Astro-nn.ru

Стройка и ремонт
14 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Характер нагрузки потребителя электрической энергии виды

Характер нагрузки потребителя электрической энергии виды

Для правильного выбора и проверки проводников (кабелей и шин), а также трансформаторов по экономической плотности тока и соответственно пропускной способности, расчета потерь и отклонений напряжений, выбора устройств компенсации и защиты необходимо знать электрические нагрузки проектируемого объекта.

Основой рационального решения вопросов электроснабжения современных предприятий и энергосистем является правильное определение электрических нагрузок. При завышении нагрузок – появляются излишние затраты, а также недоиспользование мощностей дорогостоящего оборудования. При занижении – может приводить к перегрузкам энергосистемы и недоотпускам продукции. Ни первый, ни второй вариант не являются приемлемыми. Данную задачу осложняет еще и то, что имеется довольно много факторов и зависимостей, трудно поддающихся учету при проектировании.

Режимы работы предприятий

Графики и режимы работы предприятий и энергосистем довольно не стабильны и изменяются во времени, как показано на рисунке ниже:

Где: 1 и 2 – это активная и реактивная мощности соответственно.

На изменение графиков нагрузки влияет также внедрение новых технологий и производственных процессов, увеличение вентиляции санитарно – технической, а также наращивание производственных мощностей. Также повышение использования оборудования за счет уплотнения рабочего времени, автоматизации процессов производства и так далее.

Довольно много существует различных методов проведения расчетов электрических нагрузок, обзор и анализ их мы не будем приводить в данной статье. Эти методики постоянно совершенствуются как практически, так и теоретически и базируются на обследованиях наиболее характерных предприятиях. Обследования – основа для практического внедрения методик.

Сбор нагрузок.

Когда расчетная схема определена, когда принято решение, что же будет работать в нашей конструкции, а что «сидеть на шее», следует как можно тщательней разобраться с тем, что же воздействует на нашу конструкцию. И здесь мы впервые сталкиваемся с понятием «нагрузка». Нагрузка– это любое внешнее воздействие, которое влияет на нашу конструкцию. Список нагрузок не так уж велик:

  • Нагрузка от собственного веса (да, даже под своим собственным весом неправильно рассчитанная конструкция может сломаться) и от веса других элементов, материалов.
  • Нагрузка от веса людей, мебели, оборудования – в общем всего того, что может быть, может не быть, но важно это учесть и не просчитаться.
  • Нагрузка от снега.
  • Нагрузка от ветра.
  • Нагрузка от температурных воздействий (под действием температур материалы расширяются вплоть до разрушения, это явление также можно выразить в виде нагрузки).
  • Сейсмическая нагрузка.

Определение нагрузок

Для подсчета суммарных нагрузок и построения их графика необходимо определить нагрузки различных частей системы электроснабжения:

  • Мощные электроприемники (например, главные привода прокатных станов, электропечи, мощные электромашины) нужно изучать путем изучения технологического цикла, а также индивидуальных показателей режима работы. Построение графиков электрических нагрузок на основе технологических графиков работы цеха либо предприятия;
  • Определить суммарные резкопеременные нагрузки (например электропечи и т.д.) на основе графиков индивидуальных нагрузок с учетом фактора несовпадений индивидуальных графиков для снижения максимальной ударной нагрузки и для уменьшения колебания напряжения сети;
  • Определить нагрузку воздуходувных, насосных, компрессорных станций по удельному потреблению электрической энергии на единицу объема воздуха, воды и так далее;

Нагрузку электроприемников находящихся в резерве, сварочные ремонтные трансформаторы, пожарные насосы, а также электроприемников работающих в кратковременном режиме (как пример – задвижки, вентили, дренажные насосы и другие), при подсчете средних нагрузок, как правило, не учитывают. Питающие линии и силовые пункты должны рассчитываться с учетом влияния резервных электроприемников.

Характер нагрузки потребителя электрической энергии виды

Электрической нагрузкой какого-либо элемента сети называется мощность, которой нагружен данный элемент сети. Например, если по кабелю передается мощность 120 кВт, то нагрузка кабеля равна тоже 120 кВт. Точно так же можно говорить о нагрузке на шины подстанции или на трансформатор и т. д. Величина и характер электрической нагрузки зависят от потребителя электрической энергии, который может быть назван приемником электрической энергии .

Наиболее распространенным и важным в производстве приемником является электродвигатель. Главными потребителями электрической энергии на промышленных предприятиях являются трехфазные двигатели переменного тока. Электрическая нагрузка электродвигателя определяется величиной и характером механической нагрузки.

Нагрузки необходимо покрывать от источника электрической энергии, которым является электрическая станция. Обычно между генератором и потребителем электрической энергии существует целый ряд элементов электрической сети. Например, если двигатели, приводящие в движение механизмы в цеху питаются от сети напряжением 380 В, то в цеху или около цеха должна быть расположена цеховая трансформаторная подстанция, на которой установлены силовые трансформаторы для питания цеховых установок (для покрытия цеховых нагрузок).

Трансформаторы через кабели или воздушные провода питаются либо от более мощной подстанции, либо от промежуточного распределительного пункта высокого напряжения, или, что часто встречается на предприятиях, от тепловой электрической станции предприятия. Во всех случаях покрытие нагрузок осуществляется от генераторов электрической станции. При этом минимальное значение нагрузка имеет на конечном пункте, например в цехе.

По мере приближения к источнику питания нагрузка растет за счет потерь энергии в передающих звеньях (в проводах, трансформаторах и т. д.). Наибольшего значения она достигает у источника питания – у генератора электрической станции.

Поскольку нагрузка измеряется в единицах мощности, она может быть активная РкВт, реактивная QкBap и полная S = √( P 2 + Q 2 ) кВА.

Нагрузка также может быть выражена в единицах тока. Если, например, по линии протекает ток I = 80 А, то эти 80 А являются нагрузкой линии. При прохождении тока по любому элементу установки выделяется тепло, в результате чего этот элемент (трансформатор, преобразователь, шины, кабели, провода и др.) нагревается.

Допустимые мощности (нагрузки) на данные элементы электротехнической установки (машины, трансформаторы, аппараты, провода и др.) определяются величиной допустимой температуры. Ток, протекающий по проводам, помимо потерь мощности, вызывает потери напряжения, которые не должны превышать величин, регламентированных руководящими указаниями.

В реальных установках нагрузка в виде тока или мощности не остается в течение суток неизменной, и поэтому в практику расчетов введены определенные термины и понятия различных видов нагрузок.

Номинальная активная мощность электродвигателя – мощность, развиваемая двигателем на валу при номинальном напряжении и токе якоря (ротора).

Номинальная мощность любого приемника , кроме электродвигателя это потребляемая им активная мощность Рн (кВт) или полная мощность S н (кВА) при номинальном напряжении.

Паспортная мощность Рпасп электроприемника в повторно-кратковременном режиме приводится к номинальной длительной мощности при ПВ = 100% по формуле P н = P пасп √ПВ

При этом ПВ выражен в относительных единицах. Например, двигатель с паспортной мощностью Рпасп = 10 кВт при ПВ = 25%, приведенный к номинальной длительной мощности ПВ = 100%, будет иметь мощность P н = 10 √25 = 5 кВт.

Групповая номинальная мощность (установленная мощность) – сумма номинальных (паспортных) активных мощностей отдельных рабочих электродвигателей, приведенных к ПВ = 100%. Например, если Рн1 = 2,8, Рн2 = 7, Рн3 = 20 кВт, Р4пасп= 10 кВт при ПВ = 25%, то P н = 2,8 + 7 + 20 + 5 = 34,8 кВт.

Расчетная, или максимальная активная, Рм, реактивная Qм и полная S м мощность, а также максимальный ток I м представляют собой наибольшие из средних величин мощностей и токов за определенный промежуток времени, измеряемый 30 мин. Вследствие этого расчетная максимальная мощность иначе называется получасовой или 30-минутной максимальной мощностью Рм = Р30. Соответственно, I м= I зо.

Расчетный максимум тока I м = I30 = √(P м 2 + Q м 2 )/(√3 U н) или I м = I30 = P м/( √3 U нС osφ) , где С osφ – средневзвешенное значения коэффициента мощности за расчетное время (30 мин.)

Графиком электрических нагрузок принято называть графическое изображение расходуемой мощности за определенный отрезок времени. Различают суточный и годовой графики нагрузок. Суточный график показывает зависимость расходуемой мощности от времени в течение суток. По вертикали откладывается нагрузка (мощность), по горизонтали — часы суток. Годовой график определяет зависимость расходуемой мощности от времени в течение года.

По своей форме графики электрических нагрузок для различных производств и потребителей сильно отличаются друг от друга.

Виды электрических нагрузок

Для того, чтоб выполнить проект системы электроснабжения нужно определить следующие виды нагрузок:

  • Средние – мощность, потребленная за максимально загруженную смену. Также могут быть среднемесячные или среднегодовые. Средняя мощность, потребленная за год, нужна для определения годовых потерь электрической энергии, а средняя мощность за максимально загруженную смену – по ней определяют расчетный максимум;
  • Максимально – кратковременные (пиковые) – их определение нужно для проверки колебания напряжения в сетях, для определения параметров срабатывания токовой защиты, выбора плавких предохранителей, проверки электрических сетей по условиям самозапуска электрических машин;
  • Максимальные имеющие различную продолжительность (10, 30, 60 мин) – их используют чтоб произвести расчет электрической сети по нагреву, определения потерь мощности максимальных в сетях, выбор элементов сети по плотности тока (экономической), для определение отклонений напряжений и потерь.

В отдельных отраслях при проектировании систем электроснабжения могут вводить некоторые уточнения и допущения, которые базируются на довольно хорошем знании специфики технологического процесса данной отрасли, а также выявлении, более детальном для данной отрасли, расчетных коэффициентов, расходов энергии, числа часов использования максимума.

Расчет электрических мощностей промышленного транспорта, испытательных станций, лабораторных установок производят по другим методикам, которые учитывают специфику работы данных установок.

Что такое мощность (Р) электротока

Электрическая мощность является физической величиной, характеризующей скорость преобразования или передачи электрической энергии. Единицей измерения по Международной системе единиц (СИ) является ватт, в нашей стране обозначается Вт, международное обозначение — W.

Что влияет на мощность тока

На мощность (Р) влияет величина силы тока и величина приложенного напряжения. Расчет параметров электроэнергии выполняется еще на стадии проектирования электрических сетей объекта. Полученные данные позволяют правильно выбрать питающий кабель, к которому будут подключаться потребители. Для расчетов силы электротока используется значения напряжения сети и полной нагрузки электрических приборов. В соответствии с величиной силы электротока выбирается сечение жил кабелей и проводов.

Отличия мощности при постоянном и переменном напряжении

Ведем обозначения электрических величин, которые приняты в нашей стране:

  • Р − активная мощность, измеряется в ваттах, обозначается Вт;
  • Q − реактивная мощность, измеряется в вольт амперах реактивных, обозначается ВАр;
  • S − полная мощность, измеряется в вольт амперах, обозначается ВА;
  • U − напряжение, измеряется в вольтах, обозначается ВА;
  • I − ток, измеряется в амперах, обозначается А;
  • R − сопротивление, измеряется в омах, обозначается Ом.

Назовем основные отличия P на постоянном и Q на переменном электротоке. Расчет P на постоянном электротоке получается наиболее простым. Для участков электрической цепи справедлив закон Ома. В этом законе задействованы только величина приложенного U (напряжения) и величина сопротивления R.

Расчет S (полной мощности) на переменном электротоке производится несколько сложнее. Кроме P, имеется Q и вводится понятие коэффициента мощности. Алгебраически складывая активную P и реактивную Q, получают общую S.

Потребители электрической энергии

При проектировании системы электроснабжения потребители электроэнергии (отдельный электроприемник, группа электроприемников, цех, предприятие и др.) рассматривают в качестве электрических нагрузок.

По характеру нагрузок различают потребителей активной и реактивной мощности. Активную мощность потребляют многие термоэлектрические установки, электропечи, осветительные установки и др. Потребителями реактивной мощности являются силовые трансформаторы, электродвигатели, конденсаторные батареи и др. Как правило, эквивалентная нагрузка большинства потребителей электроэнергии является активно–индуктивной, а, следовательно, потребляется и активная, и реактивная электроэнергия.

По режиму работы отдельные электроустановки потребителей могут работать в длительном тепловом режиме (электродвигатели насосов, вентиляторов, компрессоров, конвейеров и т.п.), кратковременном тепловом режиме (электродвигатели шиберов, задвижек, шаровых кранов и т.п.) или повторно–кратковременном тепловом режиме (электродвигатели подъемно–транспортных механизмов, роботов–манипуляторов, металлорежущих станков и др.).

По величине мощности и напряжения различают потребителей электроэнергии малой, средней и большой мощности, низкого и высокого напряжения. К потребителям низкого напряжения и малой и средней мощности относят потребителей, питающихся напряжением до 1 кВ (220, 380 и 660 В) и мощностью до 100 кВт. К потребителям высокого напряжения и большой мощности относят потребителей, питающихся напряжением свыше 1 кВ (3, 6 и 10 кВ), и мощностью свыше 100 кВт, однако ряд потребителей большой мощности получает питание по сети 380–660 В.

По роду тока различают потребителей переменного тока промышленной частоты 50–60 Гц (асинхронные и синхронные двигатели, тиристорные преобразователи и др.), повышенной частоты 0,1–1 кГц (электроинструмент, высокоскоростной электропривод, шлифовальные станки и др.), высокой частоты 1–10 кГц и сверхвысокой частоты свыше 10 кГц (печи индуцированного нагрева, СВЧ–печи и др.).

Читать еще:  Установка антенной розетки: подключение кабеля

По степени надежности электропитания различают потребителей первой, второй и третьей категории [1].

Электроприемники первой категории – электроприемники, перерыв электроснабжения которых может повлечь за собой опасность для жизни людей, угрозу для безопасности государства, значительный материальный ущерб, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства, объектов связи и телевидения.

Из состава электроприемников первой категории выделяется особая группа электроприемников, бесперебойная работа которых необходима для безаварийного останова производства с целью предотвращения угрозы жизни людей, взрывов и пожаров.

Электроприемники второй категории – электроприемники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, массовым простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей.

Электроприемники третьей категории – все остальные электроприемники, не относящиеся к первой и второй категориям.

Структура потребления электроэнергии в РФ основными отраслями в % от выработанной электроэнергии:

Израсходовано для собственных нужд

Израсходовано при передаче и распределении

по электрической сети общего пользования …… 8,5

Всего полезно отпущенной электроэнергии …… 85,4

Экспорт в другие страны ………………………… 5,0

Итого отпущено потребителям в стране ..………. 80,4

– сельскому хозяйству ……………………………. 6,0

– жилищно–коммунальному хозяйству ………….. 8,2

– прочим потребителям …………………………. 3,4

Главным потребителем электроэнергии является промышленность. Наиболее энергоемкими отраслями промышленности являются черная и цветная металлургия, химическая промышленность и машиностроение. В этих отраслях промышленности до 70 % электроэнергии потребляют электродвигатели. В электротехнологических установках (электропечах, электролизерах и др.) потребляется до 25–35 %. На освещение расходуется 5–10 % электроэнергии.

Графики электрических и тепловых нагрузок

Энергосистем

Потребляемая мощность энергосистемы меняется в течение суток, по дням недели и месяцам года, что объясняется переменным характером потребления и его структурой. Основную часть электрической нагрузки составляет промышленное потребление электроэнергии односменными, двухсменными и трехсменными предприятиями (рис. 1.1, а). Суточный график электрической нагрузки энергосистемы отличается также по дням недели (рабочий и нерабочий день) и по временам года. Наибольшие электрические нагрузки имеют место осенью и зимой (осенний и зимний максимум), т.е. в период отопительного сезона. Формирование суточного графика электрической нагрузки рабочего дня рассматривается как сумма нагрузки различных категорий потребителей. В результате наложения электрической нагрузки двухсменных и односменных предприятий и нагрузки, имеющей пиковый характер, получается характерный суточный график электрической нагрузки энергосистемы с ночным спадом, последующим быстрым утренним ростом нагрузки до утреннего пика, дневным неглубоким спадом, и последующим вечерним пиком, после которого следует быстрый спад нагрузки. Параллельная работа электростанций энергосистемы помогает покрывать этот переменный суточный график электрической нагрузки.

Для обеспечения утреннего и особенно вечернего максимума подключаются пиковые электростанции, в часы ночного провала электрической нагрузки часть турбин и соответственно котлов разгружается и несет минимальную технически допустимую нагрузку (технический минимум), часть турбин и котлов выводится в резерв.

На рис. 1.1, б показаны суточные графики электрической нагрузки энергосистемы по рабочим и выходным дням недели, а также в субботу – график промежуточный между пятницей (рабочим днем) и воскресеньем (выходным днем).

Суммарная электрическая нагрузка распределяется между электростанциями энергосистемы с учетом их маневренности, т.е. способности к работе по переменному графику нагрузки, и тепловой экономичности.

На рис. 1.2, а, б приведен характерный суточный график электри­ческой нагрузки энергосистемы в зимний и летний дни. На рис. 1.2, в показан годовой график продолжительности электрических нагрузок, который строится по суточным графикам нагрузки – зимнему и летнему, рабочего и нерабочего дней. Годовой график электрических нагрузок по продолжительности (график Росандера) описывается формулой

,

где P, Pмакс – соответственно текущее и макси­мальное значение мощности;

τ, τгод – соответственно текущее и годовое (8760 ч) время;

f – отношение минимальной и максимальной мощности годового графика нагрузки; f = Pмин / Pмакс;

f – коэффициент годовой нагрузки;

λ — показатель степени, зависящий от коэффициента годовой нагрузки; .

Рис. 1.2. Суточный график электрической нагрузки

энергоблока: а – зимний день; б – летний день; в – построение

годового графика электрических нагрузок по продолжительности

Годовое потребление электрической энергии равно площади под кривой на графике Росандера (рис. 1.2, в):

.

Тепловая энергия требуется для технологических процессов и силовых установок промышленности, для отопления и вентиляции производственных, жилых и общественных зданий, кондиционирования воздуха и бытовых нужд (горячего водоснабжения). Для производственных целей обычно требуется насыщенный пар давлением от 0,15 до 1,6 МПа. Однако чтобы уменьшить потери при транспортировке и избежать необходимости непрерывного дренирования воды из коммуникаций, с электростанции пар отпускают несколько перегретым. На отопление, вентиляцию и бытовые нужды с теплоэлектроцентрали обычно горячая вода поступает с температурой от 70 до 150 °С в городские тепловые сети и от 70 до 180 °С – в пригородные.

Различают местное и централизованное теплоснабжение. Система местного теплоснабжения обслуживает одно или несколько зданий, система централизованного – жилой или промышленный район. В системах местного теплоснабжения источниками тепла служат печи, водогрейные котлы, водонагреватели (в том числе солнечные) и т.п. В РФ наибольшее применение нашло централизованное теплоснабжение (в связи с этим термин «теплоснабжение» чаще всего употребляется применительно к системам централизованного теплоснабжения). Его основные преимущества перед местным теплоснабжением: значительное снижение расхода топлива и эксплуатационных затрат (например, за счет автоматизации котельных установок и повышения их КПД); возможность использования низкосортного топлива; уменьшение степени загрязнения воздушного бассейна и улучшение санитарного состояния населенных мест.

Централизованная система теплоснабжения включает в себя источник теплоты (промышленная и районная отопительная котельная, теплоэлектроцентраль), трубопроводы для транспортирования теплоты (паровые или водяные тепловые сети) и установки потребителей, использующие теплоту для технологических или бытовых нужд и присоединяемые к сети через тепловые пункты.

Централизованное теплоснабжение с ТЭЦ в качестве источника теплоты называется теплофикацией. Последняя благодаря комбинированной выработке электроэнергии и теплоты на ТЭЦ дает существенную экономию топлива.

Теплота на бытовые нужды (горячее водоснабжение) может подаваться с водой, поступающей к потребителю из тепловой сети, и с предварительно нагретой водопроводной водой. При горячем водоснабжении, осуществляемом сетевой водой, схему называют открытой, при горячем водоснабжении предварительно нагретой водопроводной водой — закрытой схемой.

Технологические потребители являются, как правило, круглогодовыми и имеют преимущественно ровный суточный график нагрузки (нефтеперегонные заводы, нефтехимические и химические комбинаты и др.). Некоторые теплопотребляющие предприятия работают в две смены и имеют ночной спад тепловой нагрузки. Подача пара технологическим потребителям осуществляется обычно по однотрубному паропроводу надземной прокладки.

Тепловая нагрузка электростанции, определяемая расходом теплоты на производственные процессы и бытовые нужды (горячее водоснабжение), практически не зависит от наружной температуры воздуха. Однако летом эта нагрузка несколько меньше, чем зимой. В то же время промышленная и бытовая тепловые нагрузки резко изменяются в течение суток. Кроме того, среднесуточная нагрузка электростанции при использовании теплоты на бытовые нужды в конце недели и предпраздничные дни значительно выше, чем в другие рабочие дни недели. Типичные графики изменения суточной тепловой нагрузки промышленных предприятий и горячего водоснабжения жилого района показаны на рис. 1.3 и 1.4.

Отопительная тепловая нагрузка, расход теплоты на вентиляцию и кондиционирование воздуха зависят от температуры наружного воздуха и имеют сезонный характер. Расход теплоты на отопление и вентиляцию наибольший зимой и полностью отсутствует в летние месяцы; на кондиционирование воздуха теплота расходуется только летом (поэтому расширение сферы применения кондиционированного воздуха приведет к повышению эффективности теплофикации).

Для крупных городских и пригородных ТЭЦ основным видом тепловой нагрузки является отопительная, и поэтому значение τмакс. для них ниже числа часов использования максимума электрической нагрузки.

Рис. 1.3. График суточной тепловой нагрузки предприятий:

Рис. 1.4. Суточные графики изменения расхода теплоты

на бытовые нужды района:

а – в рабочие дни недели; б – по субботам.

Потребление теплоты на горячее водоснабжение является круглогодичным, однако средняя нагрузка летом снижается относительно зимней на 15–25%. График нагрузки горячего водоснабжения Qг в течение одних суток приведен на рис. 1.5 и подобен суточному графику потребления электроэнергии.

Ночью имеет место сильный спад нагрузки, затем утром – пик нагрузки, за которым следуют дневной спад примерно до среднесуточной нагрузки Qср и, наконец, вечерний пик. Суточные графики нагрузки горячего водоснабжения различны для различных дней недели. Особенно высокий вечерний пик эта нагрузка имеет в субботу.

Рис. 1.5. Суточный график нагрузки горячего

При расчете тепловых нагрузок принимается постоянная средненедельная нагрузка горячего водоснабжения, которая подсчитывается по нормам на одного жителя и затем суммируется.

Параметры сети и характер нагрузки

Параметры сети и характер нагрузки

Номинальным напряжением приемников электрической энергии называется напряжение, при котором они предназначены для нормальной работы.

Каждая электрическая сеть характеризуется номинальным напряжением приемников электрической энергии, в том числе и трансформаторов, которые от нее питаются. Отличие действительного напряжения на выводах приемника электрической энергии от номинального напряжения является одним из основных показателей качества электрической энергии. Напряжение у потребителя (подстанция, завод, трансформаторный пункт) или у отдельного приемника (электродвигатель, лампа накаливания) никогда не остается постоянным в течение суток. В процессе нормальной эксплуатации электрической сети наблюдаются плавные, закономерные отклонения напряжения от среднего уровня или резкие кратковременные колебания напряжения, вызванные внезапным изменением режимов работы приемников. Поддержать напряжение у потребителей неизменным и равным номинальному практически невозможно. Пределы допустимых отклонений напряжения, которые удобно выражать в процентах от номинального напряжения (δU), пользуясь формулой:

Очевидно, что отклонение напряжения положительно, когда напряжение у приемника U2 выше номинального Uн и отрицательно — в противоположном случае. Ответить на вопрос, какое из отклонений, положительное или отрицательное, лучше, в ряде случаев весьма трудно. Для этого каждый приемник рассматривают с точки зрения его назначения, места установки и режима работы, так как совсем не безразлично, применена ли лампа накаливания в светильнике наружного освещения или над рабочим местом в цехе. Во всех случаях следует руководствоваться нормами предельно допустимых отклонений напряжения у приемников.

Из таблицы видно, для одних и тех же приемников, например ламп накаливания, в условиях жилых помещений можно допустить отклонения в пределах ± 5%, так как это практически не отразится на жителях, в то время как снижение напряжения больше чем на 2,5 % у ламп рабочего освещения недопустимо из-за возможного брака. При снижении напряжения на 5 % номинального светового потока лампы накаливания снижается до 82,5 %, а люминесцентные лампы перестают работать устойчиво. При повышении напряжения, например, на 5 % срок службы лампы снижается до 350 часов вместо нормальных 1000 часов. Мощность нагревательных приборов, вращающий момент асинхронных двигателей и мощность конденсаторов изменяются пропорционально квадрату, то есть второй степени напряжения. Поэтому даже незначительные изменения напряжения резко ухудшают основные характеристики этих приемников.

Параметры электрической сети включают в себя параметры линейных элементов (индуктивные) сопротивления проводов и кабелей, и те же параметры трансформаторов. При решении вопросов, связанных с регулированием напряжения сети, составляется расчетная схема замещения, в простейшем случае представляющая собой последовательное соединение всех активных и индуктивных сопротивлений. для превращения схемы сети в схему замещения необходимо определить параметры линейных элементов, для чего необходимо знать протяженность линий, марку провода и его сечение, а также расстояние между проводами. К параметрам линейных элементов сети, оказывающим влияние на величину напряжения у приемников, относятся величины:

r — активное сопротивление на каждый километр, Ом;

x — индуктивное (реактивное) сопротивление на каждый километр линии, Ом.

Индуктивное сопротивление x для трехфазной линии тем больше, чем чем больше расстояние между проводами. Это объясняется тем, что соединение провода своим магнитным потоком уменьшают ЭДС самоиндукции в проводах и тем в большей степени, чем они ближе друг к другу. Для кабельных линий или проводов, расположенных в одной трубе, расстояние между отдельными жилами незначительно и поэтому x, близко к 0,08 Ом/км. В линиях постоянного тока индуктивное сопротивление отсутствует, так как там нет переменного магнитного поля. Для заводских сетей, проложенных на изоляторах или роликах, при расстояниях между проводами 50-150 мм индуктивное сопротивление составляет примерно 0,3 Ом/км, а для воздушных сетей близко к 0,4 Ом/км.

Читать еще:  Слава созидателям

Сопротивления линий могут быть легко получены по формулам:

где l — протяженность линии, км.

В заводских сетях схема замещения силового трансформатора, связывающего сеть высокого и низкого напряжений, принимаются состоящей только из последовательно соединенных активного Rт и индуктивного Xт сопротивлений. Для определения этих параметров необходимо воспользоваться следующими данными заводского паспорта трансформатора или по данным ГОСТ: номинальная мощность трансформатора Sн, кВА; номинальное линейной напряжение обмотки низшего или высшего напряжения Uн, кВ; потери в обмотках или потери короткого замыкания ΔPкз, кВт; напряжение короткого замыкания, uк, %.

Для расчета используются формулы:

Электроснабжение промышленных предприятий осуществляется, как правило, по распределительной воздушной или кабельной сети 6, 10 или 35 кВ. Распределительная сеть высокого напряжения через трансформаторы связана с сетью низкого напряжения. параметры сети высокого, низкого напряжений и самого трансформатора можно только тогда связывать электрической схемой замещения, когда все они предварительно будут рассчитаны или, как говорят, приведены к одному напряжению, принятому за базисное. Пересчет сопротивлений на «базисное» напряжение и получение «приведенных» сопротивлений производится по формулам:

где R’, X’ — приведенные величины активного и реактивного сопротивлений; U’ — базисное, обычно высшее напряжение трансформатора; Uн — номинальное напряжение того участка сети, на котором находится пересчитываемое сопротивление.

После приведения сопротивлений к одному напряжению сеть, имеющую одну ступень трансформации, можно рассматривать как сеть одного базисного напряжения. Схема замещения для сети с одной ступенью трансформации приведена на рисунке ниже.

Приемники электрической энергии могут быть разделены на две группы.

К первой из них следует отнести приемники, в которых электрическая энергия целиком переходит в тепло, например лампы накаливания, дуговые печи, нагревательные приборы обычного типа.

Ко второй группе относятся приемники, действие которых невозможно без наличия переменного магнитного поля. К ним относятся все электродвигатели переменного тока, индукционные печи, трансформаторы и т.д. В этих приемниках энергии в течение четверти периода накапливается магнитное поле, в течение следующей четверти уходит из магнитного поля обратно к источнику. Эти чередующиеся перемещения энергии в линии вызывают протекание по линии дополнительного тока, называемого намагничивающим или реактивным Iр. Ток этот отстает по времени от напряжения на четверть периода (0,005 секунд). Для пояснения процессов, происходящих в цепях переменного тока, принято пользоваться тригонометрическим соотношением между сторонами прямоугольного треугольника ОАВ (рисунок ниже).

При этом ток I рассматривается как вектор, совпадающий с гипотенузой треугольника, а катеты рассматриваются как составляющие тока — активная Iа и реактивная Iр. Амперметр, включенный в рассечку линии, показывает величину тока I, проходящего по цепи, из которого только часть Iа обеспечивает развитие активной мощности. Реактивная слагающая тока Iр есть следствие процесса перетока энергии магнитного поля, которая загружает сеть, создавая в ней дополнительные потери энергии и напряжения. Чтобы судить об экономичности использования сети и оборудования по величине тока и напряжения при наличии реактивной составляющей тока, используется как называемый коэффициент мощности, который из векторной диаграммы определяется как:

cosф = P/ S или cosф = Iа / I.

Подобные соотношения справедливы и для мощности одной фазы трехфазной системы. Активная слагающая тока Iа = I·cosф входит в выражение активной мощности, определяя ее при заданном напряжении U:

Реактивная слагающая тока Iр = I· sinф входит в выражение реактивной мощности, определяя ее при заданном напряжении U:

Коэффициент мощности для осветительной или, как говорят, чисто активной нагрузки близок к единице. При выборе способа и средств регулирования напряжения на зажимах трехфазного приемника с симметричной нагрузкой фаз необходимо, кроме параметров питающей линии, установить характер самой нагрузки, то есть активную и реактивную составляющие тока (мощности). проще всего это можно осуществить с помощью имеющихся практически у каждого потребителя электросчетчиков «активной» и «реактивной» энергии.

Характер нагрузки потребителя электрической энергии виды

Название: Электрические системы и сети — Методические указания (И.Л. Кескевич)

Жанр: Информатика

Просмотров: 1321

8.1. характеристики нагрузок потребителей

Электрические сети сооружаются для передачи электрической энергии от ее источников (электрических станций) к потребителям (промышленные предприятия, жилые дома и т.д.). Требуемая потребителями мощность определяет их электрическую нагрузку. От характера нагрузки зависят требования, предъявляемые к электрической сети. Поэтому определение свойств (характеристик) нагрузки, представление ее в схемах замещения и расчетных схемах являются важной задачей.

Одной из главных характеристик нагрузок потребителя является значение ее активной и реактивной мощности. Мощность, потребляемая нагрузкой, зависит от режима работы потребителя, а также от напряжения и частоты электрической сети. Будем считать, что режим работы потребителя известен и его требуемая мощность задана. Характеристики, отражающие изменение мощности, потребляемой нагрузкой при изменении подведенного к ней напряжения и частоты, называются статическими характеристиками по напряжению Pн(U), Qн(U) и по частоте Pн(f), Qн(f). Эти зависимости отвечают установившемуся режиму. Аналогичные характеристики, но отвечающие тому или иному переходному режиму, называются динамическими.

На статической характеристике каждую ее точку можно считать соответствующей установившемуся режиму. При малых отклонениях от какого-либо установившегося режима изменение мощности может быть представлено следующими выражениями:

где aU, af, bU, bf – коэффициенты, каждый из которых называется регулирующим эффектом нагрузки, соответственно активной и реактивной мощности по напряжению и частоте.

Отдельные потребители электрической энергии (лампы накаливания, асинхронные и синхронные двигатели и т.д.) имеют разные статические характеристики. Для расчетов электрических сетей представляют интерес характеристики не отдельных потребителей электроэнергии, а их совокупностей, определяющих потребление мощности в узле нагрузки (или подстанции). К шинам подстанции могут быть подключены несколько потребителей, а в ряде случаев узел нагрузки соответствует целому району. Такие обобщенные статические характеристики определяются свойствами отдельных потребителей и их относительной мощностью в общей совокупности нагрузки. Поэтому с наибольшей точностью статические характеристики могут быть получены по данным натурных испытаний. В тех случаях, когда эти нагрузки неизвестны, для расчетов используют типовые обобщенные статические характеристики. Эти характеристики получены расчетным путем для комплексной нагрузки с определенным составом потребителей.

Типовые статические характеристики имеют вид, показанный на рис. 8.1.

На рис.8.1, а одна из характеристик реактивной мощности относится к нагрузке, получающей энергию при напряжении 10 кВ, другая построена для шин узла нагрузки с напряжением 110 кВ.

Рис. 8.1. Типовые статические характеристики нагрузок:

а – по напряжению; б – по частоте

Содержание

Читать: Аннотация
Читать: Предисловие
Читать: 1. конструкции и электрические параметры лэп
Читать: 1.2. конструкции кл
Читать: 2. конструкции и электрические параметры трансформаторов
Читать: 2.1. схемы замещения трансформаторов
Читать: 2.2. трансформаторы с расщепленной обмоткой
Читать: 2.3. вопросы и упражнения
Читать: 3. составление схем замещенияэлектрических сетей
Читать: 3.1. схемы электрических сетей
Читать: 3.4. упражнения
Читать: 4. расчет режима лэп по току нагрузки
Читать: 4.1. основные соотношения
Читать: 4.4. упражнения
Читать: 5. расчет режима лэп по мощности нагрузки
Читать: 5.1. основные соотношения
Читать: 6. расчет режима разомкнутой электрической сети
Читать: 6.1. алгоритм расчета
Читать: 7. расчет режима замкнутой электрической сети
Читать: 7.1. замкнутые электрические сети
Читать: 7.2. алгоритм расчета
Читать: 8. представление нагрузок потребителей в расчетах режимов
Читать: 8.1. характеристики нагрузок потребителей
Читать: 8.2. представление нагрузок в расчетах режимов схем электрических сетей
Читать: Список использованных источников
Читать: Приложение

Классификация потребителей

В зависимости от выполняемой функции всех потребителей электрической энергии можно разделить на группы:
1) Промышленные и приравненные к ним
2) Производственные сельскохозяйственные
3) Бытовые
4) Общественно – коммунальные (учреждения, организации торговли)

К 1й группе можно отнести:
Строительные, транспорт, шахты, рудники, карьеры, нефтяные, газовые вышки и другие промыслы. Эти предприятия энергоёмки и требуют по возможности бесперебойного снабжения питания. Энергическая нагрузка промышленных предприятий могут в значительной мере отличаться друг от друга. В частности, нагрузка коммунально-бытовых предприятий с преимущественно осветительной нагрузкой отличаются большой неравномерностью в разное время суток. Промышленные предприятия отличаются более равномерной нагрузкой, зависящей от вида производства, режим рабочего дня и количества смен.
Графики электрических нагрузок строятся в прямоугольных координатах и представляются плавными кривыми или ломаными линиями.
Наглядное представление о характере изменения нагрузки дает график нагрузок, который имеет следующий вид:

Суточный график активной (Р), реактивной (Q) нагрузки

Из суточного графика заметно, что в наибольшей степени загруженной сменой является вечерняя (с 16 до 24 часов), не так загруженной – ночная (с 23 до 7 часов). Максимальная нагрузка наблюдается с 18 до 20 часов. В этот период наряду с силовой нагрузкой технологического оборудования добавляется осветительная нагрузка.

Все электрические станции работают параллельно на общую систему при такой работе резервная мощность может быть уменьшена. При объединении разных типов электростанций (тепловые, гидро, ветреные, гидро-аккумулируюшие) можно более полно использовать энергетические ресурсы. Электростанции подключаемые к системе в часы наибольших нагрузок называются пиковыми. К ним относят ГЭС, ГАЭС (аккумулирующая), электростанция на основе газовых турбин. В процессе работы энергосистемы могут возникать различные аварии. Применение устройств защиты позволяет отключить часть этой системы и локализовать эту аварию. К этим системам защиты относятся автоматы повторного подключения и автоматы включения резерва (АВР). Устройства АПВ предназначены для ликвидации различных видов коротких замыканий, в частности, при появлении дугового ГАЗЕ на воздушной линии, линия отключится под действием релейной защиты, дуга гасит и восстанавливается диэлектрические способности воздуха. Устройства АПВ автоматически включает напряжение на линии.

Двухвходовой АВР на 3 автоматах ABB с приводами MOE

Схема АВР на 3 автоматах принципиальная, силовая часть с реле контроля напряжения.

Обозначения символов на электрических схемах

Электрические сети подразделяются по следующим признакам:
1) Напряжение сети (низковольтные сети (до 1 кВ), высоковольтные (более 1 кВ).
2) По роду тока (постоянный и переменный)
3) По назначению (по характеру потребителей и от назначения территорий на которой сети находятся).
Они делятся на:
— городские сети промышленных предприятий,
— сети электрического транспорта,
— сети сельской местности.

В свою очередь сети можно разделить на питающие и распределительные.
По конструктивному выполнению сетей:
— линии могут быть воздушными,
— кабельными,
— токопроводами (для больших питающих токов, например в электроплавильнях.) В зависимости от выполняемой функции всех потребителей электрической энергии можно разделить на группы:
1) Промышленные и приравненные к ним
2) Производственные сельскохозяйственные
3) Бытовые
4) Общественно – коммунальные (учреждения, организации торговли)

К 1й группе можно отнести:
Строительные, транспорт, шахты, рудники, карьеры, нефтяные, газовые вышки и другие промыслы. Эти предприятия энергоёмки и требуют по возможности бесперебойного снабжения питания. Энергическая нагрузка промышленных предприятий могут в значительной мере отличаться друг от друга. В частности, нагрузка коммунально-бытовых предприятий с преимущественно осветительной нагрузкой отличаются большой неравномерностью в разное время суток. Промышленные предприятия отличаются более равномерной нагрузкой, зависящей от вида производства, режим рабочего дня и количества смен.
Графики электрических нагрузок строятся в прямоугольных координатах и представляются плавными кривыми или ломаными линиями.
Наглядное представление о характере изменения нагрузки дает график нагрузок, который имеет следующий вид:

Суточный график активной (Р), реактивной (Q) нагрузки

Из суточного графика заметно, что в наибольшей степени загруженной сменой является вечерняя (с 16 до 24 часов), не так загруженной – ночная (с 23 до 7 часов). Максимальная нагрузка наблюдается с 18 до 20 часов. В этот период наряду с силовой нагрузкой технологического оборудования добавляется осветительная нагрузка.

Все электрические станции работают параллельно на общую систему при такой работе резервная мощность может быть уменьшена. При объединении разных типов электростанций (тепловые, гидро, ветреные, гидро-аккумулируюшие) можно более полно использовать энергетические ресурсы. Электростанции подключаемые к системе в часы наибольших нагрузок называются пиковыми. К ним относят ГЭС, ГАЭС (аккумулирующая), электростанция на основе газовых турбин. В процессе работы энергосистемы могут возникать различные аварии. Применение устройств защиты позволяет отключить часть этой системы и локализовать эту аварию. К этим системам защиты относятся автоматы повторного подключения и автоматы включения резерва (АВР). Устройства АПВ предназначены для ликвидации различных видов коротких замыканий, в частности, при появлении дугового ГАЗЕ на воздушной линии, линия отключится под действием релейной защиты, дуга гасит и восстанавливается диэлектрические способности воздуха. Устройства АПВ автоматически включает напряжение на линии.

Читать еще:  Порядок крепления пенопласта к стене

Двухвходовой АВР на 3 автоматах ABB с приводами MOE

Схема АВР на 3 автоматах принципиальная, силовая часть с реле контроля напряжения.

Обозначения символов на электрических схемах

Электрические сети подразделяются по следующим признакам:
1) Напряжение сети (низковольтные сети (до 1 кВ), высоковольтные (более 1 кВ).
2) По роду тока (постоянный и переменный)
3) По назначению (по характеру потребителей и от назначения территорий на которой сети находятся).
Они делятся на:
— городские сети промышленных предприятий,
— сети электрического транспорта,
— сети сельской местности.

В свою очередь сети можно разделить на питающие и распределительные.
По конструктивному выполнению сетей:
— линии могут быть воздушными,
— кабельными,
— токопроводами (для больших питающих токов, например в электроплавильнях.)

Токопроводы на напряжение 6-35кВ применяются на промышленных предприятиях при больших удельных плотностях нагрузки. Основными областями, в которых используют токопроводы — металлургия, химическая промышленность.
Преимущества у токопровода:
Позволяет заменить дорогостоящий кабель высокого напряжения не изолированными шинами или проводами. Токопроводы имеют большую способность к перегрузкам и значительно надежнее кабелей.

Все токопроводы можно разделить на: открытые, защищенные и закрытые. Находят применение в сетях до 1кВ и монтируются внутри промышленных объектов. В токопроводах напряжения 6-35кВ открытые имеют большую величину пролета и допускают прохождение тока до 1000А.

Показатели качества электрической энергии

Стандартом устанавливаются следующие показатели качества электроэнергии (ПКЭ):

При определении значений некоторых ПКЭ стандартом вводятся следующие вспомогательные параметры электрической энергии:

Часть ПКЭ характеризует установившиеся режимы работы электрооборудования энергоснабжающей организации и потребителей ЭЭ и дает количественную оценку по КЭ особенностям технологического процесса производства, передачи, распределения и потребления ЭЭ. К этим ПКЭ относятся: установившееся отклонение напряжения, коэффициент искажения синусоидальности кривой напряжения, коэффициент n-ой гармонической составляющей напряжения, коэффициент несимметрии напряжений по обратной последовательности, коэффициент несимметрии напряжений по нулевой последовательности, отклонение частоты, размах изменения напряжения.

Оценка всех ПКЭ, относящихся к напряжению, производится по действующим его значениям.

Для характеристики вышеперечисленных показателей стандартом установлены численные нормально и предельно допустимые значения ПКЭ или нормы.

Другая часть ПКЭ характеризует кратковременные помехи, возникающие в электрической сети в результате коммутационных процессов, грозовых атмосферных явлений, работы средств защиты и автоматики и в после аварийных режимах. К ним относятся провалы и импульсы напряжения, кратковременные перенапряжения. Для этих ПКЭ стандарт не устанавливает допустимых численных значений. Для количественной оценки этих ПКЭ должны измеряться амплитуда, длительность, частота их появления и другие характеристики, установленные, но не нормируемые стандартом. Статистическая обработка этих данных позволяет рассчитать обобщенные показатели, характеризующие конкретную электрическую сеть с точки зрения вероятности появления кратковременных помех.

Для оценки соответствия ПКЭ указанным нормам (за исключением длительности провала напряжения, импульсного напряжения и коэффициента временного перенапряжения) стандартом устанавливается минимальный расчетный период, равный 24 ч.

В связи со случайным характером изменения электрических нагрузок требование соблюдения норм КЭ в течение всего этого времени практически нереально, поэтому в стандарте устанавливается вероятность превышения норм КЭ. Измеренные ПКЭ не должны выходить за нормально допустимые значения с вероятностью 0,95 за установленный стандартом расчетный период времени (это означает, что можно не считаться с отдельными превышениями нормируемых значений, если ожидаемая общая их продолжительность составит менее 5% за установленный период времени).

Другими словами, КЭ по измеренному показателю соответствует требованиям стандарта, если суммарная продолжительность времени выхода за нормально допустимые значения составляет не более 5% от установленного периода времени, т.е. 1 ч 12 мин, а за предельно допустимые значения – 0 % от этого периода времени.

Рекомендуемая общая продолжительность измерений ПКЭ должна выбираться с учетом обязательного включения рабочих и выходных дней и составляет 7 суток .

В стандарте указаны вероятные виновники ухудшения КЭ. Отклонение частоты регулируется питающей энергосистемой и зависит только от нее. Отдельные ЭП на промышленных предприятиях (а тем более в быту) не могут оказать влияния на этот показатель, так как мощность их несоизмеримо мала по сравнению с суммарной мощностью генераторов электростанций энергосистемы. Колебания напряжения, несимметрия и несинусоидальность напряжения вызываются, в основном, работой отдельных мощных ЭП на промышленных предприятиях, и только величина этих ПКЭ зависит от мощности питающей энергосистемы в рассматриваемой точке подключения потребителя. Отклонения напряжения зависят как от уровня напряжения, которое подается энергосистемой на промышленные предприятия, так и от работы отдельных промышленных ЭП, особенно с большим потреблением реактивной мощности. Поэтому вопросы КЭ следует рассматривать в непосредственной связи с вопросами компенсации реактивной мощности. Длительность провала напряжения, импульсное напряжение, коэффициент временного перенапряжения, как уже отмечалось, обуславливаются режимами работы энергосистемы.

В таблице 2.1. приведены свойства электрической энергии, показатели их характеризующие и наиболее вероятные виновники ухудшения КЭ .

Свойства электрической энергии

Показатель КЭ

Наиболее вероятные виновники ухудшения КЭ

Установившееся отклонение напряжения

Требования к заявке

Требования к заявке

в соответствии с Правилами технологического присоединения энергопринимающих устройств потребителей электрической энергии, объектов по производству электрической энергии, а также объектов электросетевого хозяйства, принадлежащих сетевым организациям и иным лицам, к электрическим сетям (утв. постановлением Правительства РФ от 27 декабря 2004 г. N 861) – далее-ПравилаТПр.

Объекты физических лиц мощностью до 15 кВт включительно (для бытовых нужд)

В заявке на технологическое присоединение объектов физических лиц мощностью до 15 кВт включительно (для бытовых нужд) должны быть указаны:

  1. фамилия, имя и отчество заявителя, серия, номер и дата выдачи паспорта или иного документа, удостоверяющего личность;
  2. место жительства заявителя;
  3. наименование и место нахождения энергопринимающих устройств, которые необходимо присоединить к электрическим сетям сетевой организации;
  4. сроки проектирования и поэтапного введения в эксплуатацию энергопринимающих устройств (в том числе по этапам и очередям);
  5. наименование субъекта розничного рынка, с которым заявитель намеревается заключить договор, обеспечивающий продажу электрической энергии (мощности) на розничном рынке, и вид такого договора (договор энергоснабжения или купли-продажи (поставки) электрической энергии (мощности)).
  6. максимальная мощность энергопринимающих устройств заявителя.

Объекты юридических лиц или индивидуальных предпринимателей мощностью до 150 кВт

В заявке на технологическое присоединение объектов юридических лиц или индивидуальных предпринимателей мощностью до 150 кВт включительно, должны быть указаны:

1. реквизиты заявителя (для юридических лиц — полное наименование и номер записи в Едином государственном реестре юридических лиц, для индивидуальных предпринимателей — номер записи в Едином государственном реестре индивидуальных предпринимателей и дата ее внесения в реестр, для физических лиц — фамилия, имя, отчество, серия, номер и дата выдачи паспорта или иного документа, удостоверяющего личность в соответствии с законодательством Российской Федерации);

2. наименование и место нахождения энергопринимающих устройств, которые необходимо присоединить к электрическим сетям сетевой организации;

3. место нахождения заявителя;

4. сроки проектирования и поэтапного введения в эксплуатацию энергопринимающих устройств (в том числе по этапам и очередям);

5. планируемое распределение максимальной мощности, сроков ввода, набора нагрузки и сведения о категории надежности электроснабжения при вводе энергопринимающих устройств по этапам и очередям;

6. наименование субъекта розничного рынка, с которым заявитель намеревается заключить договор, обеспечивающий продажу электрической энергии (мощности) на розничном рынке, и вид такого договора (договор энергоснабжения или купли-продажи (поставки) электрической энергии (мощности)).

7.поэтапное распределение мощности, сроков ввода и сведения о категории надежности электроснабжения при вводе энергопринимающих устройств по этапам и очередям.

8.запрашиваемая максимальная мощность присоединяемых энергопринимающих устройств заявителя;

9.характер нагрузки (вид экономической деятельности хозяйствующего субъекта);

10.предложения по порядку расчетов и условиям рассрочки внесения платы за технологическое присоединение — для заявителей, максимальная мощность энергопринимающих устройств которых составляет свыше 15 и до 100 кВт включительно.

Объекты юридических лиц или индивидуальных предпринимателей суммарной мощностью не более 670 кВт

В заявке на технологическое присоединение объектов юридических лиц или индивидуальных предпринимателей, суммарная присоединенная мощность энергопринимающих устройств которых не превышает 670 кВт, должны быть указаны:

1. реквизиты заявителя (для юридических лиц — полное наименование и номер записи в Едином государственном реестре юридических лиц, для индивидуальных предпринимателей — номер записи в Едином государственном реестре индивидуальных предпринимателей и дата ее внесения в реестр, для физических лиц — фамилия, имя, отчество, серия, номер и дата выдачи паспорта или иного документа, удостоверяющего личность в соответствии с законодательством Российской Федерации);

2. наименование и место нахождения энергопринимающих устройств, которые необходимо присоединить к электрическим сетям сетевой организации;

3. место нахождения заявителя;

4. количество точек присоединения с указанием технических параметров элементов энергопринимающих устройств;

5. заявляемая категория надежности энергопринимающих устройств;

6. сроки проектирования и поэтапного введения в эксплуатацию энергопринимающих устройств (в том числе по этапам и очередям);

7. планируемое распределение максимальной мощности, сроков ввода, набора нагрузки и сведения о категории надежности электроснабжения при вводе энергопринимающих устройств по этапам и очередям;

8. наименование субъекта розничного рынка, с которым заявитель намеревается заключить договор, обеспечивающий продажу электрической энергии (мощности) на розничном рынке, и вид такого договора (договор энергоснабжения или купли-продажи (поставки) электрической энергии (мощности)).

9. запрашиваемая максимальная мощность энергопринимающих устройств заявителя;

10. характер нагрузки (вид производственной деятельности).


Объекты временного присоединения (на срок не более 6 месяцев)

В заявке на временное (на срок не более 6 месяцев) технологическое присоединение для обеспечения электрической энергией передвижных объектов с максимальной мощностью до 150 кВт включительно, должны быть указаны:

  1. реквизиты заявителя (для юридических лиц — полное наименование и номер записи в ЕГРЮЛ, для индивидуальных предпринимателей — номер записи в ЕГРИП и дата ее внесения в реестр, для физических лиц — фамилия, имя, отчество, серия, номер и дата выдачи паспорта или иного документа, удостоверяющего личность);
  2. наименование и место нахождения энергопринимающих устройств, которые необходимо присоединить к электрическим сетям сетевой организации;
  3. место нахождения заявителя;
  4. сроки проектирования и поэтапного введения в эксплуатацию энергопринимающих устройств (в том числе по этапам и очередям);
  5. поэтапное распределение мощности, сроков ввода и сведения о категории надежности электроснабжения при вводе энергопринимающих устройств по этапам и очередям;
  6. максимальная мощность присоединяемых энергопринимающих устройств заявителя;
  7. характер нагрузки (вид экономической деятельности хозяйствующего субъекта);
  8. срок временного присоединения.

Иные объекты

В заявке иных потребителей указываются:

а) реквизиты заявителя (для юридических лиц — полное наименование и номер записи в Едином государственном реестре юридических лиц, для индивидуальных предпринимателей — номер записи в Едином государственном реестре индивидуальных предпринимателей и дата ее внесения в реестр, для физических лиц — фамилия, имя, отчество, серия, номер и дата выдачи паспорта или иного документа, удостоверяющего личность в соответствии с законодательством Российской Федерации);

б) наименование и место нахождения энергопринимающих устройств, которые необходимо присоединить к электрическим сетям сетевой организации;

в) место нахождения заявителя;

г) запрашиваемая максимальная мощность энергопринимающих устройств и их технические характеристики, количество, мощность генераторов и присоединяемых к сети трансформаторов;

д) количество точек присоединения с указанием технических параметров элементов энергопринимающих устройств;

е) заявляемая категория надежности энергопринимающих устройств;

ж) заявляемый характер нагрузки (для генераторов — возможная скорость набора или снижения нагрузки) и наличие нагрузок, искажающих форму кривой электрического тока и вызывающих несимметрию напряжения в точках присоединения;

з) величина и обоснование величины технологического минимума (для генераторов), технологической и аварийной брони (для потребителей электрической энергии);

з.1) необходимость наличия технологической и (или) аварийной брони, определяемой в соответствии с требованиями пункта 14.2 настоящих Правил;

и) сроки проектирования и поэтапного введения в эксплуатацию энергопринимающих устройств (в том числе по этапам и очередям);

к) планируемое распределение максимальной мощности, сроков ввода, набора нагрузки и сведения о категории надежности электроснабжения при вводе энергопринимающих устройств по этапам и очередям;

л) наименование субъекта розничного рынка, с которым заявитель намеревается заключить договор, обеспечивающий продажу электрической энергии (мощности) на розничном рынке, и вид такого договора (договор энергоснабжения или купли-продажи (поставки) электрической энергии (мощности)).

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector