Astro-nn.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

IGBT транзисторы принцип работы

IGBT транзисторы

Биполярные транзисторы с изолированным затвором являются новым типом активного прибора, который появился сравнительно недавно. Его входные характеристики подобны входным характеристикам полевого транзистора, а выходные – выходным характеристикам биполярного.

В литературе этот прибор называют IGBT (Insulated Gate Bipolar Transistor) . По быстродействию они значительно превосходят биполярные транзисторы. Чаще всего IGBT-транзисторы используют в качестве мощных ключей, у которых время включения 0,2 — 0,4 мкс, а время выключения 0,2 — 1,5 мкс, коммутируемые напряжения достигают 3,5 кВ, а токи 1200 А.

IGBT- т ранзисторы вытесняют тиристоры из высоковольтных схем преобразования частоты и позволяют создать импульсные источники вторичного электропитания с качественно лучшими характеристиками. IGBT- т ранзисторы используются достаточно широко в инверторах для управления электродвигателями, в мощных системах бесперебойного питания с напряжениями свыше 1 кВ и токами в сотни ампер. В какой-то степени это является следствием того, что во включенном состоянии при токах в сотни ампер падение напряжения на транзисторе находится в пределах 1,5 — 3,5В.

Как видно из структуры IGBT-транзистора (рис. 1), это достаточно сложный прибор, в котором транзистор типа р–n–р управляется МОП-транзистором с каналом типа n.

Коллектор IGBT-транзистора (рис. 2,а) является эмиттером транзистора VT4. При подаче положительного напряжения на затвор у транзистора VT1 по-является электропроводный канал. Через него эмиттер транзистора IGBT (коллектор транзистора VT4) оказывается соединенным с базой транзистора VT4.

Это приводит к тому, что он полностью отпирается и падение напряжения между коллектором транзистора IGBT и его эмиттером становится равным падению напряжения на эмиттерном переходе транзистора VT4, просуммированному с падением напряжения Uси на транзисторе VT1.

В связи с тем, что падение напряжения на р–n-переходе уменьшается с увеличением температуры, падение напряжения на отпертом IGBT-транзисторе в определенном диапазоне токов имеет отрицательный температурный коэффициент, который становится положительным при большом токе. Поэтому падение напряжения на IGBT-транзисторе не опускается ниже порогового напряжения диода (эмиттерного перехода VТ4).

Рис. 2. Эквивалентная схема IGBT-транзистора (а) и его условное обозначение в отечественной (б) и иностранной (в) литературе

При увеличении напряжения, приложенного к транзистору IGBT, увеличивается ток канала, определяющий ток базы транзистора VT4, при этом падение напряжения на IGBT-транзисторе уменьшается.

При запирании транзистора VT1 ток транзистора VT4 становится малым, что позволяет считать его запертым. Дополнительные слои введены для исключения режимов работы, характерных для тиристоров, когда происходит лавинный пробой. Буферный слой n+ и широкая базовая область n– обеспечивают уменьшение коэффициента усиления по току p–n–p-транзистора.

Общая картина включения и выключения достаточно сложная, так как наблюдаются изменения подвижности носителей заряда, коэффициентов передачи тока у имеющихся в структуре p–n–p- и n–p–n-транзисторов, изменения сопротивлений областей и пр. Хотя в принципе IGBT–транзисторы могут быть использованы для работы в линейном режиме, пока в основном их применяют в ключевом режиме.

При этом изменения напряжений у коммутируемого ключа характеризуются кривыми, показанными на рис.3.

Рис. 4. Схема замещения транзистора типа IGBT (а) и его вольт-амперные характеристики (б)

Исследования показали, что для большинства транзисторов типа IGBT времена включения и выключения не превышают 0,5 — 1,0 мкс. Для уменьшения количества дополнительных внешних компонентов в состав IGBT-транзисторов вводят диоды или выпускают модули, состоящие из нескольких компонентов (рис. 5, а – г).

Рис. 5. Условные обозначения модулей на IGBT-транзисторах: а – МТКИД; б – МТКИ; в – М2ТКИ; г — МДТКИ

Условные обозначения IGBT-транзисторов включают: букву М – модуль беспотенциальный (основание изолировано); 2 – количество ключей; буквы ТКИ – биполярный с изолированным затвором; ДТКИ – диод/биполярный транзистор с изолированным затвором; ТКИД – биполярный транзистор с изолированным затвором/диод; цифры: 25, 35, 50, 75, 80, 110, 150 – максимальный ток; цифры: 1, 2, 5, 6, 10, 12 – максимальное напряжение между коллектором и эмиттером Uкэ (*100В). Например модуль МТКИД-75-17 имеет UКЭ =1700 В, I=2*75А, UКЭотк =3,5 В, PKmax =625 Вт.

IGBT-транзисторы — основные компоненты современной силовой электроники

IGBT-транзистор (сокращение от англоязычного Insulated-gate bipolar transistor) или биполярный транзистор с изолированным затвором (сокращенно БТИЗ) — представляет собой полупроводниковый прибор с тремя выводами, сочетающий внутри одного корпуса силовой биполярный транзистор и управляющий им полевой транзистор.

IGBT-транзисторы являются на сегодняшний день основными компонентами силовой электроники (мощные инверторы, импульсные блоки питания, частотные преобразователи и т.д.), где они выполняют функцию мощных электронных ключей, коммутирующих токи на частотах измеряемых десятками и сотнями килогерц. Транзисторы данного типа выпускаются как в виде отдельных компонентов, так и в виде специализированных силовых модулей (сборок) для управления трехфазными цепями.

То что IGBT-транзистор включает в себя транзисторы сразу двух типов (включенных по каскадной схеме), позволяет объединить достоинства двух технологий внутри одного полупроводникового прибора.

Биполярный транзистор в качестве силового позволяет получить большее рабочее напряжение, при этом сопротивление канала в открытом состоянии оказывается пропорционально току в первой степени, а не квадрату тока как у обычных полевых транзисторов. А то что в качестве управляющего транзистора используется именно полевой транзистор — сводит затраты мощности на управление ключом к минимуму.

Названия электродов характеризуют структуру IGBT-транзистора: управляющий электрод именуется затвором (как у полевого транзистора), а электроды силового канала — коллектором и эмиттером (как у транзистора биполярного).

Немного истории

Исторически биполярные транзисторы использовались наравне с тиристорами в качестве силовых электронных ключей до 90-х годов. Но недостатки биполярных транзисторов были всегда очевидны: большой ток базы, медленное запирание и от этого перегрев кристалла, сильная зависимость основных параметров от температуры, ограниченное напряжение насыщения коллектор-эмиттер.

Появившиеся позже полевые транзисторы (структуры МОП) сразу изменили ситуацию в лучшую сторону: управление напряжением уже не требует столь больших токов, параметры ключа слабо зависят от температуры, рабочее напряжение транзистора не ограничено снизу, низкое сопротивление силового канала в открытом состоянии расширяет диапазон рабочих токов, частота переключения легко может достигать сотен килогерц, кроме того примечательна способность полевых транзисторов выдерживать сильные динамические нагрузки при высоких рабочих напряжениях.

Поскольку управление полевым транзистором реализуется значительно проще и получается по мощности существенно легче чем биполярным, да к тому же внутри имеется ограничительный диод, — транзисторы с полевым управлением сразу завоевали популярность в схемах импульсных преобразователей напряжения, работающих на высоких частотах, а также в акустических усилителях класса D.

Первый силовой полевой транзистор был разработан Виктором Бачуриным еще в Советском Союзе, в 1973 году, после чего он был исследован под руководством ученого Владимира Дьяконова. Исследования группы Дьяконова относительно ключевых свойств силового полевого транзистора привели к разработке в 1977 году составного транзисторного ключа, внутри которого биполярный транзистор управлялся посредством полевого с изолированным затвором.

Ученые показали эффективность такого подхода, когда токовые свойства силовой части определяются биполярным транзистором, а управляющие параметры — полевым. Причем насыщение биполярного транзистора исключается, а значит и задержка при выключении сокращается. Это — важное достоинство любого силового ключа.

На полупроводниковый прибор нового типа советскими учеными было получено авторское свидетельство №757051 «Побистор». Это была первая структура, содержащая в одном корпусе мощный биполярный транзистор, поверх которого находился управляющий полевой транзистор с изолированным затвором.

Что касается промышленного внедрения, то уже в 1983 году фирмой Intarnational Rectifier был запатентован первый IGBT-транзистор. А спустя два года был разработан IGBT-транзистор с плоской структурой и более высоким рабочим напряжением. Это сделали одновременно в лабораториях двух компаний — General Electric и RCA.

Первые версии биполярных транзисторов с изолированным затвором имели один серьезный недостаток — медленное переключение. Название IGBT было принято в 90-е, когда были созданы уже второе и третье поколение IGBT-транзисторов. Тогда уже этих недостатков не стало.

Отличительные преимущества IGBT-транзисторов

По сравнению с обычными полевыми транзисторами, IGBT-транзисторы обладают более высоким входным сопротивлением и более низким уровнем мощности, которая тратится на управление затвором.

В отличие от биполярных транзисторов — здесь более низкое остаточное напряжение во включенном состоянии. Потери в открытом состоянии, даже при больших рабочих напряжениях и токах, достаточно малы. При этом проводимость как у биполярного транзистора, а управляется ключ напряжением.

Диапазон рабочих напряжений коллектор-эмиттер у большинства широко доступных моделей варьируется от десятков вольт до 1200 и более вольт, при этом токи могут доходить до 1000 и более ампер. Есть сборки на сотни и тысячи вольт по напряжению и на токи в сотни ампер.

Считается, что для рабочих напряжений до 500 вольт лучше подходят полевые транзисторы, а для напряжений более 500 вольт и токов больше 10 ампер — IGBT-транзисторы, так как на более низких напряжениях крайне важно меньшее сопротивление канала в открытом состоянии.

Применение IGBT-транзисторов

Главное применение IGBT-транзисторы находят в инверторах, импульсных преобразователях напряжения и частотных преобразователях (пример — полумостовой модуль SKM 300GB063D, 400А, 600В) — там, где имеют место высокое напряжение и значительные мощности.

Сварочные инверторы — отдельная важная область применения IGBT-транзисторов: большой ток, мощность более 5 кВт и частоты до 50 кГц (IRG4PC50UD – классика жанра, 27А, 600В, до 40 кГц).

Не обойтись без IGBT и на городском электрcтранспорте: с тиристорами тяговые двигатели показывают более низкий КПД чем с IGBT, к тому же с IGBT достигается более плавный ход и хорошее сочетание с системами рекуперативного торможения даже на высоких скоростях.

Нет ничего лучше чем IGBT, когда требуется коммутировать на высоких напряжениях (более 1000 В) или управлять частотно-регулируемым приводом (частоты до 20 кГц).

На некоторых схемах IGBT и MOSFET транзисторы полностью взаимозаменяемы, так как их цоколевка схожа, а принципы управления идентичны. Затворы в том и в другом случае представляют собой емкость до единиц нанофарад, с перезарядкой у удержанием заряда на которой легко справляется драйвер, устанавливаемый на любой подобной схеме, и обеспечивающий адекватное управление.

IGBT транзисторы принцип работы

Москатов Е. А. Книга «Электронная техника. Начало»

6. Биполярные транзисторы с изолированными затворами

6.1. Общие сведения о БТИЗ

Биполярный транзистор с изолированным затвором (БТИЗ) – по-английски «insulated gate bipolar transistor» или сокращённо IGBT – это компонент, управление которым, как полевым транзистором, осуществляют напряжением, а протекание тока по силовым выводам коллектора и эмиттера обусловлено, как у биполярного транзистора, движением носителей зарядов обоих типов. В едином технологическом цикле в полупроводнике организуют структуры мощного биполярного p-n-p транзистора, которым управляет МОП-транзистор малой мощности, имеющий n-канал. Выводы БТИЗ носят названия затвора, коллектора и эмиттера.

Достоинства: возможность коммутации токов в тысячи ампер и допустимость прикладывания постоянного напряжения коллектор-эмиттер в несколько киловольт к запертому транзистору. Если напряжение коллектор-эмиттер запертого БТИЗ превышает приблизительно 600В, то падающее на выводах коллектор-эмиттер открытого БТИЗ напряжение насыщения обычно меньше по сравнению с полевыми транзисторами той же ценовой группы.

Недостатки: даже наименее инерционные БТИЗ предназначены для функционирования на много более низкой частоте, нежели полевые транзисторы, причём чем выше частота, тем ниже максимально допустимая амплитуда тока коллектора транзистора. При этом БТИЗ по частотным свойствам подразделяют на группы. При изготовлении БТИЗ помимо необходимого биполярного p-n-p транзистора возникает ещё и паразитный биполярный n-p-n транзистор, и они совместно образуют структуру тиристора. Это отражено на эквивалентной схеме БТИЗ, изображённой на рис. 6.1, где компонент VT2 – это паразитный транзистор.

При высокой скорости переключения компонента или при протекании по выводам коллектор-эмиттер короткого импульса тока большой амплитуды и прочего структура тиристора в БТИЗ может самопроизвольно перейти в открытое состояние. При этом БТИЗ теряет управляемость, и транзистор, как и устройство, в котором он работал, могут выйти из строя.

Прикладывая отпирающее напряжение к выводам затвор-эмиттер, БТИЗ из отсечки переводят в состояние насыщения, сопротивление коллектор-эмиттер падает, и по этим выводам течёт ток нагрузки. Если напряжение затвор-эмиттер отсутствует, то транзистор имеет состояние отсечки, в котором ток через выводы коллектор-эмиттер практически отсутствует. Таким образом, БТИЗ – это полностью управляемые компоненты. Современные силовые модули БТИЗ выдерживают прямой ток коллектора силой до 1,8 кА, напряжение коллектор-эмиттер в закрытом состоянии до 4,5 кВ. БТИЗ обычно используют в качестве электронных ключей в импульсных преобразователях, например, инверторных сварочных аппаратов, в системах управления электродвигателями и т.д.

Читать еще:  Рассчитываем мощность светильников

6.2. Конструкция и принцип действия БТИЗ

Простейшая структура БТИЗ планарного исполнения отражена на рис. 6.2.

Из рисунка видно, что на металлическом основании, к которому присоединён вывод коллектора, расположена подложка p + , а на ней находятся два n-слоя. Эти слои понижают коэффициент усиления p-n-p структуры мощного биполярного транзистора. Ближайший к подложке n + -слой необходим для снижения вероятности самопроизвольного отпирания тиристорной структуры. Более удалённый от подложки n – -слой претворяют в жизнь эпитаксиальным наращиванием или другими способами. Подложка p + играет роль эмиттера биполярного p-n-p транзистора, область n – -слоя – его базы, а область p-типа, к которой подключают вывод эмиттера БТИЗ, – его коллектора. Над n – -слоем расположена p-область, которая выполняет функцию канала управляющего МОП-транзистора, затвор которого выполнен из поликристаллического кремния и изолирован от полупроводника эмиттерной области слоем оксида SiO2. В этой канальной p-области размещены n + -зоны, которые выступают в качестве стока МОП-транзистора, а его истоком служит n – -область. Затвор структуры МОП-транзистора соединён с выводом затвора БТИЗ.

Если на затвор БТИЗ относительно эмиттера подать напряжение положительной полярности, отпирающее компонент, то это приведёт вначале к открыванию под воздействием электрического поля структуры МОП-транзистора и инжекции электронов в её канал. В результате возникает инжекция носителей заряда в n – -слой, служащий базой структуры биполярного p-n-p транзистора, которая переходит в состояние насыщения. Таким образом, вначале происходит отпирание структуры МОП-транзистора, а лишь затем структуры биполярного p-n-p транзистора. Сопротивление коллектор-эмиттер открытого БТИЗ имеет очень малую величину, а по выводу коллектора компонента течёт ток нагрузки.

Если убрать поданное ранее отпирающее напряжение на выводы затвор-эмиттер БТИЗ, то канал в структуре МОП-транзистора исчезает, в n – -слое происходит снижение концентрации носителей зарядов ввиду рекомбинации. Рекомбинация – процесс не мгновенный; пока она идет, транзистор не закрыт. Лишь по завершении рекомбинации БТИЗ переходит в состояние отсечки.

6.3. Основные параметры БТИЗ

К наиболее важным параметрам IGBT относят следующее:

Длительность включения и выключения транзистора, мкс.

Ёмкости затвор-эмиттер, коллектор-эмиттер и затвор-коллектор при заданном напряжении коллектор-эмиттер, нФ.

Заряд затвора транзистора, нКл.

Максимально допустимую температуру нагрева кристалла транзистора, °C.

Максимальную мощность рассеяния, Вт.

Напряжение насыщения, т.е. напряжение между выводами коллектор-эмиттер открытого транзистора, В.

Предельно допустимый импульсный ток коллектора при температуре 25 °C, А.

Предельно допустимый постоянный ток коллектора при температуре 25 °C, А.

Предельную скорость нарастания напряжения, не приводящую к самопроизвольному открыванию транзистора, dU / dt.

Тепловое сопротивление переход-корпус, °C / Вт.

Энергии включения, выключения и переключения, мДж.

Igbt транзисторы принцип работы

Принцип работы силовых IGBT транзисторов

Биполярные транзисторы с изолированным затвором широко используются в силовой электронике. Это надежные и недорогие компоненты, управляющиеся путем подачи напряжения на изолированный от цепи элемент. IGBT — транзистор, принцип работы которого чрезвычайно прост. Используется он в инверторах, системах управления электроприводами и импульсных источниках питания.

Принцип работы транзисторов и их характеристики будут напрямую зависеть от типа устройства и его конструкции.

К основным параметрам полупроводников можно отнести следующее:

  • Максимально допустимый ток.
  • Показатель управляющего напряжения.
  • Внутреннее сопротивление.
  • Период задержки подключения и выключения.
  • Паразитная индуктивность.
  • Входная и выходная емкость.
  • Напряжение насыщения у эмиттера и коллектора.
  • Ток отсечки эмиттера.
  • Напряжение пробоя коллектора и эмиттера.

Широкое распространение получили сегодня мощные IGBT транзисторы, которые применяются в блоках питания инверторов. Такие устройства одновременно сочетают мощность, высокую точность работы и минимум паразитной индуктивности.

Преимущества и недостатки

Сегодня в продаже можно подобрать различные модели полупроводников, которые будут отличаться своими показателями рабочей частоты, емкостью и рядом других характеристик.

Популярность IGBT транзисторов обусловлена их отличными параметрами, характеристиками и многочисленными преимуществами:

  • Возможность эксплуатации с высокой мощностью и повышенным напряжением.
  • Работа при высокой температуре.
  • Минимальные потери тока в открытом виде.
  • Устойчивость к короткому замыканию.
  • Повышенная плотность.
  • Практически полное отсутствие потерь.
  • Простая параллельная схема.

К недостаткам IGBT относят их высокую стоимость, что приводит к некоторому увеличению расходов на изготовление электроприборов и мощных блоков питания. При планировании схемы подключения с транзисторами этого типа необходимо учитывать имеющиеся ограничения по показателю максимально допустимого тока.

Чтобы решить такие проблемы, можно использовать следующие конструктивные решения:

  • Использование обходного пути коммутации.
  • Выбор сопротивления затвора.
  • Правильный подбор показателей тока защиты.

Электросхемы устройств должны разрабатывать исключительно профессионалы, что позволит обеспечить правильность работы техники, отсутствие коротких замыканий и других проблем с электроприборами. При наличии качественной схемы подключения, реализовать ее не составит труда, выполнив своими руками силовой блок, питание и различные устройства.

Устройство и принцип работы

Внутреннее устройство IGBT транзистора состоит из двух каскадных электронных ключей, которые управляют конечным выходом. В каждом конкретном случае, в зависимости от мощности и других показателей, конструкция прибора может различаться, включая дополнительные затворы и иные элементы, которые улучшают показатели мощности и допустимого напряжения, обеспечивая возможность работы при температурах свыше 100 градусов.

Полупроводники IGBT типа имеют стандартизированную комбинированную структуру и следующие обозначения:

  • К — коллектор.
  • Э — эмиттер.
  • З — затвор.

Принцип работы транзистора чрезвычайно прост. Как только на него подается напряжение положительного потенциала, в затворе и истоке полевого транзистора открывается n-канал, в результате чего происходит движение заряженных электронов. Это возбуждает действие биполярного транзистора, после чего от эмиттера напрямую к коллектору начинает протекать электрический ток.

Основным назначением IGBT транзисторов является их приближение к безопасному значению токов замыкания. Такие токи могут ограничивать напряжение затвора различными методами.

Привязкой к установленному показателю напряжения. Драйвер затвора должен иметь постоянные параметры, что достигается за счёт добавления в схему устройства диода Шоттки. Тем самым обеспечивается уменьшение индуктивности в цепи питания и затвора.

Показатели напряжения ограничиваются за счёт наличия стабилитрона в схеме эмиттера и затвора. Отличная эффективность таких IGBT транзисторов достигается за счёт установки к клеммам модуля дополнительных диодов. Используемые компоненты должны иметь высокую температурную независимость и малый разброс.

В цепь может включаться эмиттер с отрицательной обратной связью. Подобное возможно в тех случаях, когда драйвер затвора подключён к клеммам модуля.

Правильный выбор типа транзистора позволит обеспечить стабильность работы блоков питания и других электроприборов. Только в таком случае можно гарантировать полностью безопасную работу электроустановок при коротких замыканиях и в аварийных режимах эксплуатации техники.

Сфера использования

Сегодня IGBT транзисторы применяются в сетях с показателем напряжения до 6,5 кВт, обеспечивая при этом безопасную и надежную работу электрооборудования. Имеется возможность использования инвертора, частотно регулируемых приводов, сварочных аппаратов и импульсных регуляторов тока.

Сверхмощные разновидности IGBT используются в мощных приводах управления троллейбусов и электровозов. Их применение позволяет повысить КПД, обеспечив максимально возможную плавность хода техники, оперативно управляя выходом электродвигателей на их полную мощность. Силовые транзисторы применяются в цепях с высоким напряжением. Они используются в схемах бытовых кондиционеров, посудомоечных машин, блоков питания в телекоммуникационном оборудовании и в автомобильном зажигании.

Биполярные транзисторы с изолированным затвором — IGBT — Insulated Gate Bipolar Transistor

В настоящее время основными полностью управляемыми приборами силовой электроники в области коммутируемых токов до 50 А и напряжений до 500 В являются биполярные транзисторы (BPT) и идущие им на смену полевые транзисторы с изолированным затвором (MOSFET). Нишу высоковольтных силовых приборов с большими уровнями токов и напряжениями до единиц киловольт заняли биполярные транзисторы с изолированным затвором (IGBT — Insulated Gate Bipolar Transistor) [1].

MOSFET транзисторы, появившиеся в 80-х годах, имели характеристики, близкие к характеристикам идеального ключа и являлись наиболее популярными ключевыми элементами. Однако оказалось, что главным параметром, ограничивающим область их применения, является допустимое напряжение на стоке. Высоковольтных MOSFET транзисторов с достаточно хорошими характеристиками создать пока не удается, так как сопротивление канала открытого транзистора растет пропорционально квадрату напряжения пробоя. Это затрудняет их применение в устройствах с высоким КПД.

В середине 80-х годов возникла идея создания биполярного транзистора с полевым управлением, а уже в середине 90-х годов в каталогах ряда компаний (среди которых одной из первых была International Rectifier) появились транзисторы IGBT. В настоящее время в каталогах всех ведущих производителей мощных полупроводниковых приборов можно найти эти транзисторы.

Помимо области высоковольтных силовых преобразователей на мощности от единиц киловатт, IGBT-транзисторы используются в бытовой технике для управления относительно маломощными приводами с широким диапазоном регулирования скорости вращения. Так IGBT нашли применение в стиральных машинах и инверторных кондиционерах. Их также с успехом применяют в качестве высоковольтных ключей для электронного зажигания автомобилей. Эти транзисторы с улучшенной характеристикой переключения широко используются в импульсных блоках питания телекоммуникационных и серверных систем.

IGBT-прибор представляет собой биполярный p-n-p транзистор, управляемый от сравнительно низковольтного MOSFET-транзистора с индуцированным каналом (рис. 1,а).

Рис. 1. Эквивалентные схемы IGBT транзистора

IGBT-приборы являются компромиссным техническим решением, позволившим объединить положительные качества как биполярных (малое падение напряжения в открытом состоянии, высокие коммутируемые напряжения), так и MOSFET-транзисторов (малая мощность управления, высокие скорости коммутации). В то же время потери у них растут пропорционально току, а не квадрату тока, как у полевых транзисторов. Максимальное напряжение IGBT-транзисторов ограничено только технологическим пробоем и уже сегодня выпускаются приборы с рабочим напряжением до 4000 В. при этом остаточное напряжение на транзисторе во включенном состоянии не превышает 2 3 В.

По быстродействию силовые IGBT-приборы пока уступают MOSFET-транзисторам, но превосходят биполярные.

Структура базовой IGBT-ячейки представлена на рис. 2а. Она содержит в стоковой области дополнительный p + -слой, в результате чего и образуется p-n-p биполярный транзистор с очень большой площадью, способный коммутировать значительные токи. При закрытом состоянии структуры внешнее напряжение приложено к обедненной области эпитаксиального n – -слоя. При подаче на изолированный затвор положительного смещения возникает проводящий канал в р-области (на рисунке обозначен пунктирной линией) и включается соответствующий МДП транзистор, обеспечивая открытие биполярного p-n-p транзистора. Между внешними выводами ячейки ? коллектором и эмиттером начинает протекать ток. При этом ток стока МДП транзистора оказывается усиленным в ( B +1) раз. При включенном биполярном транзисторе в n – -область идут встречные потоки носителей (электронов и дырок), что ведет к падению сопротивления этой области и дополнительному уменьшению остаточного напряжения на приборе.

Рис.2. Структуры элементарных ячеек IGBT транзисторов

Напряжение на открытом приборе складывается из напряжения на прямосмещенном эмиттерном переходе p-n-p-транзистора (диодная составляющая) и падения напряжения на сопротивлении модулируемой n – -области (омическая составляющая):

где R МДП — сопротивление MOSFET транзистора в структуре IGBT (сопротивление эпитаксиального n – -слоя); b — коэффициент передачи базового тока биполярного p-n-p-транзистора.

В настоящее время для уменьшения падения напряжения на IGBT транзисторах в открытом состоянии, расширения диапазонов допустимых токов, напряжений и области безопасной работы они изготавливаются по технологии с вертикальным затвором — trench-gate technology (рис. 2б). При этом размер элементарной ячейки уменьшается в 2 5 раз.

Как правило, в области рабочих токов, на которые проектируется структура IGBT, остаточное напряжение на приборе слабо зависит от температуры (рис. 3).

Рис. 3. Зависимость падения напряжения на открытом приборе от температуры для высоковольтного MOSFET транзистора IRF840 и IGBT транзисторов при токе 10 А

Усилительные свойства IGBT-прибора характеризуются крутизной S, которая определяется усилительными свойствами МДП и биполярного транзисторов в структуре IGBT. Соответственно, значение крутизны для IGBT является более высоким в сравнении с биполярными и МДП транзисторами.

Динамические характеристики IGBT структуры определяются внутренними паразитными емкостями, состоящими из межэлектродных емкостей МДП транзистора и дополнительных емкостей p-n-p-транзистора.

Типичные значения времени рассасывания накопленного заряда и спада тока при выключении IGBT находятся в диапазонах 0,2 0,4 и 0,2 1,5 мкс соответственно. Область безопасной работы современных IGBT транзисторов позволяет успешно обеспечить их надежную работу без применения дополнительных цепей формирования траектории переключения при частотах от 10 до 20 кГц.

Типовые характеристики IGBT-транзисторов приведены на рис. 4-6 [2].

Рис. 4. Семейство выходных вольт-амперных характеристик IGBT-транзистора

Рис. 5. Зависимость напряжения насыщения коллектор-эмиттер от напряжения затвор-эмиттер

Рис. 6. Динамические характеристики IGBT транзисторов(для полумостовой схемы с индуктивной нагрузкой): t d(on) и t d(off) — времена задержки переключения; t r — время нарастания коллекторного тока; t f — время спада коллекторного тока

В общем случае выход из строя IGBT-транзисторов связан с нарушением границ области безопасной работы. Основная часть аварийных ситуаций связана с превышением максимально допустимого напряжения коллектор-эмиттер. Индуктивная нагрузка и переходные режимы напряжения питания коллекторной цепи также могут вызвать разрушение IGBT-приборов. В настоящее время, нет проблем купить IGBT транзисторы. Интернет магазин Dalincom предлагает большой выбор современных IGBT транзисторов по низим ценам.

Читать еще:  Как сделать и прочистить дымоход в бане

Неприятной особенностью IGBT-транзисторов некоторых производителей является эффект «защелки», который связан с наличием триггерной схемы, образованной биполярной частью IGBT-структуры и паразитным n-p-n транзистором (рис. 1б). При определенных условиях работы, когда напряжение на паразитном резисторе R s превышает некоторое пороговое значение, n-p-n транзистор открывается, триггер опрокидывается и происходит защелкивание. Следствием этого, как правило, является лавинообразный выход прибора из строя.

При разработке электронных схем с использованием IGBT-транзисторов в которых такая ситуация возможна, следует особое внимание уделять ограничению максимальных токов и ограничению dV/dt. Для ограничения тока короткого замыкания при аварийном режиме рекомендуется включение между затвором и эмиттером защитной цепи, предотвращающей увеличение напряжения затвор-эмиттер при резком нарастании тока коллектора. Наилучшим вариантом является подключение параллельно цепи затвор-эмиттер последовательно соединенных диода Шоттки и конденсатора, заряженного до напряжения +15 +16 В. Допускается применение в качестве защитного элемента стабилитрона на напряжение 15 16 В.

Для защиты IGBT-транзисторов от коммутационных перенапряжений в цепи коллектор-эмиттер следует применять снабберные RC- и RCD-цепи, установленные непосредственно на силовых выводах [1].

Затвор IGBT-транзисторов электрически изолирован от канала очень тонким слоем диэлектрика и легко может быть поврежден при неправильной эксплуатации. Для нормального включения и перевода IGBT-транзистора в состояние насыщения при обеспечении минимальных потерь в этом состоянии необходим заряд входной емкости прибора (1000 5000 пФ) до +15 В ±10%. Перевод прибора в закрытое состояние может осуществляться как подачей нулевого напряжения, так и отрицательного — не более –20 В (обычно в пределах –5 –6 В). Максимально допустимое напряжение затвор-эмиттер не должно превышать +20 В. Превышение этого напряжения может пробить изоляцию затвора и вывести прибор из строя. Не рекомендуется работа IGBT-транзистора и при «подвешенном» затворе, так как в противном случае возможно ложное включение прибора.

С целью снижения динамических потерь и увеличения частоты коммутации необходимо обеспечить малое время переключения прибора. Время переключения для большинства ключей на IGBT-транзисторах лежит в пределах 100 1000 нс, что требует обеспечивать перезаряд входной емкости в течение короткого времени с помощью токовых пиков до 5 А и более. Необходимо также уменьшать отрицательную обратную связь, которая может возникнуть из-за индуктивности слишком длинного соединительного проводника к эмиттеру прибора.

Длина соединительных проводников между управляющей схемой и мощным полевым транзистором должна быть минимальной для исключения помех в цепи управления. Для соединения целесообразно использовать витую пару минимальной длины или прямой монтаж платы управляющей схемы на выводы управления транзистора. Если не удается избежать длинных проводников в цепи затвора, то в качестве меры предосторожности необходимо включить последовательно с затвором резистор с небольшим сопротивлением. Обычно достаточно, чтобы сопротивление этого резистора лежало в диапазоне 100 200 Ом.

Следует отметить, что IGBT-транзисторы не так чувствительны к электростатическому пробою, как, например, КМОП-приборы, из-за того, что входная емкость мощных IGBT-транзисторов значительно больше и может вместить в себя большую энергию, прежде чем разряд вызовет необратимый пробой затвора. Однако при транспортировке и хранении этих приборов затвор и эмиттерный вывод должны быть закорочены токопроводящими перемычками, которые не должны сниматься до момента подключения транзистора в схему. Производить монтажные работы с IGBT-транзисторами необходимо только при наличии антистатического браслета. Все инструменты и оснастка, с которыми может контактировать модуль, должны быть заземлены. Для защиты затвора от статического пробоя непосредственно в схеме необходимо подключение параллельно цепи затвор-эмиттер резистора сопротивлением 10 20 кОм.

Условные графические обозначения IGBT-транзисторов, используемые различными производителями на принципиальных схемах электронных устройств, приведены на рис. 7.

Рис. 7. Условные графические обозначения IGBT-транзисторов

Компания International Rectifier (IR) выпускает четыре семейства IGBT-транзисторов, ориентированных на применение в различных областях силовой электроники. Разделение по классам идет по диапазону рабочих частот. Так выделяют семейства Standart, Fast, UltraFast, Warp (табл. 1).

Таблица 1. Сравнительные характеристики различных семейств IGBT-транзисторов компании IR

Транзисторы семейства Standart оптимизированы на применение в цепях, где необходимо малое падение напряжения на ключе и малые статические потери.

Транзисторы семейства UltraFast и Warp оптимизированы на применение в ВЧ цепях, где необходимо иметь малые динамические потери. Малая энергия переключения позволяет использовать транзисторы Warp вплоть до частот 150 кГц, а транзисторы UltraFast — до 60 кГц при приемлемом уровне динамических потерь.

Транзисторы семейства Fast являются некоторым компромиссом между рассмотренными семействами. Обладая невысоким падением напряжением и приемлемыми потерями, транзисторы Fast могут использоваться в цепях, где не требуется очень высокие скорости переключения, в схемах, где применение Standart приведет к большим динамическим потерям, а применения Warp приведет к высоким статическим потерям. По скоростям переключения сравнимы с биполярными транзисторами.

В рекомендациях по применению компания International Rectifier указывает, что в IGBT транзисторах нового поколения триггерная структура подавлена полностью. Кроме этого обеспечивается почти прямоугольная область безопасной работы.

Цифро-буквенное обозначение IGBT-транзисторов, выпускаемых компанией приведено на рис. 8.

Рис. 8. Обозначение IGBT-транзисторов компании IR

В табл. 2 приведены параметры IGBT-транзисторов средней мощности с максимальным напряжением 600 В, которые находят широкое применение в бытовой и офисной технике [3].

Таблица 2. IGBT-транзисторы компании IR

1. Дьяконов В.П., Ремнев А.М., Смердов В.Ю. Энциклопедия устройств на полевых транзисторах. Москва: Солон-Р, 2002, 512 с.

2. Воронин П. А. Силовые полупроводниковые ключи. Семейства, характеристики, применение. Москва: Додэка, 2001, 384 с.

Андрей Образцов, Вячеслав Смердов

Копирование статьи запрещено. Эксклюзивное право размещения предоставлено журналом Ремонт и Сервис

Принцип работы силовых IGBT транзисторов

Биполярные транзисторы с изолированным затвором широко используются в силовой электронике. Это надежные и недорогие компоненты, управляющиеся путем подачи напряжения на изолированный от цепи элемент. IGBT — транзистор, принцип работы которого чрезвычайно прост. Используется он в инверторах, системах управления электроприводами и импульсных источниках питания.

  • История появления
  • Основные характеристики
  • Преимущества и недостатки
  • Устройство и принцип работы
  • Сфера использования
  • Проверка исправности
  • Мощные модули

История появления

Первые полевые транзисторы были разработаны в 1973 году, а уже спустя 6 лет появились управляемые биполярные модели, в которых использовался изолированный затвор. По мере совершенствования технологии существенно улучшились показатели экономичности и качества работы таких элементов, а с развитием силовой электроники и автоматических систем управления они получили широкое распространение, встречаясь сегодня практически в каждом электроприборе.

Сегодня используются электронные компоненты второго поколения, которые способны коммутировать электроток в диапазоне до нескольких сотен Ампер. Рабочее напряжение у IGBT — транзисторов колеблется от сотен до тысячи Вольт. Совершенствующие технологии изготовления электротехники позволяют выполнять качественные транзисторы, обеспечивающие стабильную работу электроприборов и блоков питания.

Основные характеристики

Принцип работы транзисторов и их характеристики будут напрямую зависеть от типа устройства и его конструкции. К основным параметрам полупроводников можно отнести следующее:

  • Максимально допустимый ток.
  • Показатель управляющего напряжения.
  • Внутреннее сопротивление.
  • Период задержки подключения и выключения.
  • Паразитная индуктивность.
  • Входная и выходная емкость.
  • Напряжение насыщения у эмиттера и коллектора.
  • Ток отсечки эмиттера.
  • Напряжение пробоя коллектора и эмиттера.

Широкое распространение получили сегодня мощные IGBT транзисторы, которые применяются в блоках питания инверторов. Такие устройства одновременно сочетают мощность, высокую точность работы и минимум паразитной индуктивности. В регуляторах скорости применяются IGBT с частотой в десятки тысяч кГц, что позволяет обеспечить максимально возможную точность работы приборов.

Преимущества и недостатки

Сегодня в продаже можно подобрать различные модели полупроводников, которые будут отличаться своими показателями рабочей частоты, емкостью и рядом других характеристик. Популярность IGBT транзисторов обусловлена их отличными параметрами, характеристиками и многочисленными преимуществами:

  • Возможность эксплуатации с высокой мощностью и повышенным напряжением.
  • Работа при высокой температуре.
  • Минимальные потери тока в открытом виде.
  • Устойчивость к короткому замыканию.
  • Повышенная плотность.
  • Практически полное отсутствие потерь.
  • Простая параллельная схема.

К недостаткам IGBT относят их высокую стоимость, что приводит к некоторому увеличению расходов на изготовление электроприборов и мощных блоков питания. При планировании схемы подключения с транзисторами этого типа необходимо учитывать имеющиеся ограничения по показателю максимально допустимого тока. Чтобы решить такие проблемы, можно использовать следующие конструктивные решения:

  • Использование обходного пути коммутации.
  • Выбор сопротивления затвора.
  • Правильный подбор показателей тока защиты.

Электросхемы устройств должны разрабатывать исключительно профессионалы, что позволит обеспечить правильность работы техники, отсутствие коротких замыканий и других проблем с электроприборами. При наличии качественной схемы подключения, реализовать ее не составит труда, выполнив своими руками силовой блок, питание и различные устройства.

Устройство и принцип работы

Внутреннее устройство IGBT транзистора состоит из двух каскадных электронных ключей, которые управляют конечным выходом. В каждом конкретном случае, в зависимости от мощности и других показателей, конструкция прибора может различаться, включая дополнительные затворы и иные элементы, которые улучшают показатели мощности и допустимого напряжения, обеспечивая возможность работы при температурах свыше 100 градусов.

Полупроводники IGBT типа имеют стандартизированную комбинированную структуру и следующие обозначения:

  • К — коллектор.
  • Э — эмиттер.
  • З — затвор.

Принцип работы транзистора чрезвычайно прост. Как только на него подается напряжение положительного потенциала, в затворе и истоке полевого транзистора открывается n-канал, в результате чего происходит движение заряженных электронов. Это возбуждает действие биполярного транзистора, после чего от эмиттера напрямую к коллектору начинает протекать электрический ток.

Основным назначением IGBT транзисторов является их приближение к безопасному значению токов замыкания. Такие токи могут ограничивать напряжение затвора различными методами.

Привязкой к установленному показателю напряжения. Драйвер затвора должен иметь постоянные параметры, что достигается за счёт добавления в схему устройства диода Шоттки. Тем самым обеспечивается уменьшение индуктивности в цепи питания и затвора.

Показатели напряжения ограничиваются за счёт наличия стабилитрона в схеме эмиттера и затвора. Отличная эффективность таких IGBT транзисторов достигается за счёт установки к клеммам модуля дополнительных диодов. Используемые компоненты должны иметь высокую температурную независимость и малый разброс.

В цепь может включаться эмиттер с отрицательной обратной связью. Подобное возможно в тех случаях, когда драйвер затвора подключён к клеммам модуля.

Правильный выбор типа транзистора позволит обеспечить стабильность работы блоков питания и других электроприборов. Только в таком случае можно гарантировать полностью безопасную работу электроустановок при коротких замыканиях и в аварийных режимах эксплуатации техники.

Сфера использования

Сегодня IGBT транзисторы применяются в сетях с показателем напряжения до 6,5 кВт, обеспечивая при этом безопасную и надежную работу электрооборудования. Имеется возможность использования инвертора, частотно регулируемых приводов, сварочных аппаратов и импульсных регуляторов тока.

Сверхмощные разновидности IGBT используются в мощных приводах управления троллейбусов и электровозов. Их применение позволяет повысить КПД, обеспечив максимально возможную плавность хода техники, оперативно управляя выходом электродвигателей на их полную мощность. Силовые транзисторы применяются в цепях с высоким напряжением. Они используются в схемах бытовых кондиционеров, посудомоечных машин, блоков питания в телекоммуникационном оборудовании и в автомобильном зажигании.

Проверка исправности

Ревизия и тестирование IGBT полупроводников выполняется при наличии неисправностей электрических устройств. Такую проверку проводят с использованием мультитестера, прозванивая коллекторы и электроды с эмиттером в двух направлениях. Это позволит установить работоспособность транзистора и исключит отсутствие замыкания. При проверке необходимо отрицательно зарядить вход затвора, используя щупы мультиметров типа COM .

Для проверки правильности работы транзистора на входе и выходе затвора заряжают ёмкость положительным полюсом. Выполняется такая зарядка за счёт кратковременного касания щупом затвора, после чего проверяется разность потенциала коллектора и эмиттера. Данные потенциалов не должны иметь расхождение более 1,5 Вольта. Если тестируется мощный IGBT, а тестера не будет хватать для положительного заряда, на затвор подают напряжение питания до 15 Вольт.

Мощные модули

Силовые транзисторы изготавливаются не только отдельными полупроводниками, но и уже собранными готовыми к использованию модулями. Такие приспособления входят в состав мощных частотных преобразователей в управлении электромоторами. В каждом конкретном случае схема и принцип работы модуля будут различаться в зависимости от его типа и предназначения. Чаще всего в таких устройствах используется мост, выполненный на основе двух силовых транзисторов.

Стабильная работа IGBT обеспечивается при частоте 150 килогерц. При повышении рабочей частоты могут увеличиваться потери, что отрицательно сказывается на стабильности электроприборов. Силовые транзисторы все свои преимущества и возможности проявляют при использовании с напряжением более 400 Вольт. Поэтому такие полупроводники чаще всего применяют в промышленном оборудовании и электроприборах высокого напряжения.

Читать еще:  Виды и системы освещения

Транзистор IGBT-принцип работы, структура, основные характеристики

Что такое инвертор, и правильный выбор основных узлов и компонентов

Чтобы понять, какие транзисторы используются в сварочных инверторах, необходимо знать строение и принцип работы инверторного оборудования. Инвертор в широком понимании, это универсальный источник постоянного тока, который обеспечивает процесс зажигания дуги и поддержания оптимального режима работы. Сварка осуществляется при помощи подачи значительной силы тока на прибор, за счёт внедрённого в конструкции высокочастотного трансформатора. В данном случае можно использовать уменьшенный вариант трансформатора, и увеличить стабильность и эффективный режим регулировки силы тока, который обеспечивается за счёт внедрения IGBT транзистора для сварочного инвертора.

IGBT транзисторы для сварочного инвертора

На сегодняшний день, рынок сварочного оборудования представлен различными вариантами техники, которые имеют уникальные свойства и принцип работы, который определяет в конечном итоге, почему горят транзисторы в сварочном инверторе. В настоящее время варианты сварочного инвертора представлены следующими агрегатами:

  • Сварка ручного типа с плавящимися электродами, серийный ряд manual metal arc, ММА. Ручная сварочная аппаратура, работающая в среде защитных газов tungsten inert gas, TIG. Полуавтоматическая технология сварки с использованием инертных газов, типовое исполнение- metal inertgas, MIG. Сварочные приборы на основе работы активных газов типа metal active gas, MAG.
  • Сварочные агрегаты с инверторным принципом функционирования – трансформаторные приборы, а также полностью инверторное оборудование.
  • Агрегаты с постоянным режимом выходного тока подачи, например для сварки металлов стали, а также с переменным режимом работы, например для пайки алюминия, или чугуна.

Структура IGBT

Закрытое состояние прибора характеризуется напряжением, приложенным к области n-, она находится между коллектором и эмиттером. Проводящий канал появляется при воздействии на затвор положительно заряженного потенциала в p-области, он обозначается как пунктирная линия. Ток из балласта идет из области n- (с минусом) в область n+. При этом происходит открытие МОП-транзистора, что делает возможным открытие биполярного транзистора с p-n-p перехода транзистора.

Рис. №2. Структура транзистора IGBT.

Эквивалентом структуре транзистора IGBT можно считать схему подключения транзистора, где n-канальный полевой транзистор выполнит роль промежуточного звена (динамического сопротивления), уменьшаемого в открытом состоянии IGBT. Он пропускает через базовую область биполярного транзистора с p-n-p-переходом, при этом происходит уменьшение остаточного напряжения в области n-. Опасность для схемы может представлять так называемый «паразитный биполярный транзистор», он может перейти в открытое состояние, называемое эффектом защелкивания, что влечет потерю управляемости.

Рис. №3. Схема включения транзистора IGBT эквивалентная структуре транзистора.

Технические компоненты

Общая структура работы такого устройства простая, и включает в себя основной источник тока, опциональный элемент выпрямителя для выходного тока, общий блок управления.

Качественный источник тока может быть полностью реализован на базе трансформаторной технологии или исключительно на базе инверторной системы, где силовые транзисторы для сварочных инверторов играют важную роль качественной работоспособности устройства.

Для трансформаторных установок допускается самостоятельное ручное регулирование работы прибора, но среди недостатков выделяется грубый режим регулировки, низкий уровень качества сварного шва. Инверторные установки, наоборот, имея самый простой сварочный инвертор на одном транзисторе обеспечивают высокое качество образования шва, которые сочетаются с силовыми полупроводниковыми элементами.

Транзисторы для инверторов

Основными техническими компонентами, обеспечивающие высокое качество сварочных работ, является наличие IGBT-транзисторов, а также универсальных быстродействующих диодов. В этом случае возникает резонный вопрос, как проверить IGBT транзистор сварочного инвертора. Укажем основные данные транзисторных компонентов для сварки версии IGBT

ТипХарактеристика
VСверхнизкая энергия осуществления выключения, работа до 600 В, частота до 1200 кГц
НВМалое напряжение насыщенного принципа воздействия. Низкая энергия выключения. Напряжение до 650 Вольт, частота до 50 кГц
ННизкий эффект режима выключения. Напряжение подачи – до 1200 вольт, частота до 35 кГц.
МНизкое напряжение режима насыщения, напряжение сети до 1200 Вольт, частотный параметр – до 20 кГц
WРежим малого прямого падения напряжения, и минимальный режим эффекта восстановления работоспособности.

Особенности работы транзисторных узлов

Наиболее частая схема применения внутри инверторов используется по технологии push-pull, мостовой принцип функционирования, полумостовой вариант рабочего инвертора, полумостовой комплексный несимметричный вариант исполнения инверторного прибора или косой полумост. Несмотря на достаточное обилие топологий, замена транзистора FGH40N60 в сварочном инверторе по общим требованиям является стандартным, куда включается следующее:

  • Высокий режим напряжения. Для эффективной замены транзисторов в сварочных инверторах, общие данные сети напряжения должны быть выше 600 Вольт.
  • Большие параметры коммутационных токов. Среднее значение показателя должен быть не менее десятков ампер, а максимальные параметры могут показывать отметку за сотни Амперов.
  • Режим высокой частоты переключения. В зависимости от габаритов трансформатора внутри прибора, можно увеличить частоту прибора, а также индуктивность для модели выходного фильтра.
  • Для режима минимизации потерь на включение и выключение агрегата, можно узнать, как проверить транзисторы сварочного инвертора, при помощи малого значения подачи энергии на режим включения (Евкл), а также на режим выключения (Евыкл). В данном случае будут минимизированы все потери.
  • Для минимизации возможных потерь, используем низкое значение для напряжения режима насыщения, или Uкэ нас.
  • Жесткий эффект коммутации, должен быть стойкий для транзисторов для сварочных инверторов Ресанта. Инверторное оборудование в данном случае работает только с индуктивным режимом нагрузки.
  • Параметры короткого замыкания. Аппарат должен иметь режим стойкости для данного параметра, эти сведения являются исключительно критичными для мостовых и полумостовых вариантов инверторной техники.

Как рассчитать потерю мощности на IGBT?

Рекомендуем для детального расчёта правильного выбора транзисторных систем использовать ниже приведённую схему.

ПараметрыЗначения
Суммарные потериPd = Pконд + Pперекл
Кондуктивные потериPконд = Uкэ нас (rms) × Iк × D, где D – коэффициент заполнения
Потери на переключениеPперекл = Eперекл × f, где f – частота переключений, Eперекл = (Eвкл + Eвыкл) — суммарные потери на переключения (приводится в параметрах IGBT)
Максимальная мощность, ограничиваемая перегревом кристаллаPd = (Tj – Tc)/Rth-jc, где Tc – температура корпуса, Tj – температура кристалла, Rth-jc – тепловое сопротивление «кристалл-корпус» (приводится в параметрах IGBT)

Все эти данные помогут вам правильно рассчитать нужный тип транзистора для инверторного сварочного аппарата. При выборе транзистора учитываем обязательно параметр для высокого порога возможного напряжения работы устройства.

Преимущества IGBT транзисторов

  • Высокая плотность тока.
  • Практически отсутствие потерь статического и динамического типа.
  • Отсутствие управляющего тока позволяет не прибегать к использованию гальванически изолированных схем для работы и управления с применением дискретных элементов и предоставляет возможность создания интегральных схем – драйверов.
  • Стойкость к воздействию короткого замыкания.
  • Относительная простота параллельного соединения.

При разработке схем включения с транзисторами IGBT необходимо обращать внимание на ограничение значения максимального тока. Для этой цели используются следующие методы – это: правильный выбор параметров тока защиты и подбор резистора затвора Rg, а также применение цепей, которые формируют траекторию переключения.

Какой лучше?

Чуть выше мы упоминали ещё об одном транзисторе MOSFET. Очень часто между специалистов сварочного дела возникает спор какой транзистор лучше. Как мы можем прокомментировать данную ситуацию?

Между этими двумя видами существует достаточно много различий. Правда с первого взгляда их не просто определить. MOSFET,- это полевой транзистор. IGBT – это биполярный.

Самое главное – это предельная мощность, которую должен выдерживать транзистор. У MOSFET эти показатели ниже, а у IGBT мощность выше. Естественно этот фактор влияет и на разницу стоимости прибора.

Интересно что в характеристиках мы видим много конкретных различий, но в действительности на практике такой разницы не ощущается. Использование транспорта MOSFET, а не IGBT на процесс работы никак не влияет.

Кроме того, IGBT инвертор будет намного дороже в обслуживании. В случае поломки для этого аппарата очень не просто найти хорошего мастера и расходники. Эти факторы ощутимо влияют на стоимость IGBT.

Поэтому для бытовой сварки рекомендуем хороший и бюджетный в обслуживании инвертор MOSFET.

Вся ценность и превосходство IGBT появляются в аппарате, который предназначен для высоковольтных подключений. Но это уже профессиональные сварочные работы. И вот здесь огромная мощность играет первую роль.

В других случаях, для любительской сварки разницы между MOSFET и IGBT нет никакой. Вид транзистора не играет никакой роли для новичков. Но вот для квалифицированного професионала все -таки IGBT инвертор.

Хоть они дороже в обслуживании, но зато позволяют использовать больше мощности.

Применение IGBT-транзистора

Одной из важных сфер использования солового транзистора – это использование в сетях с напряжением 6,5 кВ для создания безопасной и гарантированно надежной работы электроустановок в режиме короткого замыкания.

Для ограничения токов к. з. и приближению их к величине, которая не приведет к повреждениям оборудования. Они выполняют ограничение напряжения на затворе до уровня, не превышающем U = 15,3В. Это достигается с помощью применения следующих мер:

  1. Ограничение величины напряжения на затворе с помощью привязки к фиксированному уровню напряжения. Это возможно в том случае, если драйвер затвора обладает источником стабильного напряжения. Основной способ -добавление в схему диода с малым падением напряжения, например, диод Шотки. Высокая эффективность меры достигается снижением индуктивности цепи между клеммами источника и затвора.
  2. Ограничение значения напряжения на затворе с помощью присоединения в цепь между эмиттером и затвором — стабилитрона. Эффективность метода достигается максимально приближенным монтажом диодов к вспомогательным клеммам модуля. Для этой цели должны использоваться диоды с очень маленьким температурным дрейфом и разбросом, примером могут служить диоды ограничивающие переходные напряжения (диоды типа: 1,5КЕ6,8Са и 1,5КЕ7,5СА двунаправленные).
  3. Включение в схему отрицательной эмиттерной обратной связи. Этот метод возможен после подключения эмиттера драйвера затвора к основным клеммам эмиттера модуля. Эмиттерная связь обратного действия способствует эффективному ограничению напряжения на затворе.

Проверка мощных IGBT-транзисторов

Проверка силового транзистора возникает при необходимости ревизии сгоревшего транзистора, например, при ремонте сгоревшего сварочного аппарата или с целью подбора пары для устройства, с тем, чтобы убедится, что это не «перемаркер». Проверку осуществляем с помощью мультиметра: прозваниваем вывода коллектора и эмиттера в обоих направлениях, так мы убедимся в отсутствии короткого замыкания. Входную емкость затвор-эмиттер заряжаем отрицательным напряжением. Осуществляется с помощью кратковременного и одновременного прикосновения щупом «СОМ» мультиметра затвора и щупом от гнезда «V/Ω/f» — эмиттера.

Рис. №4. Проверка транзистора IGBT.

Для проверки необходимо убедиться в рабочей функциональности транзистора. Заряжаем емкость на входе затвор-эмитер положительным напряжением. Это можно сделать, коротко прикоснувшись щупом мультиметра «V/Ω/f» — затвора, к щупу«СОМ» — эмиттера. Проверяем напряжение между коллектором и змиттером, оно должно быть не больше 1,5В, меньшая величина напряжения характерна для низковольтных транзисторов. Если напряжения мультиметра не хватает для открытия и проверки транзистора, входная емкость может заряжаться от источника постоянного напряжения со значением до 15 в.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Insulated Gate Bipolar Transistor

Заголовок этого раздела переводится как “биполярный транзистор с изолированным затвором” (англ.). Это современный прибор, появившийся примерно в конце прошлого века и сделавший революцию в силовой электронике. Электроэнергия используется человечеством уже давно, по мере развития техники одна часть возникающих проблем была успешно решена как например, отказ от дорогих магнитных сплавов в пользу дешевой стали и медных обмоток возбуждения в двигателях постоянного тока и магнитах (Вернер Сименс). Другая часть проблем долго и упорно не поддавалась решению. К ней, например, можно отнести использование переменного тока в электротранспорте.

Электротехнические устройства всегда содержат элементы коммутации и это самые больные их места. При разрыве многих электрических цепей возникает дуга, пережигающая со временем контакты. Сопротивление контактов в идеале должно быть не больше, чем самый маленький участок остальной цепи, но на практике, именно благодаря окислам от дуги, в месте контакта возникает повышенное сопротивление. По закону Джоуля-Ленца на этом сопротивлении возникает и рассеивается тепловая мощность пропорциональная сопротивлению и квадрату тока. Нагрев током места контакта приводит к его ускоренному старению, чем дальше, тем быстрее, и в результате цепь выходит из строя.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector