Astro-nn.ru

Стройка и ремонт
6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Импульсный трансформатор принцип работы

Импульсные трансформаторы

Импульсные трансформаторы применяются в устройствах связи, автоматики, вычислительной техники, при работе короткими импульсами, для изменения их амплитуды и полярности, исключения постоянной составляющей и т.д.

Одно из основных требований, предъявляемых к импульсным трансформаторам — минимальное искажение формы передаваемого сигнала, происходящее из-за влияния потоков рассеяния, емкостных связей между обмотками и витками, вихревых токов.

Предположим, на вход идеального трансформатора (без потерь и емкостей) поступают прямоугольные импульсы напряжения (рис. 1, а) продолжительностью I с периодом Т. Постоянная времени первичной обмотки трансформатора — время, за которое ток достигнет установившегося значения (рис. 1, б), равна: Т1 = L1 / r1 , где L1 — индуктивность первичной обмотки, Гн.

В первичной обмотке появится и начнет увеличиваться ток кривая которого показана на рис. 1, б, Он вызовет точно такое же изменение магнитного потока, что, в свою очередь, вызовет ЭДС во вторичной обмотке, которая в режиме холостого хода равна u 2 (рис. 1, б).

Отрицательная часть импульса «срезается» включением диода во вторичную цепь трансформатора. Таким образом, получен импульс, близкий к прямоугольному на вторичной стороне трансформатора.

Рис. 1. Кривые напряжений и токов в импульсном трансформаторе

Следует обратить внимание, что Т 1 > t , т.е. постоянная времени первичной обмотки должны быть больше продолжительности импульса. Если — наоборот, Т 1 t результат получается отрицательный — форма импульса будет далека от прямоугольной.

Чтобы еще больше приблизить форму импульсов к прямоугольной, импульсный трансформатор имеет свои особенности: он работает в ненасыщенном режиме, магнитопровод импульсного трансформатора должен обладать небольшой остаточной индукцией. Поэтому он изготавливается из магнитомягкого материала (с малой коэрцитивной силой), с повышенной магнитной проницаемостью.

Рис. 2. Импульсные трансформаторы

Иногда для снижения остаточной индукции магнитопровод импульсного трансформатора конструируют с воздушным зазором. Чтобы уменьшить паразитные емкости и потоки рассеяния, обмотки стараются выполнить с наименьшим числом витков.

Импульсный трансформатор — виды, принцип работы, формулы для расчета

Различные типы трансформаторного оборудования применяются в электронных и электротехнических схемах, которые востребованы во многих сферах хозяйственной деятельности. Например, импульсные трансформаторы (далее по тексту ИТ) — важный элемент, устанавливаемый практически во всех современных блоках питания.

Различные модели импульсных трансформаторов

Конструкция (виды) импульсных трансформаторов

В зависимости от формы сердечника и размещения на нем катушек, ИТ выпускаются в следующих конструктивных исполнениях:

  • стержневом; Конструкция стержневого импульсного трансформатора
  • броневом; Конструкция импульсного трансформатора в броневом исполнении
  • тороидальном (не имеет катушек, провод наматывается на изолированный сердечник); Конструкция тороидального импульсного трансформатора
  • бронестержневом; Конструктивные особенности бронестержневого импульсного трансформатора

На рисунках обозначены:

  • A — магнитопроводный контур, выполненный из марок трансформаторной стали, изготовленной по технологии холодного или горячего металлопроката (за исключением сердечника тороидальной формы, он изготавливается из феррита);
  • В — катушка из изолирующего материала
  • С — провода, создающие индуктивную связь.

Заметим, что электротехническая сталь содержит мало добавок кремния, поскольку он становится причиной потери мощности от воздействия вихревых токов на контур магнитопровода. В ИТ тороидального исполнения сердечник может производится из рулонной или ферримагнитной стали.

Пластины для набора электромагнитного сердечника подбираются толщиной в зависимости от частоты. С увеличением этого параметра необходимо устанавливать пластины меньшей толщины.

Принцип работы

Основная особенность трансформаторов импульсного типа (далее ИТ) заключается в том, что на них подаются однополярные импульсы с постоянной токовой составляющей, в связи с чем магнитопровод находится в состоянии постоянного подмагничивания. Ниже показана принципиальная схема подключения такого устройства.

Схема: подключение импульсного трансформатора

Как видите, схема подключения практически идентична с обычными трансформаторами, чего не скажешь о временной диаграмме.

Временная диаграмма иллюстрирующая работу импульсного трансформатора

На первичную обмотку поступают импульсные сигналы, имеющие прямоугольную форму е(t), временной интервал между которыми довольно короткий. Это вызывает возрастание индуктивности во время интервала tu, после чего наблюдается ее спад в интервале (Т-tu).

Перепады индукции происходят со скоростью, которую можно выразить через постоянную времени по формуле: τp=L/Rн

Коэффициент, описывающий разность индуктивного перепада, определяется следующим образом: ∆В=Вmax — Вr

  • Вmax – уровень максимального значения индукции;
  • Вr –остаточный.

Более наглядно разность индукций представлена на рисунке, отображающем смещение рабочей точки в магнитопроводном контуре ИТ.

График смещения

Как видно на временной диаграмме, вторичная катушка имеет уровень напряжения U2, в котором присутствуют обратные выбросы. Так проявляет себя накопленная в магнитопроводе энергия, которая зависит от намагничивания (параметр iu).

Импульсы тока проходящего через первичную катушку, отличаются трапецеидальной формой, поскольку токи нагрузки и линейные (вызванные намагничиванием сердечника) совмещаются.

Уровень напряжения в диапазоне от 0 до tu остается неизменным, его значение еt=Um. Что касается напряжения на вторичной катушке, то его можно вычислить, воспользовавшись формулой:

  • Ψ — параметр потокосцепления;
  • S – величина, отображающая сечение магнитопроводного сердечника.

Учитывая, что производная, характеризующая изменения тока, проходящего через первичную катушку, является постоянной величиной, нарастание уровня индукции в магнитопроводе происходит линейно. Исходя из этого, допустимо вместо производной внести разность показателей, сделанных через определенный интервал времени, что позволяет внести изменения в формулу:

в этом случае ∆t будет отождествляться с параметром tu , который характеризует длительность, с которой протекает входной импульс напряжения.

Чтобы вычислить площадь импульса, с которым напряжение образуется во вторичной обмотке ИТ, необходимо обе части предыдущей формулы умножить на tu. В результате мы придем к выражению, которое позволяет получить основной параметр ИТ:

Заметим, что от параметра ∆В прямо пропорционально зависит величина площади импульса.

Вторая по значимости величина, характеризующая работу ИТ, — перепад индукции, на него влияют такие параметры, как сечение и магнитная проницаемость сердечника магнитопровода, а также числа витков на катушке:

Здесь:

  • L — перепад индукции;
  • µа — магнитная проницаемость сердечника;
  • W1 — число витков первичной обмотки;
  • S — площадь сечения сердечника;
  • l — длинна (периметр) сердечника (магнитопровода)
  • Вr — величина остаточной индукции;
  • Вmax – уровень максимального значения индукции.
  • Hm — Напряженность магнитного поля (максимальная).

Учитывая, что параметр индуктивности ИТ полностью зависит от магнитной проницаемости сердечника, при расчета необходимо исходить из максимального значения µа, которое показывает кривая намагничивания. Соответственно, что у материала, из которого делается сердечник, уровень параметра Вr, отображающий остаточную индукцию, должен быть минимальным.

Видео: подробное описание принципа работы импульсного трансформатора
https://www.youtube.com/watch?time_continue=13&v=XYxKfYd8Elk

Исходя из этого, в качестве на роль материала сердечника ИТ, идеально подходит лента, изготовленная из трансформаторной стали. Также можно применять пермаллой, у которого такой параметр как коэффициент прямоугольности, минимальный.

Высокочастотным ИТ идеально подходят сердечники из ферритовых сплавов, поскольку этот материал отличается незначительными динамическими потерями. Но из-за его низкой индуктивности приходится делать ИТ больших размеров.

Расчет импульсного трансформатора

Рассмотрим, как необходимо производить расчет ИТ . Заметим, КПД устройства напрямую связано с точностью вычислений. В качестве примера возьмем схему обычного преобразователя, в которой используется ИТ тороидального вида.

Схема преобразователя

В первую очередь нам потребуется вычислить уровень мощности ИТ, для этого воспользуемся формулой: Р=1,3 х Рн.

Значение Рн отображает, сколько мощности будет потреблять нагрузка. После этого рассчитываем габаритную мощность (Ргб), она должна быть не меньше мощности нагрузки:

Необходимые для вычисления параметры:

  • Sc – отображает площадь сечения тороидального сердечника;
  • S – площадь его окна (как наитии это и предыдущее значение показано на рисунке);

Основные параметры тороидального сердечника

  • Вмакс – максимальный пик индукции, она зависит от того, какая используется марка ферромагитного материала (справочная величина берется из источников, описывающих характеристики марок ферритов);
  • f – параметр, характеризующий частоту, с которой преобразуется напряжение.

Следующий этап сводится к определению количества витков в первичной обмотке Тр2:

(полученный результат округляется в большую сторону)

Величина UI определяется выражением:

UI=U/2-Uэ ( U – питающее преобразователь напряжение; Uэ— уровень напряжения, поступающего на эмиттеры транзисторных элементов V1 и V2).

Переходим к вычислению максимального тока, проходящего через первичную обмотку ИТ:

Параметр η равен 0,8, это КПД, с которым должен работать наш преобразователь.

Диаметр используемого в обмотке провода вычисляется по формуле:

Осталось рассчитать выходную обмотку ИТ, а именно, количество витков провода и его диаметр:

Если у вас возникли проблемы с определением основных параметров ИТ, в интернете можно найти тематические сайты, позволяющие в онлайн режиме рассчитать любые импульсные трансформаторы.

Импульсный трансформатор

Импульсный трансформатор (ИТ) — трансформатор, предназначенный для преобразования тока и напряжения импульсных сигналов с минимальным искажением исходной формы импульса на выходе.

Содержание

  • 1 Описание
  • 2 Эквивалентные схемы
  • 3 Виды импульсных трансформаторов
  • 4 Источники

Описание [ править ]

Импульсные трансформаторы, предназначенные для трансформирования коротких импульсов с минимальными искажениями и работающие в режиме переходных процессов, находят применение в различных импульсных устройствах [1] [2] . Импульсные трансформаторы позволяют изменить уровень и полярность формируемого импульса напряжения или тока, согласовать сопротивление генератора импульсов с сопротивлением нагрузки, отделить потенциалы источника и приёмника импульсов, получить на нескольких раздельных нагрузках импульсы от одного генератора, создать обратную связь в контурах схемы импульсного устройства. Импульсный трансформатор может быть также использован и как преобразовательный элемент, например дифференцирующий трансформатор.

Генерация мощных импульсов современных параметров невозможна без применения высоковольтных импульсных трансформаторов. Получаемая форма выходных импульсов во многом определяется свойствами ИТ, особенно при большом коэффициенте трансформации. Применение выходных повышающих ИТ позволяет резко сократить габариты, вес и стоимость генерирующих устройств [3] , хотя и негативно влияет на форму квазипрямоугольных импульсов, увеличивая относительные длительности фронта, среза и неравномерность вершины. В связи с этим величина коэффициента трансформации современных выходных ИТ при длительности импульсов в единицы и десятки микросекунд возрастает до 10 — 20 и более.

Наибольшее распространение получили ИТ, трансформирующие импульсы, по форме близкие к прямоугольным, которые обладают крутым фронтом и постоянством напряжения вершины импульса, необходимыми для работы широкого класса нагрузок. Импульс прямоугольной формы должен быть трансформирован с малыми искажениями, длительность фронта импульса должна быть значительно меньше длительности импульса и переходные процессы при трансформации фронта и вершины импульса рассматриваются раздельно. Эквивалентные схемы ИТ при раздельном рассмотрении переходных процессов упрощаются и позволяют установить связь между параметрами эквивалентных схем и конструктивными параметрами ИТ и найти такие соотношения между ними, при которых удовлетворяются требования к длительности фронта и скосу вершины импульса [4]

Эквивалентные схемы [ править ]

Трансформация фронта импульса с малыми искажениями достигается при малых значениях индуктивности рассеяния и распределенной ёмкости трансформатора, которые уменьшаются с уменьшением числа витков обмоток и сечения магнитопровода ИТ. В то же время для трансформации вершины импульса с малым спадом следует стремиться к увеличению индуктивности намагничивания трансформатора, возрастающей с увеличением числа витков и сечения магнитопровода.

Читать еще:  Как сделать витраж своими руками

Удовлетворение одновременно нескольким поставленным требованиям при расчёте ИТ потребует нахождения компромиссного решения. Оно должно быть принято в зависимости от значимости того или иного поставленного требования.

Расчеты ИТ производятся на основе приближённой эквивалентной схемы с сосредоточенными параметрами. Индуктивный эффект и потери в проводах обмоток можно учитывать с помощью известной Т-образной эквивалентной схемы.

— индуктивность намагничивания трансформатора, учитывающая запасание энергии в основном потоке взаимной индукции магнитопровода при приложении напряжения к первичной обмотке. С потоком в сердечнике связан ток намагничивания, протекающий по первичной обмотке;

— индуктивности рассеяния обмоток, учитывающие запасание энергии в потоках рассеяния, связанных с протеканием по обмоткам тока нагрузки;

— активные сопротивления проводов обмоток, учитывающие потери при протекании по ним тока нагрузки;

— эквивалентное сопротивление, учитывающие потери энергии в магнитопроводе на гистерезис и вихревые токи.

Наряду с запасанием энергии в магнитных полях, а также потерями в проводах обмоток в ИТ необходимо учитывать запасание энергии в электрических полях между обмоткой и магнитопроводом и между слоями обмоток. Учёт этой энергии производят введением трех ёмкостей, образующих П-образную структуру: — ёмкость первичной обмотки, — ёмкость вторичной обмотки, — ёмкость между обмотками.

Получившаяся эквивалентная схема ИТ описывается уравнением высокого порядка, что затрудняет анализ в общем виде:

Однако без внесения заметной погрешности можно упростить схему, если иметь в виду следующее:

1. Намагничивающий ток составляет обычно небольшую часть тока нагрузки и поэтому можно пренебречь его влиянием на поток рассеяния. Это позволяет перейти от Т-образной схемы из индуктивных ветвей к Г-образной схеме.

2. Так как электрическая энергия пропорциональна квадрату напряжения, то основная её часть запасается в обмотке высшего напряжения. Поэтому П-образная схема ёмкостных элементов замещается одной эквивалентной ёмкостью, подключенной параллельно обмотке высшего напряжения.

3. Число витков обмоток ИТ мало и, следовательно, можно пренебречь при расчётах наиболее важных электрических характеристик сопротивлением обмоток, полагая . Сопротивление обмоток учитывается при определении потерь.

В результате указанных упрощений, фронт анализируется на основе эквивалентной схемы 2-го порядка с сосредоточенными индуктивностью и ёмкостью, определяемыми из энергетических соображений:

Она хотя и удобна для математического описания, но не отражает в полной мере процессы, происходящие при передаче импульса, так как при этом считается, что большая часть электрической энергии паразитной ёмкости запасается в обмотке высшего напряжения.

Между тем использование такой схемы не допустимо при соизмеримости приведенных ёмкостей обмоток, включающих в себя паразитные ёмкости нагрузки и генератора, так как нельзя отдать предпочтение ни одной из ёмкостей. Кроме того, при резком различии приведенных ёмкостей, когда, казалось бы, можно ограничиться одной из них, возможно формирование фронта с паразитными колебаниями, наложенными на самом фронте, а не на вершине. Такие колебания должны быть исключены, например, при импульсной модуляции мощных магнетронных генераторов. Но схема 2-го порядка не только не позволяет определить условия их появления, но даже исключает само их существование. В работах вышеупомянутых авторов такой вид искажения фронта прямоугольного импульса отсутствует. Поэтому надо как минимум учитывать разделение ёмкостей обмоток индуктивностью рассеяния. Следовательно, предпочтительнее рассматривать эквивалентную схему 3-го порядка, как это сделано в работе [5] :

— индуктивность рассеяния;

— сопротивление обмоток, включающее приведенное сопротивление вторичной обмотки;

— сопротивление генератора импульсов;

— эквивалентная ёмкость первичной обмотки, включающая выходную ёмкость генератора;

— эквивалентная приведённая ёмкость вторичной обмотки включающая паразитную ёмкость нагрузки.

Виды импульсных трансформаторов [ править ]

Все конструктивные схемы можно свести к четырём основным [2] :

  1. Стержневой
  2. Броневой
  3. Бронестержневой
  4. Тороидальный

Устройство и принцип работы трансформатора

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем знакомство с электронными компонентами и в этой статье рассмотрим устройство и принцип работы трансформатора.

Трансформаторы нашли широкое применение в радио и электротехнике и применяются для передачи и распределения электрической энергии в сетях энергосистем, для питания схем радиоаппаратуры, в преобразовательных устройствах, качестве сварочных трансформаторов и т.п.

Трансформатор предназначен для преобразования переменного напряжения одной величины в переменное напряжение другой величины.

В большинстве случаев трансформатор состоит из замкнутого магнитопровода (сердечника) с расположенными на нем двумя катушками (обмотками) электрически не связанных между собой. Магнитопровод изготавливают из ферромагнитного материала, а обмотки мотают медным изолированным проводом и размещают на магнитопроводе.

Одна обмотка подключается к источнику переменного тока и называется первичной (I), с другой обмотки снимается напряжение для питания нагрузки и обмотка называется вторичной (II). Схематичное устройство простого трансформатора с двумя обмотками показано на рисунке ниже.

1. Принцип работы трансформатора.

Принцип работы трансформатора основан на явлении электромагнитной индукции.

Если на первичную обмотку подать переменное напряжение U1, то по виткам обмотки потечет переменный ток Io, который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле. Магнитное поле образует магнитный поток Фo, который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – е1 и е2. И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения U2, которое будет приблизительно равно наведенной ЭДС е2.

При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток I1, образующий в магнитопроводе переменный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1. Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток I2, создающий в свою очередь противодействующий согласно закону Ленца магнитный поток Ф2, стремящийся размагнитить порождающий его магнитный поток.

В результате размагничивающего действия потока Ф2 в магнитопроводе устанавливается магнитный поток Фo равный разности потоков Ф1 и Ф2 и являющийся частью потока Ф1, т.е.

Результирующий магнитный поток Фo обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу е2, под воздействием которой во вторичной цепи течет ток I2. Именно благодаря наличию магнитного потока Фo и существует ток I2, который будет тем больше, чем больше Фo. Но и в то же время чем больше ток I2, тем больше противодействующий поток Ф2 и, следовательно, меньше Фo.

Из сказанного следует, что при определенных значениях магнитного потока Ф1 и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС е2, тока I2 и потока Ф2, обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.

Таким образом, разность потоков Ф1 и Ф2 не может быть равна нулю, так как в этом случае отсутствовал бы основной поток Фo, а без него не мог бы существовать поток Ф2 и ток I2. Следовательно, магнитный поток Ф1, создаваемый первичным током I1, всегда больше магнитного потока Ф2, создаваемого вторичным током I2.

Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.

Напряжение вторичной обмотки зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке будет приблизительно равно напряжению, подаваемому на первичную обмотку, и такой трансформатор называют разделительным.

Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим.

Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим.

Следовательно. Путем подбора числа витков обмоток, при заданном входном напряжении U1 получают желаемое выходное напряжение U2. Для этого пользуются специальными методиками по расчету параметров трансформаторов, с помощью которых производится расчет обмоток, выбирается сечение проводов, определяются числа витков, а также толщина и тип магнитопровода.

Трансформатор может работать только в цепях переменного тока. Если его первичную обмотку подключить к источнику постоянного тока, то в магнитопроводе образуется магнитный поток постоянный во времени, по величине и направлению. В этом случае в первичной и вторичной обмотках не будет индуцироваться переменное напряжение, а следовательно, не будет передаваться электрическая энергия из первичной цепи во вторичную. Однако если в первичной обмотке трансформатора будет течь пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение частота которого будет равна частоте пульсации тока в первичной обмотке.

2. Устройство трансформатора.

2.1. Магнитопровод. Магнитные материалы.

Назначение магнитопровода заключается в создании для магнитного потока замкнутого пути, обладающего минимальным магнитным сопротивлением. Поэтому магнитопроводы для трансформаторов изготавливают из материалов, обладающих высокой магнитной проницаемостью в сильных переменных магнитных полях. Материалы должны иметь малые потери на вихревые токи, чтобы не перегревать магнитопровод при достаточно больших значениях магнитной индукции, быть достаточно дешевыми и не требовать сложной механической и термической обработки.

Магнитные материалы, используемые для изготовления магнитопроводов, выпускаются в виде отдельных листов, либо в виде длинных лент определенной толщины и ширины и называются электротехническими сталями.
Листовые стали (ГОСТ 802-58) изготавливаются методом горячей и холодной прокатки, ленточные текстурованные стали (ГОСТ 9925-61) только методом холодной прокатки.

Также применяют железноникелевые сплавы с высокой магнитной проницаемостью, например, пермаллой, перминдюр и др. (ГОСТ 10160-62), и низкочастотные магнитомягкие ферриты.

Для изготовления разнообразных относительно недорогих трансформаторов широко применяются электротехнические стали, имеющие небольшую стоимость и позволяющие трансформатору работать как при постоянном подмагничивании магнитопровода, так и без него. Наибольшее применение нашли холоднокатаные стали, имеющие лучшие характеристики по сравнению со сталями горячей прокатки.

Сплавы с высокой магнитной проницаемостью применяют для изготовления импульсных трансформаторов и трансформаторов, предназначенных для работы при повышенных и высоких частотах 50 – 100 кГц.

Недостатком таких сплавов является их высокая стоимость. Так, например, стоимость пермаллоя в 10 – 20 раз выше стоимости электротехнической стали, а пермендюра – в 150 раз. Однако в ряде случаев их применение позволяет существенно снизить массу, объем и даже общую стоимость трансформатора.

Другим их недостатком является сильное влияние на магнитную проницаемость постоянного подмагничивания, переменных магнитных полей, а также низкая стойкость к механическим воздействиям – удар, давление и т.п.

Из магнитомягких низкочастотных ферритов с высокой начальной проницаемостью изготавливают прессованные магнитопроводы, которые применяют для изготовления импульсных трансформаторов и трансформаторов, работающих на высоких частотах от 50 – 100 кГц. Достоинством ферритов является невысокая стоимость, а недостатком является низкая индукция насыщения (0,4 – 0,5 Т) и сильная температурная и амплитудная нестабильность магнитной проницаемости. Поэтому их применяют лишь при слабых полях.

Выбор магнитных материалов производится исходя из электромагнитных характеристик с учетом условий работы и назначения трансформатора.

2.2. Типы магнитопроводов.

Магнитопроводы трансформаторов разделяются на шихтованные (штампованные) и ленточные (витые), изготавливаемые из листовых материалов и прессованные из ферритов.

Читать еще:  Онлайн помощник домашнего мастера

Шихтованные магнитопроводы набираются из плоских штампованных пластин соответствующей формы. Причем пластины могут быть изготовлены практически из любых, даже очень хрупких материалов, что является достоинством этих магнитопроводов.

Ленточные магнитопроводы изготавливаются из тонкой ленты, намотанной в виде спирали, витки которой прочно соединены между собой. Достоинством ленточных магнитопроводов является полное использование свойств магнитных материалов, что позволяет уменьшить массу, размеры и стоимость трансформатора.

В зависимости от типа магнитопровода трансформаторы подразделяются на стрежневые, броневые и тороидальные. При этом каждый из этих типов может быть и стрежневым и ленточным.

В магнитопроводах стержневого типа обмотки располагается на двух стержнях (стержнем называют часть магнитопровода, на которой размещают обмотки). Это усложняет конструкцию трансформатора, но уменьшает толщину намотки, что способствует снижению индуктивности рассеяния, расхода проволоки и увеличивает поверхность охлаждения.

Стержневые магнитопроводы используют в выходных трансформаторах с малым уровнем помех, так как они малочувствительны к воздействию внешних магнитных полей низкой частоты. Это объясняется тем, что под влиянием внешнего магнитного поля в обеих катушках индуцируются напряжения, противоположные по фазе, которые при равенстве витков обмоток компенсируют друг друга. Как правило, стержневыми выполняются трансформаторы большой и средней мощности.

В магнитопроводе броневого типа обмотка располагается на центральном стержне. Это упрощает конструкцию трансформатора, позволяет получить более полное использование окна обмоткой, а также создает некоторую механическую защиту обмотки. Поэтому такие магнитопроводы получили наибольшее применение.

Некоторым недостатком броневых магнитопроводов является их повышенная чувствительность к воздействию магнитных полей низкой частоты, что делает их малопригодными к использованию в качестве выходных трансформаторов с малым уровнем помех. Чаще всего броневыми выполняются трансформаторы средней мощности и микротрансформаторы.

Тороидальные.

Тороидальные или кольцевые трансформаторы позволяют полнее использовать магнитные свойства материала, имеют малые потоки рассеивания и создают очень слабое внешнее магнитное поле, что особенно важно в высокочастотных и импульсных трансформаторах. Но из-за сложности изготовления обмоток не получили широкого применения. Чаще всего их делают из феррита.

Для уменьшения потерь на вихревые токи шихтованные магнитопроводы набираются из штампованных пластин толщиной 0,35 – 0,5 мм, которые с одной стороны покрывают слоем лака толщиной 0,01 мм или оксидной пленкой.

Лента для ленточных магнитопроводов имеет толщину от нескольких сотых до 0,35 мм и также покрывается электроизолирующей и одновременно склеивающейся суспензией или оксидной пленкой. И чем тоньше слой изоляции, тем плотнее происходит заполнение сечения магнитопровода магнитным материалом, тем меньше габаритные размеры трансформатора.

За последнее время наряду с рассмотренными «традиционными» типами магнитопроводов находят применение новые формы, к числу которых следует отнести магнитопроводы «кабельного» типа, «обращенный тор», катушечный и др.

На этом пока закончим. Продолжим во второй части.
Удачи!

1. В. А. Волгов – «Детали и узлы радио-электронной аппаратуры», Энергия, Москва 1977 г.
2. В. Н. Ванин – «Трансформаторы тока», Издательство «Энергия» Москва 1966 Ленинград.
3. И. И. Белопольский – «Расчет трансформаторов и дросселей малой моности», М-Л, Госэнергоиздат, 1963 г.
4. Г. Н. Петров – «Трансформаторы. Том 1. Основы теории», Государственное Энергетическое Издательство, Москва 1934 Ленинград.
5. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.

Как работает преобразователь напряжения

Время на чтение:

Электронная аппаратура, ее составные части требуют для питания элементов напряжение различной величины. До недавнего времени, а в некоторых случаях и сегодня, для получения нужного значения используют трансформаторы. Такой способ весьма прост, но обладает существенными недостатками: невозможность преобразования постоянного напряжения; большие габариты и вес трансформатора; необходимость использования дополнительных выпрямителей и стабилизаторов (в том числе с регулировкой) для каждого из значений напряжения вторичных обмоток; высокий уровень электромагнитных помех; низкий КПД. Большая часть перечисленных недостатков устранена в импульсных преобразователях.

Что такое импульсный преобразователь напряжения

Название конструкции произошло от принципа работы устройства. Выделяют такие основные особенности:

  • формирование высокочастотных импульсов;
  • преобразование амплитуды импульсов при помощи высокочастотного трансформатора;
  • выпрямление полученного напряжения.

У трансформатора много недостатков

Некоторые конструкции вместо трансформатора используют свойство емкости или индуктивности накапливать энергию. Разработаны микросхемы импульсных преобразователей (инверторов) напряжения, которые требуют для работы минимального количества дополнительных элементов. Это позволяет создавать конструкции с малым весом и габаритами.

Инверторный преобразователь

Обратите внимание! Даже преобразователи, использующие импульсный трансформатор, имеют намного меньшие размеры, чем классический трансформатор. Это связано с тем, что преобразование производится на высокой частоте.

Импульсное преобразование позволяет как повышать, так и понижать постоянное напряжение и легко производить его регулировку.

Технические характеристики прибора

Технические характеристики инверторов по большей части совпадают с таковыми у классических источников питания. Но есть и отличия. Импульсный преобразователь может работать при более широком диапазоне входного напряжения, имеет меньшие массу и габариты, более высокий КПД. Устройства отличаются высоким уровнем высокочастотных помех, но их легко снизить при использовании фильтров. Благодаря высокой частоте габариты фильтра невелики.

Обратите внимание! Инвертор имеет отрицательную величину входного сопротивления. На практике это выражается в том, что при увеличении напряжения питающей сети происходит снижение тока потребления.

Принцип работы

Принцип работы импульсного понижающего или повышающего преобразователя напряжения лучше рассмотреть на обобщенной блочной схеме. В основе схемы лежат:

  • выпрямитель;
  • входной фильтр;
  • генератор импульсов;
  • схема управления;
  • выходной выпрямитель;
  • выходной стабилизатор;
  • фильтр.

К сведению! Входное сетевое напряжение поступает на вход выпрямителя, а затем на фильтр, в результате чего получается постоянный ток, который служит для питания схемы устройства и для дальнейшей работы преобразователя.

Генератор формирует последовательность высокочастотных импульсов, а схема управления регулирует частоту или ширину импульсов. Данная регулировка позволяет изменять выходное напряжение в широких пределах, а также осуществлять его стабилизацию. Изменение тока нагрузки приводит к уменьшению напряжения.

Схема управления на основе измеренных данных дает команду на увеличение ширины импульсов, что приводит к увеличению напряжения. При уменьшении тока нагрузки происходят аналогичные изменения (импульс имеет меньшую длительность). Таким образом выполняется стабилизация.

Важно! Использование обратной связи гарантирует стабильность параметров не только при изменении нагрузки, но и в полном диапазоне входного напряжения.

Назначение преобразователя

Импульсные преобразователи используются для питания устройств различного назначения. Основная сфера применения — малогабаритные устройства, мощные стабилизаторы. Всем известны зарядные устройства с габаритами, сравнимыми с сетевой вилкой для мобильных устройств, а также инверторные сварочные аппараты, которые имеют в несколько раз пониженный, чем у трансформаторных устройств, вес и имеющие более высокие потребительские свойства.

Сварочный трансформатор

Обратите внимание! Использование инверторных преобразователей позволяет повысить экономичность устройств и снизить энергопротребление.

Как правильно и где использовать прибор

Применение импульсных устройств требует соблюдения некоторых условий:

  • экранировка корпуса прибора, чтобы понизить уровень излучаемых помех;
  • установка фильтров на входе устройства для предотвращения передачи помех через питающую сеть;
  • обеспечение циркуляции воздуха для эффективного охлаждения силовых элементов схемы.

Максимально допустимую нагрузку к источнику питания допускается подключать только при высоком значении входного напряжения. Это связано с тем, что при его снижении для обеспечения номинальных выходных значений полупроводниковые ключи генератора инвертора большую часть времени находятся в открытом состоянии. Это может вызвать их перегрев и выход из строя.

Важно! Большинство схем импульсных преобразователей напряжения построено таким образом, что часть элементов находится под потенциалом сети, что может вызвать удар электрическим током. Использовать такие преобразователи можно только при условии надежного заземления конструкции.

Микросхемы импульсных преобразователей

Для многих стандартных областей применения разработаны интегральные микросхемы стабилизаторов. Использование микросхем позволяет создавать конструкции, содержащие минимальное количество элементов и не требующие настройки. В случае питания небольшой нагрузки не требуется даже использование мощных ключевых элементов. Это позволяет создавать малогабаритные и надежные источники питания. В качестве примера зарядные устройства для мобильных телефонов.

Преобразователь на ИМС

Интегральные микросхемы в преобразователях могут выполнять различные функции, поэтому они делятся по функциональному назначению:

  • широтно-импульсные преобразователи;
  • триггеры Шмидта;
  • стабилизаторы напряжения.

Выпускается большой ассортимент ИМС, совмещающих в себе все перечисленные функции. Одна и та же микросхема может выпускаться различными производителями под своим наименованием.

Обратите внимание! Проектирование и конструирование импульсных преобразователей напряжения облегчается наличием большого количества типовых схем, которые опробованы в работе, отличаются простотой и надежностью.

Что касается ремонта устройства, то во многих случаях это выполнять нецелесообразно, поскольку затраты по времени и трудоемкость работ не сопоставимы с низкой стоимостью элементов и готовой конструкции.

Таким образом, преобразователь — это важное устройство как в быту, так и в промышленности. Благодаря ему обеспечивается слаженная работа электрооборудования и сетей. Но в его использовании важно учесть условия и правила.

Правильная намотка импульсного трансформатора

Из рисунка выше видно, что к двухтактным относят: мост, полумост и пуш-пул. В этих схемах зазора в сердечнике быть не должно, причем это касается не только силового трансформатора, но и ТГР.

Что касается однотактных схем, они бывают прямоходовые и обратноходовые, вот у них зазор в сердечнике должен быть обязательно, поэтому первым делом всегда необходимо более подробно ознакамливаться с тем, что вы делаете.

Для более наглядного примера в этой статье мы рассмотрим намотку 2-ух различных трансформаторов, один для двухтактной схемы, второй соответственно для однотактной.

Как видим из схемы — это полумост. Таким образом данный тип относится к разряду двухтактных схем, следовательно, как упоминалось в начале статьи — зазор в сердечнике не нужен.

С этим определились, но это еще не все. Перед намоткой необходимо произвести специальные вычисления (рассчитать трансформатор). Благо в интернете без особого труда можно найти и скачать специальные программы Владимира Денисенко для расчета трансформатора.

При включенной галочке программа автоматом накидывает пару витков на вторичку для зазора работы ШИМ.
Второе поле — это охлаждение. Если оно присутствует, то можно из трансформатора выжать больше мощности.

И последнее, но самое важное – необходимо указать какой сердечник будет использоваться при намотке данного трансформатора.



Стараемся равномерно укладывать витки, также необходимо избегать пересечение провода и различных узелков, петель и тому подобных явлений. От того как вы намотаете трансформатор зависит дальнейшая работа всего блока питания.

Мотаем ровно половину первички и делаем отвод, только не прямо на пин трансформатора, а вверх. Дальше будем мотать вторичку, а поверх неё оставшуюся первичку.

Припаиваемся к началу обмотки и равномерно виток к витку мотаем. При этом желательно чтобы вторичка поместилась в один слой. Но если же вы рассчитали на большее напряжение, то необходимо второй слой равномерно растянуть по всему каркасу.

Читать еще:  Тема: Плитка индукционка мерзко пищит

Когда намотали слой, то опять же делаем отвод вверх и начинаем мотать вторую часть вторички. Мотается она точно так же, как и первая.

Вот тут уже стоит каким-либо образом пометить где у вас первая половина вторички и где вторая.

Следующий шаг – домотка первичной обмотки. В этом случае автор обычно оставляет себе пустой пин на печатной плате, чтобы туда можно было подключить среднюю точку первички.

Примечание для начинающих! Как правило начинающие радиолюбители делают свои первые блоки питания не стабилизированными на микросхемах типа IR2153 и постоянно сталкиваются со следующей проблемой: мол намотал на одно напряжение, а на выходе получил другое. Перемотка результатов не дает. В чем же дело? А дело в том, что необходимо проводить измерения при нагрузке как минимум 15% от номинала. А то получается, что выходной конденсатор зарядился до амплитудного значения, собственно его вы и измеряете, и не можете понять что не так.

Намотка трансформатора обратноходового блока питания ничем не отличается от предыдущего, только для расчета будем использовать уже другую программу из того же пакета программ – «Flyback – Программа расчета трансформатора обратноходового преобразователя» (Версия 8.1).


На этом все. Благодарю за внимание. До новых встреч!

Видеоролик автора:

Схема, принцип работы импульсного блока питания

Любой блок питания – это устройство, обеспечивающее формирование вторичной мощности посредством применения дополнительных электрических компонентов. Проще говоря, БП служит для преобразования напряжения из одного вида в другой, по номиналу или другим характеристикам. Существует два больших класса таких преобразователей:

  • использующие для преобразования напряжения аналоговые трансформаторы;
  • блоки питания (инверторы) импульсного типа.

Первый тип известен достаточно давно, несмотря на постоянное совершенствование, трансформаторные блоки питания имеют ряд ограничений, преодолеть которые оказалось под силу импульсным устройствам. Принцип действия у них разный, отличия принципиальные, но многие не видят разницы между трансформаторными и импульсными преобразователями. Мы попробуем внести ясность в этот вопрос, рассмотрев принцип работы, достоинства и недостатки, а также сферу применения импульсных БП. И, конечно, затронем основные отличия от блоков питания устаревшего типа.

Что это такое

Упрощённо трансформаторный БП можно представить в виде схемы, состоящей из собственно трансформатора, выпрямителя, фильтра для сглаживания параметров выходного напряжения и стабилизатора. Такие устройства обладают достаточно простой схемотехникой, недорогие и обеспечивают низкий уровень помех выходного сигнала.

Но у них есть серьёзные конструктивные недостатки – большой вес и невысокий КПД. Значительная часть энергии преобразовывается в тепловую, поэтому проблема перегрева для таких устройств, особенно мощных – одна из самых актуальных.

Принцип работы импульсных БП для начинающих тоже можно объяснить довольно просто: он также основан на использовании трансформатора, однако работает он на очень больших частотах, порядка 1-100 КГц и обладает гораздо меньшими габаритами и массой. Это, в свою очередь, делает задачу отвода тепла легко выполнимой. Функция фильтрации/стабилизации выходного напряжения упрощается, поскольку для этой задачи используются конденсаторы малой ёмкости.

Но и у инверторных оков питания имеются недостатки – сложная схемотехника, чувствительность к электромагнитным помехам. Что касается стоимости, то она вполне сравнима с трансформаторными устройствами.

Принцип работы импульсного (инверторного) блока питания

А теперь рассмотрим, как работает импульсный блок питания, на полупрофессиональном уровне.

Основной функционал устройства заключается в выпрямлении характеристик первичного напряжения с последующим преобразованием в непрерывную последовательность импульсов, следующих с частотой, существенно превышающую номинальные 50 Гц. Именно в этом и заключается основное отличие от БП трансформаторного типа. У инверторных устройств выходное напряжение прямо влияет на функционирование блока посредством обратной связи. Используя характеристики импульсов, можно более точно регулировать стабилизацию выходного напряжения, тока и других параметров. Фактически импульсный блок питания может использоваться в качестве стабилизатора и напряжения, и тока. При этом полярность и число выходных характеристик может варьироваться в широких пределах, в зависимости от конкретной конструкции ИБП.

Опишем принцип действия импульсного БП схематично.

На первый блок устройства, выпрямитель, подаётся бытовое напряжение номиналом 220 В, на трансформаторе амплитуда напряжения сглаживается, за что отвечает фильтр на основе конденсатора ёмкостного типа. Следующий этап – выпрямление синусоидного сигнала посредством диодного моста. После этого синусоидное напряжение преобразовывается в высокочастотные импульсы, при этом может быть использован принцип гальванического отделения питающего напряжения от выходного.

Если такая гальваническая развязка присутствует, высокочастотные сигналы по принципу обратной связи снова направляются на трансформатор, который использует их для осуществления гальванической развязки. Чтобы повысить КПД трансформатора, используется такой приём, как повышение его рабочей частоты.

Инверторный принцип обратной связи реализован посредством взаимодействия 3 базовых цепочек:

  • за широтно-импульсную модуляцию входного напряжения отвечает ШИМ-контроллер;
  • второй элемент – каскад силовых ключей, включающий собранные по специальным схемам транзисторы (схема со средней точкой Push-Pull, мостовая или полумостовая);
  • третья цепочка – собственно импульсный трансформатор.

Разновидности импульсных БП

По большому счёту классификация ИБП может включать немало схем, но мы рассмотрим только две из их:

  • бестрансформаторные импульсные устройства;
  • трансформаторные ИБП.

Мы уже рассматривали, чем отличается импульсный инвертор от обычного трансформаторного блока питания. Теперь можно рассказать об отличиях между этими двумя разновидностями импульсных преобразователей.

В бестрансформаторных ИБП высокочастотные импульсы следуют на выходной выпрямитель, и далее – на оконечную компоненту, сглаживающий фильтр. Основное достоинство такой схемы – простота конструкции. Большую роль здесь играет широтно-импульсный генератор, представляющий собой специализированную микросхему.

Главный минус таких устройств – отсутствие гальванической развязки, то есть обратной связи с питающей цепочкой. По этой причине уровень безопасности бестрансформаторных блоков не так высок – существует опасность поражения электрическим током высокой частоты. Поэтому блоки питания такого типа делают маломощными.

Трансформаторные БП более распространены. Здесь присутствует гальваническая развязка: высокочастотные импульсы подаются на трансформаторный блок, на первичную обмотку, при этом количество вторичных обмоток неограниченно. Другими словами, выходных напряжений может быть много, при этом каждая вторичная обмотка содержит собственную пару выпрямитель – фильтр. К КПД такого импульсного блока питания претензий нет, уровень безопасности – высокий. Неслучайно в компьютерах используют именно этот тип. Здесь для подачи сигнала на трансформатор по гальванической развязке используется напряжение номиналом 5/12 В, поскольку уровень точности и стабильности для работы компонентов ПК требуется очень высокий.

В числе основных отличий импульсного блока питания от классического трансформаторного является использование высокочастотных импульсов вместо стандартных 50 Гц. Такое решение позволило использовать ферромагнитные сплавы вместо электротехнических разновидностей железа. Они обладают высокой коэрцитивной силой, что предоставило возможность многократно уменьшить вес и размеры трансформаторной части и всего устройства.

Использование инверторных схем существенно упростило задачу преобразования напряжения и тока, хотя схематически ИБП намного сложнее трансформаторных аналогов.

Схема ИБП

Рассмотрим, как устроен не самый сложный импульсный блок питания в наиболее распространённой конфигурации:

  • помехоподавляющий фильтр;
  • диодный выпрямитель;
  • сглаживающий фильтр;
  • ШИП;
  • блок силовых ключевых транзисторов;
  • высокочастотный трансформатор;
  • выпрямители;
  • групповые/индивидуальные фильтры.

В зону ответственности помехоподавляющего фильтра входит функция фильтрация помех, источником появления которых является сам блок питания. Дело в том, что использование мощных полупроводниковых компонентов часто приводит к формированию кратковременных импульсов, наблюдаемых в обширном диапазоне частот. Чтобы снизить их влияние на выходной сигнал, применяются цепочки специальных проходных конденсаторов, служащих фильтром для подобных импульсов.

Назначение диодного выпрямителя – преобразование переменного напряжения на входе блока в постоянное на выходе. Возникающие паразитные пульсации сглаживает установленный долее по схеме фильтр.

Если устройство импульсного блока включает преобразователь постоянного напряжения, цепочка из выпрямителя и фильтра будет лишней, поскольку входной сигнал будет сглаживаться на участке помехоподавляющего фильтра.

Широтно-импульсный преобразователь (его ещё называют модулятором) – наиболее сложная часть устройства. Он выполняет несколько функций:

  • генерирует импульсы высокой частоты (от килогерца до сотен КГц);
  • на основании параметров сигнала обратной связи корректирует характеристики импульсной последовательности на выходе;
  • осуществляет защиту схемы от перегрузок.

С ШИМ импульсы подаются на ключевые транзисторы высокой мощности, чаще всего выполненные по мостовой/полумостовой схемам. Выводы ключевых транзисторов поступают на первичную обмотку трансформаторного блока. В качестве элементной базы используются транзисторы типа MOSFET или IGBT, отличающиеся от биполярных аналогов незначительным снижение напряжения на участке перехода, а также более высоким быстродействием. Это позволило снизить параметр рассеиваемой мощности при тех же габаритах.

Что касается принципа работы импульсного трансформатора, то он использует тот же способ преобразования, что и классические трансформаторные БП. Единственное, но важное отличие – он работает на гораздо более высоких частотах. Это и позволило при той же выходной мощности заметно уменьшить массу и размеры блока.

С вторичной обмотки трансформатора (напоминаем, их может быть несколько) импульс поступает на выходные выпрямители. В отличие от аналога на входе блока, здесь диоды должны обеспечивать работу на высоких частотах. Лучше всего с такой работой справляются диоды Шоттки. Они устроены так, что обеспечивают малую ёмкость p-n перехода и, соответственно, небольшое падение напряжения при высоком показателе рабочей частоты.

Последний элемент схемы, выходной фильтр, сглаживает пульсации поступающего на вход выпрямленного напряжения. Поскольку это высокочастотные импульсы, здесь отпадает необходимость в применении конденсаторов и катушек большой мощности.

Сфера применения ИБП

Эра классических трансформаторных БП уходит в небытие. Импульсные преобразователи на основе полупроводниковых стабилизаторов повсеместно их вытесняют, поскольку при тех же значениях выходной мощности характеризуются гораздо меньшими весогабаритными показателями, они надёжнее аналоговых оппонентов и обладают намного более высоким КПД, позволяя снизить тепловые потери. Наконец, ИБП могут функционировать с входным напряжением в обширном диапазоне значений. Импульсный блок такого же размера, как трансформаторный, обладает в разы большей мощностью.

В настоящее время в сферах, требующих преобразования переменного напряжения в постоянное, используются практически только импульсные инверторы, при этом они могут обеспечить и повышение напряжения, что недоступно для классических аналоговых блоков. Ещё одним достоинством ИБП является способность обеспечить смену полярности выходного напряжения. Работа на высоких частотах облегчает функцию стабилизации/фильтрации выходных импульсов.

Малогабаритные инверторы, построенные на специализированных микросхемах, являются основой зарядных устройств всевозможных мобильных гаджетов, а надёжность их такова, что срок службы существенно превышает ресурс мобильных устройств. О компьютерных блоках питания мы уже упоминали. Отметим, что принцип работы ИБП используется в 12-вольтовых драйверах питания светодиодов.

Помогла ли вам данная статья разобраться с тем, какой же всё-таки принцип работы импульсного блока питания? Если что-то осталось непонятным или вы просто хотите поблагодарить за информацию, ждём вас в комментариях.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector