Astro-nn.ru

Стройка и ремонт
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как определить мощность импульсного блока питания

Как определить мощность БП

Отдали мне корпусов от накопителей.Хорошие такие.Жёсткие диски повынимали,блоки питания оставили.Я вот думаю,куда бы применить?Размах возможной идеи зависит от параметров БП,но пока интересует только долговременная мощность(токи).Там пять и двенадцать вольт на выходе,сетевой предохранитель 1,6А.Надписей говорящих о токах и мощностях не обнаружил.
Как косвенно можно узнать искомый параметр не спалив БП?Толщина провода в катушках. Диоды.

Мощность блока, с точностью плюс/минус лапоть — по емкости конденсатора(-ов) в сетевом выпрямителе. Емкость эта обычно порядка 1мкФ/Вт для 220-вольтовых БП, и 2мкФ/Вт для универсальных БП (

Что касается распределения этой мощности между 5 и 12В — косвенно можно и по толщине провода, и по диодам. Например, достаточно типичная зависимость для обратноходовых блоков: макс. допустимый ток диода = 3*макс. выходной ток. Для прямоходовых БП множитель может быть поменьше. Хотя это в любом случае дает лишь оценку сверху.

Такие девайсы должны быть хорошо защищены.
Смело грузите выходы:
— до режима стабилизации тока (если такой предусмотрен),
— до падения напряжения больше, чем на 5%,
— до срабатывания защиты,
— до перегорания предохранителя, наконец.
Полученый ток уменьшите примерно на 20% — это и будет долговременный рабочий.

Кстати, никто не посоветует простую (без стабилизации) схемку импульсного ИП с параметрами 18 вольт, 2 А (40 ватт примерно).

Тоже для паяльника?

Mastak.Спасибо.
Есть уменя батарея самопальных резисторов по два ома.Вот и сгодится.

Дмитрий М
Не готовая схема, но..
Например, IR2153 + пара полевиков (IRF820..IRF840).
http://www.irf.com/product-info/datasheets/data/ir2153.pdf
Эту микруху иногда ставят в электронные балласты. А полумост получается практически с минимально возможным кол-вом деталей, но без токовой защиты.

Mastak
Такие девайсы должны быть хорошо защищены.

БП с несколькими выходами очень часто «хорошо защищены» лишь от КЗ, но никак не от перегрузки по одному из каналов.

Нет, для питания блоков спутниковых конверторов для приёма телевидения. А то последние разы я ставил БП 200 ватт от АТ после перемотки (точнее объединения) выходных обмоток. Благо, БП от старых компьютеров много. Думал на топ-свичах собрать, да за ними надо идти в магазин. IR пожалуй подоступнее будет.

Думал на топ-свичах собрать

Думаю, что Вы все-таки думали правильно Хотя это и не совсем удовлетворяет требованию
«. простую (без стабилизации) схемку импульсного ИП». Схема простая, но со стабилизаций в любом случае. Хотя бы косвенной, т.е. выходное напряжение стабилилируется за счет стабилизации Uпит самого TOPSwitch, по типу того как сделано в этой схеме:

Преимущество в том, что будет нормальная защита по току. То же самое можно сделать на UC384_ с несколько большим числом компонентов.

А с трансформатором что? Придётся прокладки вклеивать, так как однотактный. Может, есть что-то подобное с уже рассчитаной первичкой, обмоткой связи и параметром U/виток? Так, что бы только рассчитать вторичку? Или я прошу слишком многого ?

Форум про радио — сайт, посвященный обсуждению электроники, компьютеров и смежных тем.

Сравнение линейного и импульсного лабораторных блоков питания

С вами интернет-магазин Electronoff! Если поискать в интернете стабилизаторы напряжения, или лабораторные блоки питания, что практически одно и то же, то можно найти два варианта — линейные и импульсные. Сегодня мы разберем, чем же они различаются, функционально и в рабочем плане, расскажем принципы их работы.

Сильно вдаваться в подробности не будем, но основную информацию попробуем рассказать.

Начнем с линейных стабилизаторов.

Их яркими примерами есть популярные микросхемы серии L78xx. Грубо говоря, такие стабилизаторы работают как обычный резистор – всю “лишнюю” энергию, которая не идет в нагрузку, они гасят на себе. Например, возьмем светодиод. Ему нужно 3 вольта, а на входе у нас 12 вольт. Линейный стабилизатор опустит напряжение до 3-х вольт, а оставшиеся 9 вольт, скажем так, “съест” — превратит их в нагрев себя же.

У них эффективность тем больше, чем меньше разница напряжений. Например, если светодиоду нужно 3 вольта, а на входе у нас 5 — стабилизатор скушает 2 вольта и нагреется совсем чуть-чуть. А если мы подадим 30 вольт — ему придется сожрать целых 27 вольт, и нагрев от этого будет значительно больше.

Можно даже посчитать.

  • Возьмем ток через светодиод равным 100 мА , или 0.1 А .
  • Из рассчета рассеиваемой мощности, P=U*I , при входном напряжении 5 вольт стабилизатор рассеет 2*0.1 = 0.2 Вт , а при входных 30 вольтах уже 27*0.1=2.7 Вт , то есть в 13.5 раз больше.
  • При условии, что сам светодиод потребляет 0.3 Вт , эффективность во втором случае получается ну совсем никакая.

Но не стоит думать, что эти стабилизаторы совсем уж плохие. У них присутствует несколько существенных преимуществ.

Первое — дешевизна и надежностьСделать нормально работающий стабилизатор можно буквально из трех деталей, причем две будут необязательными
Второе — отсутствие пульсаций и помех на выходеПри правильной компоновке на выходе получается ровная линия напряжения при любой нагрузке. А это очень важно для чувствительных к разным наводкам и пульсациям схем на электронных компонентах

К тому же, промышленные блоки питания минимизируют разницу напряжений при помощи трансформаторов с несколькими обмотками. Таким образом всегда работают в оптимальном режиме.

А вот импульсные лабораторные бп немного сложнее. В них не происходит “съедания” лишнего напряжения, они его преобразуют . Образно говоря, это регулируемый трансформаторчик, который подчиняется “трансформаторным” законам сохранения энергии — если на входе было большое напряжение и маленький ток, то на выходе можем получить, скажем, маленькое напряжение и большой ток (больше, чем входной).

В теории такой стабилизатор может иметь КПД, близкое к 100% (но потреи всегда есть — в магнитопроводе, прит нагреве радиодеталей), и производители стремятся быть как можно ближе к этому значению.
С помощью импульсного метода можно делать небольшие, но при этом очень мощные источники питания.

Звучит хорошо, но на практике всё не так радужно.

Импульсные стабилизаторы значительно сложнее в плане схемотехники и производства. В их составе должна быть специализированная микросхема, которая подключается к преобразующему трансформатору или катушке. К ним нужна дополнительная обвязка, и все это дело использует для преобразования большую переменную частоту (поскольку преобразование может происходить только с переменным током (или же импульсным, откуда и название)).

А следовательно возникают следующие возможные проблемы:

  1. Пульсации на выходе. Так как напряжение преобразуется импульсами, эти импульсы могут сохраняться и на выходе стабилизатора, просачиваясь в нагрузку. Особенно неприятно это чувствовать на усилителях звука и других чувствительных схемах — датчиках, сенсорах, таймерах и так далее.
    Пульсации создают помехи не только на частоте преобразования, но и на гармониках этой частоты. К тому же, если основная частота или ее гармоники попадают в звуковой диапазон, то блок питания будет издавать противное пищание, изводящее нашу и без того хрупкую нервную систему.
  2. Помимо этого, куча электроники делает всю схему более хрупкой и “капризной”.
    В качественных промышленных импульсных источниках питания, конечно, пульсации сведены к минимуму, а также предусмотрены всевозможные защиты и настройки, чтобы ничего не ломалось. А вот самостоятельно сделать такой блок без определенного багажа знаний проблематично.

✓ Линейный стабилизатор “в лоб съедает” всю лишнюю энергию, более простой, дешевый и надежный, но значительно менее эффективный. Эффективность тем меньше, чем больше разница между входным и выходным напряжением.

✓ Импульсный стабилизатор (преобразует начальное напряжение в требуемое, сохраняя всю (ну, в идеале, всю) энергию, то есть значительно более эффективный — ему практически безразлична разница между входным и выходным напряжением. Но при этом он значительно более сложный в разработке, наладке и производстве, а из-за этого и более дорогой.

Импульсный блок питания — как он устроен?

Импульсные блоки питания (ИБП), при всей научной серьезности своего названия, являются очень хорошо знакомыми нам устройствами. Мы постоянно пользуем ими, когда ставим на зарядку сотовые телефоны или подключаем к сети компьютеры и ноутбуки. ИБП встроены также и в цоколи энергосберегающих ламп, и в телевизоры, и в источники бесперебойного питания (которые тоже обозначаются сокращением ИБП) — но тем не менее, до сих пор так и не вытеснили старые добрые трансформаторные стабилизаторы напряжения. Отчего ж так? Чем хороши импульсные блоки питания и какие у них есть недостатки? Попробуем разобраться.

Читать еще:  Установка сигнализации на авто своими руками

Что во что преобразуется в ИБП?

Начнем с главного различия между трансформаторным и импульсным блоком питания. Если совсем коротко, то они сводятся к тому, что трансформаторный блок питания занимается тем, что преобразует переменный электрический ток одного напряжения в ток другого напряжения той же частоты (например — 127 вольт в 220 вольт при частоте 50 герц).

Он же может «следить» за тем, чтобы напряжение на выходе не колебалось вслед за его колебаниями на входе (в таком случае трансформаторный блок питания называется стабилизатором напряжения) — но все равно «главным героем» в трансформаторном блоке питания остается именно трансформатор.

А вот с импульсным блоком питания все иначе — поступающий из сети переменный электрический ток он сперва выпрямляет, а затем преобразует в ток совсем другой частоты и напряжения.

Начнем с того, как происходит выпрямление электрического тока.

Таким образом, при смене полярности тока в сети, через нарузку после выпрямителя ток всегда будет идти в одном направлении. Теперь от этого постоянного тока будет работать импульсный блок, который будет иметь примерно такую схему:

При всей внешней сложности этой схемы, мы может ее увидеть наяву, если вскроем зарядное устройство для сотового телефона. Выглядеть она будет в готовом виде так, как показано на картинке.

Это зарядное устройство, которое преобразует переменный ток напряжением 220 вольт из розетки в постоянный ток зарядки сотового телефона или планшета напряжением 5 вольт.

Если бы нам потребовалось снизить напряжение с 220 до 5 вольт, то нам бы потребовался внушительных размеров трансформатор, который еще и работал бы с КПД порядка 65-70%

При этом, как видно из схемы, совсем без трансформатора в устройстве все-таки не обошлось.

Однако размеры трансформатора в импульсном блоке питания будут несопоставимо меньшими, поскольку чем выше частота тока, тем выше эффективность трансформатора и тем ниже требования к его сердечнику. Поэтому трансформатор в ИБП превращается в совсем небольшое «колечко».

Импульсные блоки питания обладают значительно более высоким КПД (вплоть до 90-98 %) и гораздо меньшей стоимостью, благодаря массовому выпуску ключевых транзисторов высокой мощности. Поэтому блоки питания в домашних компьютерах, оргтехнике и прочей бытовой электронике сейчас почти все импульсные.

ИБП для ИБП

Широкое распространение импульсных блоков питания в домашней электронике имеет еще одну причину. В бытовых компьютерах они, как правило, являются частью т.н. «имульсных блоков», которые должны обезопасить оборудование на случай внезапного и полного отключения электричества.

Такое устройство (в просторечии именуемое еще просто «бесперебойникоом») включает в себя несколько элементов, в том числе:

  • аккумулятор, дающий напряжение в 24 или 36 вольт;
  • импульсный блок питания для компьютера, который преобразует переменный ток в постоянный;
  • микроустройства, которое контролирует заряд батареи
  • системы для подзарядки аккумулятора;

И если в вашем доме вдруг погас свет, то бесперебойник, связаный с ИБП даст вам несколько минут времени для того, чтобы сохранить данные и выключить компьютер в штатном режиме.

Кроме того, как уже говорилось, импульсные блоки питания, могут преобразовывать постоянный ток в переменный ток самой разной частоты при сохранении постоянного напряжения. Это обстоятельство позволяет прочей домашней электронике (например — телевизорам) стабильно работать даже при существенных колебаниях напряжения в электросети.

У всех свои недостатки

Тем не менее, при всех своих достоинствах, импульсные блоки питания все-таки «прячутся» в корпусах бытовой электроники или строго рассчитываются на зарядку одного телефона.

Причина этого в том, что токи высокой частоты, которые генерируют импульсные блоки питания, порождают электромагнитые колебания, которые воспринимаются другим электронным оборудованием, как помехи. При преобразованиях токов небольшой мощности этот эффект не слишком заметен и может быть достаточно легко нейтрализован различными блокировками. Но при большой мощности тока помехи непременно дадут себя знать.

Кроме того, у импульсных блоков питания есть еще одна особенность — они хорошо работают только в достаточно узком диапазоне мощности. При минимальной или увеличенной нагрузке у ИБП возникают проблемы с работой транзисторов.

Поэтому импульсный блок питания будет хорош в телевизоре или компьютере, чья потребляемая мощность всегда примерно одинакова, но не подойдет для стабилизатора напряжения, предназначенного для подключения нескольких нагрузок.

Диагностика импульсного блока питания. Часть I, используемые определения

Введение.

Мы уже рассматривали классический вариант диагностики импульсного блока питания некоторые моменты мы сознательно опустили, для более простой подачи материала. Практика показала, что у части специалистов возникают вопросы даже после ознакомления с публикацией, постараемся исправить этот пробел. Материал является самостоятельным и строго ориентирован на ремонт блока питания с ШИМ UC3843 (3842,3844,3845). В качестве примера будем рассматривать уже рассмотренный блок питания D-Link JTA0302D-E (5В*2А) выполненного на ШИМ 3843 в виду его классического исполнения.

Схемотехника.

Хотя часть ремонтируемых блоков питания не имеют родных схем, большинство ремонтов блоков питания на ШИМ 3843 (3842,3844,3845) мы выполняем по нижеприведенной принципиальной электрической схеме.

Схема блока питания D-Link JTA0302D-E (5В*2А), такая схемотехника характерна для канонических вариантов схем.

Подобная схема хоть и не соответствует стандартам, но максимально приближена к каноническому варианту исполнения принципиальных электрических схем. Некоторые признаки указывают, что схема была срисована с уже готового блока питания, а значит так ее видит автор. Если бы эту схему рисовали мы, то получился бы несколько другой вариант, по которому проще ремонтировать, схема от немного другого блока питания, несколько сумбурно прорисованы цепи обратной связи, холодная и горячая земля, но все же по ней проще делать диагностику.


Схема блока питания D-Link 5В*2А, такая схемотехника характерна для наглядных пособий по ремонту.

Отличие этих двух схем в элементной базе небольшие, но есть серьёзные различия в исполнении, если первая схема ориентирована на ГОСТ, то вторая схема нарисована специалистом ранее ремонтировавшим подобный блок питания.

Терминология.

Так как материал рассчитан на специалиста, редко занимающегося ремонтом импульсных блоков питания, то поиск по сопутствующим ресурсам или ответы от более опытных коллег, иногда ставят в тупик, вместо того чтобы помочь в решении проблемы. Такое происходит от специфики терминологии используемой в среде специалистов при ремонте блоков питания. Стоит отметить терминология может меняться от региона к региону, например грифлик может называться снаббером, а пусковой конденсатор – конденсатором первого удара.

Схема блока питания D-Link 5В*2А, с небольшими корректировками, для удобства чтения.

Структурная блок схема блока питания D-Link 5В*2А

Что бы не было неоднозначности, конкретно пропишем каждые элементы блок схемы, функционал и особенности диагностики рассмотрим позже.

1.Входной фильтр

Предохранитель F1 (2.25А) тут возможно опечатка или неудачное сокращение, скорее всего имеется ввиду 2А*250В, по функционалу — не занимается фильтрацией, но мы его отнесли к цепям входного фильтра
Терморезистор TR(5 Ом) необходим для «мягкого пуска» блока питания в момент включения и хотя по функционалу — не занимается фильтрацией, мы его отнесли к цепям входного фильтра.
Х-конденсатор XC1 (100 pF*250B), тут стоит обратить внимание – это X конденсатор.
Дроссель L1 – как правило это проволочный дроссель на феррите (не пермаллой), выполненный в виде трансформатора.

2.Входной выпрямитель

Диодный мост DB1-DB4(1N4007)
Конденсатор входного выпрямителя С1(33мкф*400В)

3.Высокочастотный трансформатор

T1.1 Высоковольтная (первичная) обмотка
T1.2 Обмотка для питания ШИМ
T1.3 Низковольтная (вторичная) обмотка

4. Грифлик.

Резистор R1(39кОм) редко бывает в планарном исполнении, так как на нем рассеивается значительная мощность
Конденсатор С2(4700 пФ*2кВ) использование низковольтного конденсатора в этой цепи недопустимо.
Быстродействующий диод VD1(PS1010R) – не смотря на рабочее напряжение конденсатора 2кВ, рабочее напряжение этого диода обычно 1кВ, при хорошем токе в 1А.

5. Выходной выпрямитель.

Диод Шотки VD5-VD6 (SB340) использование диодов Шотки позволяет на малых мощностях обойтись без дополнительных элементов охлаждения.
Конденсаторы LowESR C9, C10 (680 мкФ*10В) использование обычных конденсаторов допустимо, но резко снижает ресурс блока питания, так как эти конденсаторы работают в очень жестком режиме.
Дроссель L2 выполняет двойную функцию является накопителем для конденсатора С20, а так же является элементом фильтра.
Конденсатор С20 (220мкФ*10В) – благодаря дросселю L2 работает в нормальном режиме и особых требований, кроме массогабаритных показателей, к этому конденсатору не предъявляется.
Резистор R21(220 Ом) – формально не является элементом выходного выпрямителя, а служит для быстрого разряда С9,С10, С20, L2.

Читать еще:  Ремонт термопота своими руками

6. Силовой ключ.

МОП транзистор с n-каналом VT1(P4NK60Z), полевой транзистор на работу с которым рассчитан ШИМ UC3843

7. Токовый датчик.

Резистор R2(1.5 Ом) не смотря на то, что рассеивает значительную мощность, встречается как в планарном так и проволочном исполнении. В случае планарного исполнения набирается путем параллельного соединения нескольких планарных резисторов.

Резистор R8 (300 Ом), R3(750кОм) и С4 (10нФ) мы не хотели добавлять эти элементы в раздел токовый датчик, так как они создают некоторую путаницу в терминологии, ведь под понятием токовый датчик подразумевается именно резистор R2(1.5 Ом) и только он, но слово из песни не выкинешь, так как формально эти элементы так же являются цепями токового датчика, мы вынуждены их упомянуть, тем самым создав некоторую путаницу в терминологии токового датчика.

8. Цепь запуска.

Резистор R4 (300кОм) не смотря на простоту один из самых сложных элементов блока питания, так именно он определяет возможные замены ШИМ на аналоги, именно он выглядит как неисправный элемент, так как он рассеивает значительные мощности, именно при замене этого резистора забывают посмотреть рабочее напряжение резистора, а ведь оно должно быть не менее 400 В, для примера, планарный резистор типоразмера 1206 имеет максимальное рабочее напряжение 250В.

9. Рабочее питание

T1.2 Обмотка для питания ШИМ
Резистор R9 (5.1 Ом) элемент интегрирующей цепи для гашения паразитных выбросов трансформатора, очень неоднозначный элемент – именно неудачный выбор (слишком большой номинал) этого элемента заставляет срываться блок питания на холостом ходу.
Выпрямительный диод VD2 (1N4148) – обыкновенный диод без всяких изысков.
ZD1 (BZX55C20) еще один неоднозначный элемент схемы, о нем мы поговорим попозже и рассмотрим подробнее, на данном этапе лишь укажем его характеристики 20В, 5 мА. Отметим только тот факт, что он доставляет много проблем начинающим ремонтникам.

10.Пусковой конденсатор.

Конденсатор С6 (47мкФ*25В) – без преувеличения можно назвать основным элементом импульсного блока питания. Косвенно, как только механик начинает видеть этот конденсатор только посмотрев на блок питания, можно говорить о квалификации этого ремонтника. Отметим – этот элемент всегда подлежит замене при любом ремонте импульсного блока питания, пренебрежение этой рекомендацией превращает ремонт в борьбу с ветряными мельницами.

11. ШИМ.

U2(UC3843) – не нуждается представлении, отметим только это самый простой в реализации и надежный в эксплуатации ШИМ для своего времени.

12. Драйвер силового ключа.

Резистор R5(150 Ом), рассматриваемая схема самый неудачный пример для рассматривания драйвера силового ключа, так как большинстве своем, драйвер имеет радикальное отличие от рассматриваемого, обычно это резистор номиналом 15-30 Ом.

13. Внешние цепи генератора.

Резистор R11(3кОм) и конденсатор С5(10нФ) задают частоту генерации.

14. Обратная связь.

Делитель на резисторах R22(5.25кОм) и R23(4.87 кОм)
Токоограничивающий резистор R17(470 Ом)
Оптопара гальванической развязки U1.1, U1.2
Регулируемый стабилитрон U3(KA431AZ)
Элементы коррекции цепи обратной связи конденсаторы С12 (1мкФ*50В), С3(10нФ)

Отдельно стоит отметить помехоподавляющий Y конденсатор YC2(2200пФ), но не столько из за его функционала, сколько благодаря ему можно (и нужно) отличать «горячую» и «холодную» землю.

Расчёт и изготовление трансформатора для импульсного блока питания
на тороидальном (кольцевом) ферритовом сердечнике. Онлайн калькулятор обмоток.

«Как-то лет в 12 нашёл я старый трансформатор, слегка перемотал его и включил.
Энергосистема опознала нового радиотехника и приветливо моргнула всем домом.
Вот так я и начал изучать силовую электронику».

А тем временем традиционные линейные источники питания на силовых трансформаторах всё чаще стали вытесняться своими импульсными коллегами.
При этом, что бы там не говорили авторитетные товарищи про многочисленные технические достоинства импульсных преобразователей, плюс у них только один — массогабаритные показатели. Всё остальное — сплошной минус.
Однако этот единственный плюс оказался настолько жирным, что заслонил собой все многочисленные минусы, особенно в тех замесах, когда к электроустройствам не предъявляется каких-либо жёстких требований.

Наиболее популярными среди радиолюбителей стали сетевые источники питания, собранные на микросхемах IR2153 и IR2155, которые представляют из себя самотактируемые высоковольтные драйверы, позволяющие получать полумостовые импульсные блоки питания мощностью до 1,5 кВт с минимальной обвязкой.
И если сердце импульсного блока питания колотится внутри готовой буржуйской микросхемы, то главным, ответственным за электрохозяйство среди остальных наружных образований, безусловно, является правильно выполненный трансформатор.

Для наших высокотоковых дел лучше всего применять трансформаторы с тороидальным магнитопроводом. В сравнении с другими сердечниками они имеют меньший вес и габариты, а также отличаются лучшими условиями охлаждения обмоток и повышенным КПД.
Но самое главное — при равномерном распределении обмоток по периметру сердечника практически отсутствует магнитное поле рассеяния, что в большинстве случаев отметает потребность в тщательном экранировании трансформаторов.

По сути дела, умных статей в сети на предмет расчёта импульсных трансформаторов великое множество, с картинками, формулами, таблицами и прочими авторитетными причиндалами. Наблюдаются в свободном доступе и многочисленные онлайн-калькуляторы на интересующую нас тематику.

И снизошла б на нас благодать неземная, кабы вся полученная информация сложилась в наших любознательных головах в единое большое целое.
Да вот, что-то не получается. Ништяк обламывается из-за того, что следуя этими различным компетентным источникам, мы устойчиво получаем на выходе и различные результаты.

Вот и гуляют по сети идентичные радиолюбительские схемы импульсных блоков питания на IR2153 с идентичными заявленными характеристиками, трансформаторами на одних и тех же кольцах, но радикально не идентичным количеством витков первичных обмоток трансформаторов.
А когда эти различия выражаются многими разами, то возникает желание «что-то подправить в консерватории». Объясняется это желание просто — существенной зависимостью КПД устройства от значения индуктивности, на которую нагружены ключевые транзисторы преобразователя. А в качестве этой индуктивности как раз и выступает первичная обмотка импульсного трансформатора.

А для лучшего восприятия сказанного, приведу типовую схему источника питания на IR2153, не обременённую ни устройством защиты, ни какими-либо другими излишествами.


Рис.1

Схема проверена временем и многочисленными опытами изрядно пощипанных током, неустрашимых радиолюбителей, так что не работать в ней — просто нечему.

Ну и наконец, переходим к расчёту импульсного трансформатора.

Мотать его будем на бюджетных низкочастотных ферритовых кольцах отечественного производителя 2000НМ или импортных — EPCOS N87, а для начала определимся с габаритной мощностью тороидального ферритового магнитопровода.

Концепция выбора габаритной мощности с запасом в 10% от максимальной мощности в нагрузке, заложенная в режимы автоматического подбора сердечника в большинстве калькуляторов, хотя и не противоречит теоретическим расчётам, учитывающим высокий КПД импульсного трансформатора, но всё же наводит на грустную мысль о ненадлежащей надёжности и возможной скорой кончине полученного моточного изделия.
Куда мне ближе трактовка этого параметра, описанная в литературе: Pгаб>1,25×Рн .

Расчёты поведём исходя из частоты работы преобразователя IR2153, равной 50 кГц. Почему именно такой?
Не ниже, потому что такой выбор частоты позволяет нам уложиться в достаточно компактные размеры ферритового сердечника, и при этом гарантирует полное отсутствие сигналов комбинационных частот ниже 30 кГц при работе девайса в составе качественной звуковоспроизводящей аппаратуры.
А не выше, потому что мы пилоты. А феррит у нас низкочастотный и может почахнуть и ответить значительным снижением магнитной проницаемости при частотах свыше 60-70 кГц. Не забываем, что сигнал, на выходах ключей имеет форму меандра и совокупная амплитуда гармоник, с частотами в 3-9 раз превышающими основную, имеет весьма ощутимую величину.

Параметры первичной обмотки трансформатора рассчитаем при помощи программы Lite-CalcIT, позволяющей, на мой взгляд, вполне адекватно оценить как размер сердечника, так и количество витков первичной обмотки.
Результаты сведём в таблицу.

Как определить мощность импульсного блока питания

Друзья, подскажите не сложный способ измерения максимального тока нагрузки, который может обеспечить БП, в частности у различных БП/ЗУ на 5. 12В от разных мобильных гаджетов. Понятно что эта цифра напечатана на самом БП/ЗУ, а если её нет? Или например смастерил сам БП или DC-DC и нужно проверить в лабораторных условиях его реальный максимальных ток нагрузки.

Читать еще:  Полимерное (порошковое) покрытие – что это, оборудование и этапы окраски

Как проще определить максимально допустимый ток нагрузки с погрешностью +/- 10% при помощи обычного мультиметра? В нагрузку подключать какие-нибудь лампочки и смотреть когда выходное напряжение уменьшится на 5% от наминала?
И что вообще лучше мерить, ток в разрыве нагрузки или падение напряжения на низкоомном резисторе, включенном последовательно нагрузке?

_________________
+7911 200 -2820 11-17 мск
» Можно я лягу?»(C)

JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/quote

_________________
Всё можно наладить,если вертеть в руках достаточно долго!

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

_________________
+7911 200 -2820 11-17 мск
» Можно я лягу?»(C)

Приглашаем на вебинар, посвященный экосистеме безопасности и возможностях, которые появились у разработчиков благодаря новой технологии TrustZone в микроконтроллерах STM32L5. Программа рассчитана на технических специалистов и тех, кто уже знаком с основами защиты ПО в STM32.

_________________
Всё можно наладить,если вертеть в руках достаточно долго!

650 В карбид-кремниевые (SiC) MOSFET компании Wolfspeed имеют самый низкий в отрасли показатель сопротивления открытого канала и наименьшую его зависимость от температуры, что дает им преимущество не только перед обычными кремниевыми (Si) 650 В MOSFET, но и перед нитрид-галлиевыми транзисторами.

Если уж на то пошло, то не «нада» , а «нужно» и костюм не «меряют», а «примеряют» или «измерярют» (линейкой), опять же. Умничать мы все умеем.

Я обычно поступаю просто: в разрыв нагрузки подключаю мультиметр на делении 10А . Нагрузка — десятиватные лампочки на 12В (последовательно, параллельно, комбинирую в общем). Когда напряжение на выходе начинает уменьшаться скажем от 5.05В до 4.9В или когда БП начинает сильно греться, то для меня это является показателем достигнутого максимального тока нагрузки.

Но с лампочками очень не удобно. И потом, мне интересно правелен ли вообще такой подход и если нет, то как нужно определять максимально допустимый ток нагрузки правильно, но при этом чтоб было более-менее просто и используя только мультиметр.
Вопрос конкретно про БП/ЗУ на 5. 12Вольт.

Еще часто пишут что нужно измерять ток в диапазоне 1-2А, а тк в мультиметре такого нет, то нужно измерять напряжение на резисторе 0,2Ом, включенном последовательно нагрузке. На сколько неверны данные измерения по шкале 10А простого мультиметра за 300р, если ток нагрузки 0,5. 2А? В погрешность +/- 20% укладывается?

Блоки питания и их характеристики. Как выбрать блок питания.

Блок питания в широком смысле — это электротехническое устройство, преобразующее электроэнергию сети переменного тока в электроэнергию с необходимыми параметрами (ток, напряжение, частота, форма напряжения), для питания других устройств, требующих эти параметры. То есть блок питания — это преобразователь.

Устройство.

В простейшем классическом варианте блок питания — это трансформатор, понижающий или повышающий переменное напряжение за счет электромагнитной индукции. Если требуется преобразование формы напряжения из переменного (AC) в постоянное (DC) — блок питания AC-DC, то используется выпрямитель напряжения. Также, в классическом блоке питания AC-DC присутствует фильтр пульсаций, создаваемых выпрямителем.


Трансформатор классического блока питания.

Классический вариант во многом оправдан благодаря своей простоте, надежности, доступности компонентов и отсутствию создаваемых радиопомех. Но из-за большого веса и габаритов, увеличивающихся пропорционально мощности, металлоемкости, а также низкого КПД при стабильном выходном напряжении, классические трансформаторные блоки питания уходят в прошлое. На смену им приходят импульсные блоки питания, о которых подробно и пойдет речь.

Импульсные блоки питания представляют собой инверторную систему, в которой входящее электричество сначала выпрямляется, после преобразуется в ток высокой частоты и определенной скважности с амплитудой прямоугольных импульсов, а потом происходит преобразование трансформатором и пропускание через фильтр низкой частоты. За счет повышения эффективности работы трансформатора с ростом частоты, снижаются требования к габаритам и металлоемкости по сравнению с классическими блоками питания.


Устройство импульсного блока питания.

Импульсные блоки питания получили широкое распространение благодаря ряду достоинств: значительно меньшие габариты и вес при сравнимой мощности; намного более высокий КПД (до 98%), благодаря устойчивости состояния ключевых элементов — потери возникают только при включении или выключении; меньшая стоимость — это стало возможным из-за повсеместного выпуска необходимых конструктивных элементов и разработке транзисторов повышенной мощности; сравнительная надежность; больший диапазон входных частот и напряжений — импульсный блок питания одинаково стабильно работает в диапазоне от 110 до 250 вольт и при частоте 50-60 Гц, что делает возможным использование техники с импульсными блоками питания повсеместно; безопасность при коротком замыкании.

Справедливости ради стоит сказать, что импульсные блоки питания не лишены минусов — сложность или невозможность ремонта, наличие высокочастотных радиопомех. Благодаря современным технологиям, эти минусы преодолимы, о чем свидетельствует широкое распространение, популярность и востребованность таких блоков на рынке.

Но, благодаря широкому распространению и большому разнообразию импульсных блоков питания в продаже, отличающихся функционально и характеристиками, иногда очень сложно подобрать необходимый. Попробуем разобраться в основных отличиях импульсных блоков, в их характеристиках и особенностях, а также ответим на вопрос: на что нужно обратить внимание, если вы хотите купить блок питания.

Особенности характеристик импульсных блоков питания.

В первую очередь, блоки питания делятся по функциональности преобразования. Одни блоки питания преобразуют электроэнергию таким образом, что на выходе получается стабилизированное напряжение при необходимой мощности — это AC-DC блоки питания. Другие преобразуют электроэнергию так, что на выходе получается стабилизированный ток постоянного значения в заданных диапазонах напряжения — это, так называемые, драйверы.

И те и другие блоки питания имеют определенную максимальную выходную мощность. Но, если в первом случае постоянным остается напряжение при возрастании тока в зависимости от мощности потребителей электроэнергии, то во втором случае постоянной остается сила тока, а в зависимости от мощности потребителей меняется напряжение на выходе. Диапазон изменения в драйверах ограничен, поэтому они распространены менее широко. Используются, в основном, в светотехнике, где заранее известны необходимые параметры тока.

Проще говоря, если вам нужен блок питания с необходимым током, например 700мА, при определенной мощности, то вам нужно выбирать драйвер. Если же вам нужен источник питания заданного напряжения и мощности, то нужен AC-DC блок питания.

При подборе блока питания важно учитывать его основные характеристики. С драйверами проще: все, что нужно о них знать, как правило, известно в рамках спецификации потребителя энергии. Встречаются драйверы в основном в составе готовых электротехнических изделий.

Чуть сложнее с AC-DC блоками питания. Современные блоки питания могут иметь различные характеристики выходного напряжения. Как правило, это: 5 вольт, 12 вольт, 24 вольта. Встречаются блоки питания и с другими выходными характеристиками: 3,3 вольта, 18 вольт, 32 вольта и прочие, но они менее распространены в отличие от первых, которые популярны в наружной и интерьерной рекламе и в декоративном освещении. Блоки питания необходимы, в большинстве случаев, для подключения светодиодных модулей, лент, линеек, для питания другой декоративной светотехники.

В зависимости от количества потребляемой электроэнергии и мощности подключаемых потребителей выбирается мощность блока питания. Тут необходимо учитывать, что при включении и выключении характеристики блока нестабильны, а также то, что в процессе работы в ту или иную сторону могут меняться характеристики входного электричества, поэтому блок подбирается с запасом по мощности, который составляет 1,2 — 1,3 от мощности подключаемых потребителей. Перегрузка блока по мощности может вывести его из строя или приведет к неправильному функционированию.

Другим важным критерием выбора, когда вы собираетесь купить блок питания, является область его использования. Это также актуально для драйверов. Блок может использоваться внутри помещения или на улице. Во втором случае он может быть размещен на стене или на горизонтальной плоскости, в тени или на солнце, может подвергаться, атмосферному воздействию в виде осадков снега и прочего, либо может быть размещен под крышей или козырьком. Все это влияет на то, с какой степенью защиты IP и в каком корпусе выбрать блок питания.

Блок питания MeanWell в корпусе-сетке

Влагозащищенный блок питания в пластиковом корпусе

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector