нагрузках (более 2-3 ампер) вследствие большой эрозии и сваривания. В особо ответственных случаях для исключения сваривания применяется пара контактов из композиций серебро-никель и графит-серебро, последние, кстати, очень часто применяют в релейно-контактной аппаратуре систем сигнализации, централизации и блокировки на железнодорожном транспорте (реле СЦБ, например, НПР, ДСР, НР, НРВ, ДСШ и другие).
Композиция серебро-никель (СН40, СН30) отличается малой твердостью, большой пластичностью (легко обрабатывается и вытягивается в виде проволоки) и небольшим переходным сопротивлением, однако она менее устойчива против эрозии, чем композиции СМО и СВ.
Композиция серебро-окись кадмия (СОК12, СОК15) имеет высокую электропроводность, малое переходное сопротивление контакта и малую твердость (легко прокатывается и штампуется).
Контакты из СОК12 и СОК15 изготовляются диаметром от 5 до 12 мм для нагрузок от 10 до 100 ампер; при больших нагрузках они в несколько раз более устойчивы, чем контакты из серебра.
Композиции серебро-молибден и серебро-вольфрам более устойчивы против эрозии, но имеют значительно большую твердость и требуют больших контактных давлений, чем композиции СН и СОК. Серебро-молибден (СМО60) имеет более низкое электросопротивление и легче обрабатывается, чем серебро-вольфрам.
Контакты из композиции СМО наиболее пригодны для работы при низких напряжениях и средних токах, а контакты из СВ лучше выдерживают работу при более высоких напряжениях.
Контакты из композиции серебро-окись меди СОМ10 при больших токах более устойчивы против эрозии и коррозии, чем контакты из СОК15.
Однородность свойств и устойчивость против эрозии контактов из композиций зависит от величины зерен порошков, поэтому диаметр зерен не должен превышать 20-30 микрон. Особенно тонкодисперсные смеси получаются при восстановлении предварительно осажденного вольфрамата или молибдената серебра.
Общим недостатком всех композиций является пониженная электропроводность, вследствие чего их следует применять в виде тонких пластин, напаянных на медные или стальные основания.

Заключение

В статье освещены далеко не все материалы и сплавы, применяемые для изготовления контактов электромагнитных реле, описаны лишь наиболее распространенные из них. Возможно, в следующих статьях некоторые из материалов будут рассмотрены более подробно и на конкретных примерах.
Также в одной из следующих статей речь пойдет о материалах, применяемых для изготовления контактных пружин реле.

Дополнительные материалы сайта

Список литературы

1. Витенберг М.И. Расчет электромагнитных реле. Третье издание. Л.: Энергия, 1966
2. Витенберг М.И. Расчет электромагнитных реле. Четвертое издание. Л.: Энергия, 1975
3. Элементы радиоэлектронной аппаратуры. Выпуск 44. Слаботочные реле. М.: Радио и связь, 1982
4. Шоффа В.Н. Герконы и герконовые аппараты. М.: МЭИ, 1993

Тема: Восстановление контактов переключателей

Опции темы
  • Версия для печати
  • Отправить по электронной почте…
  • Подписаться на эту тему…
  • Отображение
    • Линейный вид
    • Комбинированный вид
    • Древовидный вид
  • Восстановление контактов переключателей

    Нужно почистить гирлянду 26-тилетних ПКн61, что-то около 15шт, выпаивать, разбирать и вычищать каждый, разумеется нет никакого желания и времени. Какие есть альтернативы? Кто-нибудь пользовался подобными штуками?
    http://www.chipdip.ru/product/kontakt-60-100/

    пользуемся. Раньше точно такие баллоны были, сейчас «контаклин». Если контакт ухудшенный, а не совсем убитый, очень хорошо помогает. Нужно некоторое время для хим. реакции, некоторый эффект чувствуется сразу, но нормальный контакт обычно появляется после нескольких минут и скольких-то движений контактами.

    Насчёт электроНЕпроводности жидкости малость приврали. В малосигнальных цепях с Очень Большими сопротивлениями, многие мегомы, жидкость может давать утечку тока. Пару раз, в промышленной технике, наступали на такие грабли, приходилось промывать спиртом. В обычных сигнальных цепях, по барабану. Например, кнопки в телевизорах, прочей бытовухе. Есть жидкости с масляной примесью, они обычно предпочтительнее, на контактах остаётся масло, защищающее от повторной коррозии.

    ПС в местных магазинах жидкости такого рода были неоднократно замечены.

    Какой именно балон — можно картинку?
    Надо будет попробовать, но тут ситуация какая, ПКн длинный, доступ плохой — зальётся ли состав на всю длинну, потом высохнет ли он, не коротнёт ничего. Ну и конечно, продукты очистки никак не получится оттуда вымыть, будет ли всё это работать. Ну и главное сомнение — химия разная, подделок куча, как бы так не получилось, что смесь будет агрессивная и будучи не смытой полностью, кородирует контакты в последствии ещё больше.

    картинку затруднительно.
    зальётся и ещё как. Она текучая и, как это называется, весьма любит смачивать поверхности, не как ВД-40 конечно, но тоже под большим давлением и во все щели лезет. Вертикально переключатель поставить и сверху брызнуть трубочкой (идёт в комплекте). Сразу снизу вытечет.
    Подделок не замечалось.
    Смывать никогда не смывали, кроме одного случая, у вас явно не тот случай.
    У меня есть баллончик маленький, но я в центре. Привозите аппарат, брызнем )))

    Спасибо за желание помочь. Но аппарат не маленький — под 15кг весом, личного транспорта нет, нахожусь в энере. Рациональней будет приобрести баллон, авось ещё в будущем пригодится. Просто хочется быть увернным, что это не обернётся дикой коррозией спустя пару лет и уже точно придётся всё разбирать и вычищать. Насколько я знаю, этими составами производится поэтапная обработка — сначала регенерирующий состав, который химически реагирует с окислами, далее делается смывка специальным средством из той же линейки, а уже после наносится на чистое третье вещество, которое обладает консервируююще-защитными свойствами.
    Т.е. на примере контакта, последовательность такая: kontakt 60, kontakt wl, kontakt 61
    Так всё же, какую химию используете? Предлагаю загуглить и просто ткнуть в такую же как у вас.

    Не заморачивайтесь с промывкой и не беспокойтесь. Если бы «через пару лет была дикая коррозия», я бы уже замучился за собой переделывать. Там наоборот масляная основа и пр. в-ва, препятствующая коррозии.

    Сульфиды и пр. гадости растворяются энтими жидкостями, а серебро — нет. Так что коррозии нет.

    К огорчению (или счастью) немногим ранее, пару недель назад уже купил contaclean на масляной основе, долго ходил смотрел, недешево химия вся эта стоит, тем более что профессионально восстановлением не занимаюсь каждый день, три раза пшикнул и в шкаф до пришествия Христова, всё это оспаривало целесообразность. Но всё же уговорил жабу, заодно и нашёл время всё же выпаять Пкн-ы и провести им полную ревизию с очисткой ластиком и промывкой спиртами-растворителями, ну после чего ещё в консервационных целях брызнул контаклином слегка.

    Конструкция, конечно, врагу не пожелаешь у этих переключателей, с П2К куда всё проще, шайбу-стопор сдёрнул и делов. Кто как разбирает их, можете поделиться опытом? Пока что 5 штук обслужил — нашёл некий алгоритм, там вся проблема в цанговой пластиковой шайбе, которая защёлкивается в пазу на штоке и вот её снять — тот ещё геморой. В итоге, получилось так: из спичек скальпелем выстрогал три стамесочки маленьких, их вставляю в три из четырёх пазов Пкн-а на шайбе, после чего отвёрткой раздвигаю четвёртый с одновременным подтягиванием вверх, шайба неохотно, но слазит. Всё же бы я не сказал, что всё это так изящно и просто, может, есть какой другой метод?

    И со смазкой тоже не совсем ясно, кто как пишет, нет единого мнения. После обслуживания нужно весь этот механизм и контакты в обязательном порядке смазать от коррозии и механического износа и какая смазка для тех же Пкн-ов лучше всего подходит. Я почему-то думаю, что любая смазка будет ухудшать контакт.
    Ну если не брать во внимание контаклин, что лучше всего подходит? Силиконовое масло? Технический вазелин?

    как раз балоном и обработать.KONTAKT 61 специально разработанное чистящее, смазывающее и антикоррозийное средство, предназначенное для обработки и защиты новых неокисленных электрических контактов и движущихся электромеханических частей или контактов, подвергнутых очищающему воздействию препаратов KONTAKT 60 и KONTAKT WL.

    Я чуть выше писал уже об этой последовательности, растворяем контактом 60, смываем вл-ом и смазываем контактом 61. Ну импортная химия химией — но это же не панацея, есть и другие средства, более дешевые и не менее действенные. Именно сейчас я говорю о защите новых контактов, потому что химия для растворения окислов навряд ли была на советском и постсоветском пространстве.
    Потому как смазка — это смазка, а химия — это химия. Вообще, видел, многие мажут тупо силиконовым маслом, ПМС-200, например, кто-то импортные брызгалки использует с тем же силиконовым маслом, используют и на хрустящие резисторы и на всевозможные кнопки. Без понятия, каким образом силиконовое масло может улучшить контакт, оно же крайне инертно и в этом его основной плюс.

    Чота я ничё не понял.
    Вроде, баллон для того и покупался, чтобы очистить контакты и смазать БЕЗ разборки переключателей. В разборке и была сложность.
    А вы, их всё равно разбираете, чистите ластиком и смазываете.
    Зачем тогда баллон?
    Ну почистили ластиком, в таком случае, да смазали, силиконом или там вазелином, ЦИАТИМом, ну чем положено контакты смазывать.

    Смазка переключателей не улучшает хороший электрический контакт, она препятствует повторному окислению контактов и уменьшает механический износ, т.е. работает на будущее.

    Это всё понятно, что от окислов и уменьшение износа. Я просто логически рассуждаю, смазка работает как — создаёт микроплёнку на поверхности, которая разделяет пары трения. Так вот если на контактах образуется микроплёнка — это же должно ухудшать контакт, разве нет?
    Вот в чём и вопрос — а чем положено смазывать контакты? По науке? Есть какие-то документы или статьи из проверенных источников, которым можно доверять? Говоря школотронным языком — «пруфы». Я просто почитал уже кучу разных форумов наших основных рассейских по этой тематике и нигде люди не приводят достоверных источников, всё сводится к рассуждениям «а я делаю вот так», «а я — так», и каждый что-то своё творит.

    Что касается разборки Пкн-ов — получилось следующим образом, вечером я разобрал узел, запасся терпением всё выпаять и вскрыть, механически почистить. Баллона не было на тот момент и я не планировал его покупать вообще. Разобрал, почистил, собрал, запаял. Встал вопрос смазки, т.к. переключатель был на тот момент полностью чистый и сухой. Ну и уже следующим днём я пошёл к Художникову, в надежде купить какую-то смазку для эл. контактов, гуманную по цене. В итоге купил контаклин. : ))

    «Микроплёнка», энто на которую шпиёны секретные объекты снимають?

    Трение бывает жидкостное, полужидкостное, полусухое и сухое.

    Жидкостное та да, вот при нём меж деталями находится непрерывный слой смазочной жидкости, и поверхности железяк вообще не соприкасаются. Но это не в переключателях. Это например так смазываются коленвалы во многих представителях семейства двигателей унутреннего исгорания. Масло там в евонные подшипники скольжения подаётся постоянно, под давлением, изнутри, и в идеале коленвал вращается только в масле, не касаясь поверхностей, охватывающих шейки. Масло бы выдавилось оттуда и привет, но успевшая выдавиться часть масла при каждом цикле нагрузки тут же восполняеттся новым маслом от насоса.

    Читать еще:  Стиральная машина не отжимает: причины и поиск проблемы

    А если железки просто раз намазали маслом, а потом елозят энтими железками друг по дружке, масло сразу выдавливается из зоны контакта, до тех пор, пока поверхности не коснутся некоторой площадью. Масло при этом сглаживает шероховатость железок, и сопротивление движению и износ резко падают по сравнению с сухим трением.
    При этом, появляется и электрический контакт меж железками. Поскольку вокруг мест соприкосновения смазка, доступа воздуха нет,- и железки не корродируют, и контакт хороший, пока смазка живая. Вот это, получается полужидкостное трение. Или, если обтереть железки тряпкой, но бензином масло не смывать — полусухое трение, всё лучше чем сухое.

    Надеюсь, объяснил достаточно доходчиво.

    Потыкайте омметром в железку, потом намажьте места тыканья смазкой и опять потыкайте — вы не увидите увеличения сопротивления.

    Граничное трение забыли. Как раз наш вариант больше на него походит. Ну да не суть, собирать консилиум и исписывать доски мелом нет никакого желания, меня больше интересовали какие-то долговременные исследования в этой области и их результаты, чтобы определиться всё же какую смазку применить, пока что силикон мне видится более предпочтительным, т.к. технический вазелин предназначен, скорее, для консервации поверхностей на период хранения, либо каких-то статичных узлов. ЦИАТИМ — гигроскопичен, основное преимущество — морозостойкость, как раз таки для консервации его не рекомендуют применять.
    Опять же силиконов — три миллиона разных, я так понимаю ПМС-200 жидковат для смазки Пкн-ов, нужно что-то погуще.
    И таки да, кто как разбирает вышеупомянутые Пкн-ы? Может, есть какой-то хитрый метод? Полагаю, есть какой-то инструмент-съёмник, который разом раздвигает 4 паза и выдавливает шток из шайбы.

    Методика ( бесплатная ) извлечения серебра и драгметаллов в домашних условиях

    Я поделюсь своим опытом « добычи» из радиодеталей как серебра, так и золота. Мне думается, что поскольку технологии извлечения обоих драгоценных металлов из радио — и электродеталей почти идентичны, то стоит рассказать, как добывать и то и другое. Не сомневаюсь, что эта информация заинтересует многих, в первую очередь тех, для кого химия не была в школе скучным предметом. Конечно, в наше время, когда абсолютно все цвет металлы стали очень популярны, отыскать их на городских свалках почти невозможно, но радио — и электродеталей от старой аппаратуры ещё хватает.

    Кстати, многие просто не знают, как использовать старые телевизор (например «Рубин»), магнитофон, транзистор, микросхему и т. п. А ведь содержащихся в них драгоценных металлов хватит, чтобы позолотить или покрыть серебром блесну, кольцо или другую мелочевку. А то, что надо для этого, не так уж трудно сейчас приобрести в магазинах.

    Итак, разговор начнем с выделения серебра, как менее ценного металла.

    Получение серебра из сплавов

    Исходным материалом для выделения металлического серебра являются серебросодержащие сплавы, из которых изготавливают ряд электроразъемов и контактов.

    Предварительная подготовка «сырья» заключается в том, что у деталей и устройств, предназначенных для переработки, удаляют все лишнее. В первую очередь, все неметаллические части (пластмассу, полимеры, кристаллы полупроводников), а также металлические элементы, явно не содержащие серебра, например, части контактов, которые не соприкасаются при замыкании этих контактов.

    Проделав все вышеуказанное, вы значительно упростите процедуру растворения образцов, да и кислоты для этого потребуется меньше. Серебро содержащие образцы растворяют в 30%-ной (по объему) азотной кислоте при температуре 50. 60°С. Растворяют «сырье» мелкими порциями массой по 1. 3 грамм, при этом очередную порцию добавляют только после полного растворения предыдущей. Примерно на растворение 1 грамма сплава расходуется 3,6 мл 95%-ной азотной кислоты. В результате полного растворения серебро содержащего сплава образуется прозрачный раствор.

    Помните, что вся эта работа должна проводиться в хорошо проветриваемом помещении, даже если это кухня — форточка должна быть открытой.

    Теперь на очереди — получение хлорида серебра и осаждение его из раствора. Для этого в полученный при предыдущей операции раствор, нагретый примерно до 70°С, добавляют 7. 10%-ную соляную кислоту, постоянно перемешивая раствор. В результате из раствора начинает выделяться осадок (хлорид серебра). Учтите, перемешивать раствор и осторожно добавлять в него соляную кислоту продолжают до полного прекращения образования осадка (но переливать кислоту не следует!). Температуру раствора поддерживают до тех пор, пока осадок полностью не осядет на дно. Затем раствору дают остыть до 20. 25°С, после чего осторожно доливают к прозрачной жидкости над осадком еще чуть-чуть соляной кислоты той же концентрации, чтобы убедиться, что осадок из раствора выпал полностью. Далее раствор оставляют на ночь в темном месте, затем отфильтровывают осадок (хлорид серебра), просушивают его и сплавляют примерно при 1000°С с бикарбонатом натрия (питьевой содой), взяв 1,5 грамм соды на 1 грамм серебра. После охлаждения расплава металлическое серебро легко отмыть от других компонентов расплава водой из-под крана. На этом процедура получения серебра и заканчивается.

    А для лучшего восприятия материала предлагаю познакомиться с краткой характеристикой используемых в данном процессе химреактивов.

    Серебро (Ag). Мягкий белый металл, плотность которого 10,5 г/см³. Температура плавления 960,8°С, не растворяется в щелочах, но поддается действию кислот (кипящей концентрированной серной, а также азотной при комнатной температуре).

    Соляная кислота (HCl). Бесцветная прозрачная жидкость с острым запахом хлористого водорода. Максимальная концентрация кислоты около 36%; такой раствор имеет плотность 1,18 г/см³. Соляная кислота взаимодействует с азотнокислым серебром с образованием хлорида серебра, выпадающего в осадок.

    Бикарбонат натрия, гидрокарбонат натрия, питьевая сода (NaHCО3). Белый кристаллический порошок плотностью 2,16. 2,22 г/см³. При 100. 150°С полностью разлагается, превращаясь в Na2CО3. Применяется в медицине, например, для промывания кожи при попадании на нее кислоты.

    Все эти реактивы можно приобрести в хозяйственных магазинах.

    Получение золота из сплавов

    Исходным сырьем для получения металлического золота являются золотосодержащие сплавы, из которых изготавливают ряд электроразъемов и контактов, корпуса микросхем, транзисторов, часов и др. Мне приходилось использовать микросхемы следующих серий: 108, 109, 115, 119, 123, 128, 130, 133, 136, 149, 156, 162, 175, 178, 185, 188, 198, 229, 231, 249, 505 и др., а также корпуса транзисторов типа: Кт 301, Кт 603, Кт 605, Кт 608, Кт 644 и др. Характерным отличием подобных материалов является их золотистая окраска. Содержание золота в исходных материалах (образцах) составляет до 10% (по массе). Но надо иметь в виду, что содержание золота, указываемое в паспортных данных подобных изделий, часто не соответствуют действительности, и обычно оно бывает намного меньше значения, приводимого в паспорте. И учтите, что содержание золота в радиодеталях, изготовленных до 1989 года, соответствует паспортным данным, а вот в последующие годы золота в радиодетали стали добавлять значительно меньше (почти на 40%), чем обещали в паспорте. Это я так, чтобы не строили грандиозных планов, так как не всегда овчинка стоит выделки, как говорится в известной поговорке.

    С позолоченными корпусами часов работать можно без всякого подвоха.

    О предварительной подготовке золотосодержащих заготовок говорить не буду, так как все надо делать так же, как и при подготовке серебряного сырья.

    Золотосодержащие заготовки растворяют в смеси концентрированных соляной и азотной кислот (царская водка), взятых в объемном соотношении 3:1 (по объему) при температуре 60. 80°С. Также как и с серебром, работу эту проводят в проветриваемом помещении, о чем никогда не следует забывать!

    Растворяют заготовки мелкими порциями (массой по 1. 3 грамм), добавляя следующую порцию только после полного растворения предыдущей. На 1 г золотосодержащих элементов расходуется примерно 2,3 мл 36%-ной соляной кислоты и 0,65 мл 95%-ной азотной кислоты. Получившийся раствор, окрашенный в темно-зеленый цвет из-за присутствующих в нем большого количества солей меди, медленно выпаривают, сокращая его объем в несколько раз. Затем в оставшийся раствор доливают несколько мл соляной кислоты (до полного растворения бурого остатка соединений железа), а также насыпают в раствор хлорид натрия (поваренную соль) из расчета 0,2 г соли на 10 мл золотосодержащего раствора, после чего при слабом нагревании выпаривают раствор до «влажных солей». Затем доливают несколько мл кипящей воды и снова выпаривают раствор до «влажных солей», после чего добавляют опять несколько мл соляной кислоты и снова выпаривают. Подобная процедура выпаривания необходима для удаления остатков азотной кислоты, что позволит избежать потерь выделяемого золота.

    Для осаждения золота в полученный ранее раствор темно-зеленого цвета добавляют 0,5%-ный раствор гидрохинона (0,5 г гидрохинона в 100 мл воды) из расчета 1 мл гидрохинона на 100 мл раствора, избегая большого избытка гидрохинона. Получившуюся смесь выдерживают примерно 4 часа, периодически перемешивая ее. Выделившийся осадок (золото) отфильтровывают через плотный фильтр, промывают водой, подкисленной соляной кислотой, высушивают и переплавляют при температуре 1100°С под слоем буры, которая защищает золото от испарения при нагревании и плавлении.

    После охлаждения сплава королек металлического золота легко отделяется от остатков застывшей буры. Все!

    Теперь кратко об используемых при выделении золота химреактивах.

    Золото (Au). Мягкий металл плотностью 19,32 г/см³. Температура плавления 1046°С, не растворяется в кислотах и щелочах, но поддается действию смесей кислот: соляной и азотной («царской водки»), серной и азотной, серной и марганцовой.

    Азотная кислота (HNО3). Бесцветная жидкость с резким запахом, ядовита, вдыхание паров азотной кислоты приводит к отравлению, попадание на кожу вызывает ожоги. Плотность безводной кислоты 1,52 г/см³.

    Выпускают крепкую кислоту (плотность 1,372. 1,405 г/см³) и слабую (плотность 1,337. 1,367 г/см³).

    Гидрохинон [С6Н4(ОН)2]. Бесцветные кристаллы, плотность 1,358 г/см³, хорошо растворим в спирте. При 15°С, в 100 мл воды растворяется 5,7 г гидрохинона. Широко применяется в фотографии в качестве компонента проявителя.

    Бура, тетраборат натрия (Na2B4О7х10Н2О). Бесцветные кристаллы, плотность 1,69. 1,72 г/см³ растворяется в воде (1,6 г безводной соли в 100 мл воды при температуре 10°С).

    Хлорид натрия, хлористый натрий, поваренная соль (NaCl). Бесцветные кристаллы, плотность 2,161 г/см³. Хорошо растворяется в воде. Широко применяется в быту.

    Описанные реактивы можно приобрести в хозяйственных магазинах, магазинах фототоваров, магазинах химреактивов.

    P.S. всех хочу призвать, кто будет использовать эти методики, быть предельно аккуратными и осторожными. Не оставлять без присмотра используемые химреактивы, хранить их в плотно закрывающейся посуде в недоступных для непосвященных и, в первую очередь для детей, местах и при этом никогда не забывать, что береженого Бог бережет.

    Эти методики являются полными, подробными, точными и, что очень важно, проверенны на практике.

    Я уверен что они Вам пригодятся.

    теги: ключевые слова: серебро, золото, благородные металлы, ценные металлы, ценный металл серебро, ценный металл золото, отделяем серебро, отделяем золото, радио детали, из радио деталей, выпаивать, извлекать, влажных солей, получение серебра из сплавов, получение золота из сплавов, серебро блестит, пробуем всё, знать всё, знать как выделять серебро.

    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector