Astro-nn.ru

Стройка и ремонт
8 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Преобразование тепловой энергии в электрическую своими руками

Как получить бесплатное электричество от батареи отопления

Здравствуйте, уважаемые читатели и самоделкины!

Наверняка каждый из Вас знает, что нагрев помещений от систем центрального отопления осуществляется при помощи радиаторов путем конвекции и теплового излучения. Также многим из Вас известен термоэлектрический элемент Пельтье , на основе которого создают небольшие автомобильные холодильники, системы охлаждения компьютерных процессоров, и другие устройства.

Кроме того, что этот модуль может создавать разность температур на противоположных его поверхностях при подаче на него напряжения, эффект Пельтье работает и в обратную сторону. То-есть, при создании разницы температур, он преобразует тепловую энергию в электрическую.

В данной статье Игорь, автор одноименного YouTube канала «Игорь Белецкий», расскажет Вам как можно получить немного электричества от системы отопления.


Этот проект очень прост в изготовлении, и может быть повторен в домашних условиях.

5 В USB разъем
— USB светильник с сенсорным выключателем
— Термопаста , алюминиевая фольга, припой
— П-образный алюминиевый профиль, полоса, болты, саморезы
— Старый радиатор от компьютерного процессора.



Для того, чтобы тепло хорошо передавалось к площадке, мастер уплотнил соединение стальной трубы отопления с профилем при помощи бытовой алюминиевой фольги. При этом нужно постараться, чтобы в таком уплотнении было минимальное количество пустот — они будут препятствовать передаче тепла.

Данная конструкция не должна нарушить целостность трубы, тем более, если Вы будете устанавливать ее на систему центрального отопления.


Игорь использовал один из самых распространенных термоэлектрических модулей Пельтье TEC1-12705 . Этот полупроводниковый элемент представляет собой две керамические пластины, между которыми заключены 127 полупроводниковых «столбиков» (отсюда и первые три цифры в модели).

Последняя пара цифр означает максимальный ток, потребляемый элементом в режиме холодильника от источника 12В. TEC1-12705 потребляет до 4,3-4.6A (номинальный при 12 В), максимальный ток 5.8A — при напряжении 15В в момент запуска.
Размеры таких модулей составляют 40X40 мм, а толщина — от 3,2 до 4,0 мм.

Перед установкой модуля нужно определить его горячую и холодную поверхности, подав на него питание. Модуль нужно устанавливать на теплопроводе «холодной» стороной.

Вторую сторону модуля необходимо охлаждать при помощи обычного пассивного радиатора. Для этих целей отлично подходят старые радиаторы от компьютерных процессоров. Они весьма компактны, и обеспечат достаточную для генерации электроэнергии разницу температур.

На обе стороны модуля необходимо нанести термопасту для обеспечения наилучшей теплопередачи между элементами устройства.






Для нормальной работы устройства необходима достаточно большая разность температур. Трубы отопления должны иметь температуру в 55 и более градусов, а воздух в помещении — около 21.

Измерять температуру различных объектов бесконтактным способом очень удобно при помощи цифрового инфракрасного термометра . В случае автора, батареи прогреты до 60 градусов.

Все же, данной разницы температур недостаточно для получения напряжения более 1,2 В. Поэтому необходимо использовать специальный DС-DC повышающий модуль . Он начинает работать при напряжении 0,8-0,9 В на входе. При этом на выходе получается 5В постоянного тока.

Эта модель преобразователя имеет USB порт, к которому удобно подключать различные устройства, в том числе заряжать телефоны.
Игорь создавал этот проект для обеспечения питанием небольших светодиодных светильников, которые послужат фоновой подсветкой в ночное время, либо как аварийные. Такая подсветка будет хорошим дополнением для темного осенне-зимнего периода.

К преобразователю можно подключить вот такой USB светильник с сенсорным выключателем .


В итоге от установленного устройства хорошо работает светодиодный светильник, а радиатор рассеивает немного дополнительного тепла, прошедшего через модуль Пельтье.

Конечно, можно установить несколько таких модулей, и подключить их последовательно. Тогда напряжение на выходе цепи будет выше. При этом можно использовать как раздельные радиаторы, так и один общий, больших размеров.

Вместо светильника можно попробовать подключить компьютерный вентилятор, которым будет обдуваться радиатор. Такое решение может немного увеличить теплоотдачу от системы отопления, но никак не сравнится с установкой дополнительной батареи.

Эффективнее всего можно использовать возможности элемента Пельтье в тандеме с буржуйкой или другими похожими устройствами, ведь разность температур в этом случае будет намного больше.




Благодарю Игоря за интересный способ получения электроэнергии от тепла системы отопления.

Всем хорошего настроения, крепкого здоровья, и интересных идей!
Подписывайтесь на телеграм-канал сайта, чтобы не пропустить новые статьи.

Авторское видео можно найти здесь.

Термогенераторы: как «сварить» электричество на газовой плите

На одном из электрических форумов был задан такой вопрос: «Каким образом можно получить электроэнергию, использую обычный бытовой газ?» Мотивировалось это тем, что газ у этого товарища, да собственно, как и у многих, оплачивается просто по нормативам без счетчика.

Сколько ни пользуйся, платить все равно фиксированную сумму, и почему же не превратить уже оплаченный, но не использованный газ в халявную электроэнергию? Так на форуме появилась новая тема, которая была подхвачена остальными участниками: задушевная беседа помогает не только сократить рабочий день, но еще и убить свободное время.

Было предложено множество вариантов. Просто купить бензиновый генератор, а заправлять его бензином, полученным перегонкой бытового газа, либо переделать генератор для работы сразу на газу, как автомобиль.

Вместо двигателя внутреннего сгорания предлагался двигатель Стирлинга, известный также как двигатель внешнего сгорания. Вот только топикстартер (тот, который создал новую тему) претендовал на мощность генератора не менее 1 киловатта, но его урезонили, мол, такой стирлинг не поместится даже в кухне небольшой столовой. Кроме того немаловажно, чтобы генератор был бесшумным, иначе, ну, сами знаете что.

После множества предложений кто-то вспомнил, как видел в какой-то книжке рисунок, где показана керосиновая лампа с приспособлением в виде многолучевой звезды для питания транзисторного приемника. Но об этом будет сказано чуть дальше, а пока…

Термогенераторы. История и теория

Для того, чтобы получить электричество непосредственно от газовой горелки или другого источника тепла, применяются термогенераторы. Так же, как и у термопары, их принцип действия основан на эффекте Зеебека, открытом в 1821 году.

Упомянутый эффект состоит в том, что в замкнутой цепи из двух разнородных проводников появляется э.д.с., если места спаев проводников находятся при разных температурах. Например, горячий спай находится в сосуде с кипящей водой, а другой в чашке с тающим льдом.

Эффект возникает от того, что энергия свободных электронов зависит от температуры. При этом электроны начинают перемещаться от проводника, где они имеют более высокую энергию в проводник, где энергия зарядов меньше. Если один из спаев нагрет больше другого, то разность энергий зарядов на нем, больше, чем на холодном. Поэтому, если цепь замкнута, в ней возникает ток, именно та самая термоэдс.

Приблизительно величину термоэдс можно определить по простой формуле:

E = α * (T1 – T2). Здесь α — коэффициент термоэдс, который зависит только от металлов, из которых составлена термопара или термоэлемент. Его значение обычно выражается в микровольтах на градус.

Разность температур спаев в этой формуле (T1 – T2): T1 – температура горячего спая, а T2, соответственно, холодного. Приведенную формулу достаточно наглядно иллюстрирует рисунок 1.

Рисунок 1. Принцип работы термопары

Рисунок этот классический, его можно найти в любом учебнике физики. На рисунке показано кольцо, составленное из двух проводников А и Б. Места соединения проводников называются спаями. Как показано на рисунке, в горячем спае T1 термоэдс имеет направление из металла Б в металл А. А в холодном спае Т2 из металла А в металл Б. Указанное на рисунке направление термоэдс справедливо для случая, когда термоэдс металла А положительна по отношению к металлу Б.

Как определить термоэдс металла

Термоэдс металла определяется по отношению к платине. Для этого термопара, одним из электродов которой является платина (Pt), а другим испытуемый металл, нагревается до 100 градусов Цельсия. Полученное значение в милливольтах для некоторых металлов, показано ниже. Причем следует обратить внимание на то, что изменяется не только величина термоэдс, но и ее знак по отношению к платине.

Платина в этом случае играет такую же роль, как 0 градусов на температурной шкале, а вся шкала величин термоэдс выглядит следующим образом:

Сурьма +4,7, железо +1,6, кадмий +0,9, цинк +0,75, медь +0,74, золото +0,73, серебро +0,71, олово +0,41, алюминий +0,38, ртуть 0, платина 0.

После платины идут металлы с отрицательным значением термоэдс:

Кобальт -1,54, никель -1,64, константан (сплав меди и никеля) -3,4, висмут -6,5.

Пользуясь этой шкалой очень просто определить значение термоэдс развиваемое термопарой, составленной из различных металлов. Для этого достаточно подсчитать алгебраическую разность значений металлов, из которых изготовлены термоэлектроды.

Например, для пары сурьма – висмут это значение будет +4,7 – ( — 6,5) = 11,2 мВ. Если в качестве электродов использовать пару железо – алюминий, то это значение составит всего +1.6 – (+0,38) = 1,22 мВ, что меньше почти в десять раз, чем у первой пары.

Если холодный спай поддерживать в условиях постоянной температуры, например 0 градусов, то термоэдс горячего спая будет пропорциональна изменению температуры, что и используется в термопарах.

Как создавались термогенераторы

Уже в середине 19 века делались многочисленные попытки для создания термогенераторов – устройств для получения электрической энергии, то есть для питания различных потребителей. В качестве таких источников предполагалось использовать батареи из последовательно соединенных термоэлементов. Конструкция такой батареи показана на рисунке 2.

Рисунок 2. Термобатарея, схематическое устройство

Первую термоэлектрическую батарею создали в середине 19 века физики Эрстед и Фурье. В качестве термоэлектродов использовались висмут и сурьма, как раз та самая пара из чистых металлов, у которой максимальная термоэдс. Горячие спаи нагревались газовыми горелками, а холодные помещались в сосуд со льдом.

В процессе опытов с термоэлектричеством позднее были изобретены термобатареи, пригодные для использования в некоторых технологических процессах и даже для освещения. В качестве примера можно привести батарею Кламона, разработанную в 1874 году, мощности которой вполне хватало для практических целей: например для гальванического золочения, а также применения в типографии и мастерских гелиогравюры. Примерно в то же время исследованием термобатарей занимался и ученый Ноэ, его термобатареи в свое время также были распространены достаточно широко.

Но все эти опыты, хотя и удачные, были обречены на провал, поскольку термобатареи, созданные на основе термоэлементов из чистых металлов, имели весьма низкий КПД, что сдерживало их практическое применение. Чисто металлические пары имеют КПД лишь несколько десятых долей процента. Намного большим КПД обладают полупроводниковые материалы: некоторые окислы, сульфиды и интерметаллические соединения.

Полупроводниковые термоэлементы

Подлинную революцию в создании термоэлементов произвели труды академика А.И. Иоффе. В начале 30 – х годов XX столетия он выдвинул идею, что с помощью полупроводников возможно превращение тепловой энергии, в том числе и солнечной, в электрическую. Благодаря проведенным исследованиям уже в 1940 году был создан полупроводниковый фотоэлемент для преобразования световой солнечной энергии в электрическую.

Первым практическим применением полупроводниковых термоэлементов следует считать, по-видимому, «партизанский котелок», позволявший обеспечить питанием некоторые портативные партизанские радиостанции.

Основой термогенератора служили элементы из константана и SbZn. Температура холодных спаев стабилизировалась кипящей водой, в то время как горячие спаи нагревались пламенем костра, при этом обеспечивалась разница температур не менее 250…300 градусов. КПД такого устройства был не более 1,5…2,0 %, но мощности для питания радиостанций вполне хватало. Конечно, в те военные времена конструкция «котелка» была государственным секретом, и даже сейчас на многих форумах в интернете обсуждается его устройство.

Бытовые термогенераторы

Уже в послевоенные пятидесятые годы советская промышленность начала выпуск термогенераторов ТГК – 3. Основное его назначение состояло в питании батарейных радиоприемников в неэлектрифицированной сельской местности. Мощность генератора составляла 3 Вт, что позволяло питать батарейные приемники, такие как «Тула», «Искра», «Таллин Б-2», «Родина – 47», «Родина – 52» и некоторые другие.

Читать еще:  Выбор краски для уличных металлических ворот, правила окрашивания

Внешний вид термогенератора ТГК-3 показан на рисунке 3.

Рисунок 3. Термогенератор ТГК-3

Конструкция термогенератора

Как уже было сказано, термогенератор предназначался для использования в сельской местности, где для освещения использовались керосиновые лампы «молния». Такая лампа, оснащенная термогенератором, становилась не только источником света, но и электричества.

При этом дополнительных затрат топлива не требовалось, ведь в электричество превращалась именно та часть керосина, которая просто улетала в трубу. К тому же, такой генератор был всегда готов к работе, конструкция его была такова, что ломаться в нем просто нечему. Генератор мог просто лежать без дела, работать без нагрузки, не боялся коротких замыканий. Срок службы генератора, по сравнению с гальваническими батареями, казался просто вечным.

Роль вытяжной трубы у керосиновой лампы «молния» играет удлиненная цилиндрическая часть стекла. При использовании лампы совместно с термогенератором стекло делалось укороченным, и в него вставлялся металлический теплопередатчик 1, как показано на рисунке 4.

Рисунок 4. Керосиновая лампа с термоэлектрическим генератором

Внешняя часть теплопередатчика имеет форму многогранной призмы, на которой установлены термобатареи. Чтобы увеличить эффективность теплоотдачи теплопередатчик внутри имел несколько продольных каналов. Проходя по этим каналам горячие газы уходили в вытяжную трубу 3, попутно нагревая термобатарею, точнее, ее горячие спаи.

Для охлаждения холодных спаев использовался радиатор воздушного охлаждения. Он представляет собой металлические ребра, прикрепленные к внешним поверхностям блоков термобатарей.

Термогенератор – ТГК3 состоял из двух независимых секций. Одна из них вырабатывала напряжение 2В при токе нагрузки до 2А. Эта секция использовалась для получения анодного напряжения ламп с помощью вибропреобразователя. Другая секция при напряжении 1,2В и токе нагрузки 0,5А использовалась для питания нитей накала ламп.

Нетрудно подсчитать, что мощность данного термогенератора не превышала 5 Ватт, но для приемника ее вполне хватало, что позволяло скрашивать долгие зимние вечера. Сейчас, конечно, это кажется просто смешным, но в те далекие времена такое устройство было, несомненно, чудом техники.

В 1834 году француз Жан Шарль Атаназ Пельтье открыл эффект, противоположный эффекту Зеебика. Смысл открытия в том, что при прохождении тока через спай из разнородных материалов (металлов, сплавов, полупроводников) выделяется или поглощается тепло, что зависит от направления тока и типов материалов. Об этом подробно рассказано здесь: Эффект Пельтье: магическое действие электрического тока

Онлайн помощник домашнего мастера

Термоэлектрический генератор – лучшие устройства и советы по их использованию (инструкция + видео)

  • Альтернативная энергия

Термоэлектрический генератор, сокращенно ТЭГ – это устройство, вырабатывающее электричество, используя эффект возникновения электродвижущей силы (ЭДС), за счет разницы температур проводников. Стоит отметить, что имеется и обратный эффект — получение разницы температур при воздействии электрического тока.

Краткое содержимое статьи:

Что это такое?

Для объяснения принципа работы термоэлектрического генератора, нужно взять разнородные проводники и замкнуть их в цепь. Точки, в которых проводники соединяются, называют спаями. При нагреве одного из спаев цепи энергия свободных электронов на нем возрастает, так как имеет зависимость от температуры.

На нагретом участке электроны имеют более высокую энергию и начинают перемещаться в холодную область, где электроны обладают меньшей энергией, таким образом в цепи возникает ЭДС.

Величина разности потенциалов в такой цепи зависит от температуры, электропроводности и коэффициента термоЭДС ,который также называется коэффициентом Зеебека.

Для разных материалов его значение различно и измеряется относительно коэффициента платины, которой равняется нулю. К примеру, сурьма, железо, кадмий имеют положительный коэффициент, а висмут, никель, кобальт — отрицательный.

Историческая справка

Термоэлектрические эффекты или термоэлектричество, своим открытием обязано нескольким ученым. Впервые явление открыл немецкий физик Томас Иоганн Зеебек, в 1821 году. Оно получило название «Эффект Зеебека».

Обратное свойство – нагревание или охлаждение разнородных проводников воздействием электрического тока, в 1834 году изучил француз Жан Пельтье, его именем назван и сам эффект и термоэлектрический преобразователь, получивший название элемент Пельтье. Свой вклад в исследования внесли, также русский физик Эмилий Ленц в 1838 г. и британец Уильям Томпсон в 1851 г.

ТЭГ пытались создавать с середины 19 века. В 1874 году была разработана батарея Кламона, которая была достаточно мощной, чтобы использоваться в типографии или при гальванизации.

Причина, по которой эти технологии не получили широкого распространения, заключается в низком КПД, при использовании чистых металлических пар — это сотые доли процента. Немногим более эффективными — 1,5-2,0% оказались термоэлементы из полупроводников, которые начали использоваться в середине XX века.

Можно вспомнить довольно известный «партизанский котелок», от которого питались радиостанции. Выпускалась модель термоэлектрического генератора ТГК-3. Фото термоэлектрического генератора ТГК-3 представлены в нашей галерее.

Была отсылка к теме термоэлектрических генераторов и в советской фантастике — в 1930-х годах Роман Адамов написал научно-фантастический роман «Тайна двух океанов», о похождениях подводной лодки «Пионер», источником энергии в которой служила термопара.

Конструктивные особенности и область применения

Основой конструкции термоэлектрического генератора являются термоэлемент, нагреватель, охладитель и нагрузка, это может быть лампа, разъем для подключения устройств — все, что потребляет электричество.

Простота устройства, отсутствие лишних преобразований энергии и минимум движущихся механических узлов делает ТЭГ надежным и долговечным в эксплуатации источником энергии.

Автономные термоэлектрические генераторы

Именно простота и надежность обусловили использование ТЭГ в отдаленных и труднодоступных регионах для автономного энергоснабжения. К примеру, они применяются для питания навигационных маяков и метеорологических станций. Зачастую это разновидность газовых генераторов — ГТЭГ, где для нагревания используется природный газ.

Отдельно стоит упомянуть радиоизотопные ТЭГ, в которых источником тепла является естественный распад изотопов. Автоматическая межпланетная станция Кассини, запущенная к Сатурну в 1997 году была оборудована таким источником.

Для нагрева в РИТЭГ было использовано 32,8 килограмма изотопа плутония-238.

Универсальные термоэлектрические генераторы

К универсальным ТЭГ можно отнести те устройства, которые используют излишки тепла там, где таковые имеются, а также генераторы двойного назначения — для выработки электрической и тепловой энергии.

Область применения довольно широка. Хорошо подходят такие термоэлектрические генераторы для дома — в качестве дополнительного или резервного источника питания. Существуют модели, встраиваемые в систему отопления и позволяющие сделать ее автоматику и циркуляционные насосы практически полностью энергонезависимыми.

Вариант для дома или дачи, даст не только электричество, но и послужит в качестве печи, ниже показан пример такой электрогенерирующей печи.

ТЭГ своими руками

Создание простейшего генератора в домашних условиях не составит больших трудностей по причине его крайней простоты. По сути, все что нужно, это найти элемент Пельтье. Приобрести такой элемент сегодня не составляет труда и не потребует больших затрат.

Для простейшей демонстрации, кроме термоэлемента, достаточно будет двух алюминиевых банок прямоугольной формы, канцелярского зажима, пары проводов, холодной и горячей воды. Нужно поместить элемент Пельтье между корпусами банок, скрепив их зажимом, налить в одну банку кипяток, в другую холодную воду, желательно со льдом.

Теперь, если правильно соблюдена полярность, можно замерить напряжение на выводах элемента, сомнительно, что оно будет больше одного вольта, но, можно считать, что демонстрация удалась.

Чуть более сложной задачей будет сборка термоэлектрического генератора на дровах. Для этого, помимо термоэлемента, понадобиться камера сгорания, в качестве которой подойдет корпус от компьютерного блока питания, радиатор и вентилятор можно использовать от процессора, разъем USB.

Для тех, кто желает получить более высокое напряжение можно порекомендовать инверторы стабилизаторы — все зависит от фантазии. Инструкций и схем на просторах сети достаточно. Ниже приведена фотография подобного устройства.

Заключение

Итак, в статье был дан краткий обзор одному из направлений альтернативной энергетики — энергия, получаемая за счет термоэлектрических эффектов. История развития этого направления еще не написана до конца и не стоит на месте.

Термоэлектрические генераторы совершенствуются и находят новые применения, а следовательно рано сбрасывать со счетов эти простые, но полезные устройства.

Термоэлектрический генератор своими руками: схемы, проекты, принцип работы и сборка самодельного устройства (155 фото и видео)

Большинство начинающих электриков интересуется о возможности создания не затратного и автономного источника электроэнергии. Зачастую, например, выехав на пикник, рыбалку либо просто отдохнуть на свежем воздухе, критически не хватает электричества для зарядки какого-либо прибора или освещения в темное время суток.

В таких случаях может помочь самостоятельно сделанный термоэлектрический генератор, для дома такой прибор не подойдет, если только в крайних случаях.

При помощи его можно вырабатывать электрического напряжение до пяти вольт, этого будет достаточно для зарядки гаджетов и подключения лампочки.

Для визуального ознакомления с ТЭГ нужно лишь посмотреть в любых источниках фото термоэлектрического генератора.

Краткое содержимое статьи:

Что такое ТЭГ

Данное устройство, дает возможность выработать электроэнергию из энергии тепла.

Нужно пояснить, что выражение «Тепловая энергия» не совсем правильное, так как тепло, это метод отдачи, не являющийся отдельным типом энергии. Этим определением обозначают общую кинетику структурных элементов:

  • молекул;
  • атомов;
  • иных частиц, которые входят в состав вещества.

Отличие ТЭГ от ТЭС

На ТЭС применяют топливо для выделения из жидкости пара, вращающий турбину электрогенератора.

С помощью теплоэлектрического генератора электроэнергия генерируется без посреднических преобразований.

Принцип работы

В девятнадцатом веке одним ученым обнаружилось возникновение электродвижущей силы в замкнутой цепи, при изменениях температуры в среде контактировании сурьмы с проводником.

Нагревая один из контактов, возникает магнитное поле, что вызывает ЭДС. При нагревании второго контакта, поток ЭДС противоположно изменяется.

Разорвав цепь, фиксируется противоположность потенциалов на ее краях. Это и является основным принципом работы термоэлектрических генераторов.

Спустя двенадцать 12 лет другой физик выявил противоположный эффект. Пропустив ток по цепи термопары, в контактах создается перепады температур.

В принципе эти оба эффекта разные стороны одного и того же явления, дающего возможность непосредственно получить электричество из тепла.

Перспективы

В данное время продолжают ставить опыты, подбирая оптимальные термопары, позволяющие повысить коэффициент полезного действия.

Большая вероятность того, что скоро разработки усовершенствования доброкачественности термических элементов, обретут высший статус производства материала для повышения взаимодействия термопар, с применением высоких технологий:

  • нанотехнологий;
  • ям квантования и т.п.

Вполне возможен вариант изобретения совсем другого принципа, с применением нестандартных материалов.

Были попытки соединения микроскопических проводников из золота искусственно синтезированной молекулой. Этот опыт в дальнейшем вполне может добиться успеха.

Сфера применения и виды

Учитывая низкий коэффициент полезного действия для теплоэлектрического генератора существуют два обстоятельства его использования:

  • там, где отсутствуют иные источники электрической энергии;
  • в местах, обладающими избытком тепла.

Как сделать собственноручно

Далее вкратце повествуем, как сделать генератор своими руками, который можно использовать в природных условиях или обесточенных местах.

Конечно, мощность этих приборов не сравнится с радиоизотопным экземпляром, но из-за трудной доступности плутония и его вредным качествам для человеческого организма, приходится радоваться и этому.

Потребуется элемент термоэлектричества. Лучше их использовать не в единственном экземпляре, подключив параллельно, это увеличит мощность.

Однако есть большая проблема, необходимо подбирать элементы с похожими параметрами, что достаточно затруднительно либо дорого обходится, легче приобрести готовый прибор.

Используя один элемент, мощности может не хватить даже зарядить самый простой гаджет.

Еще нужен будет корпус из металла, к примеру, бывшего в употреблении и уже ненужного блока питания от персонального компьютера и элемент охлаждения процессора.

Главные нюансы сборки

Изначально нужно нанести на основание термопасту там, где предназначена фиксация основного элемента, прислонить его и прижать охлаждающей деталью. В итоге получается конструктивное изделие.

Сухой спирт, пожалуй, станет лучшим топливом для этого приспособления. Далее нужно подсоединить к сделанному прибору устройство стабилизирующие напряжение.

Схему возможно посмотреть на сайтах в интернете либо в иных источниках предлагающих эту тему.

Изделие готово, теперь осталось только произвести испытание.

Заключение

В заключении можно сказать, что изготовление данного устройства лучше доверить специалистам либо приобрести его. Попытка создать его самостоятельно может привести к неудаче.

Читать еще:  Как выбрать контактор для электродвигателя с частыми пусками

Фото термоэлектрического генератора своими руками

Что такое термоэлектрический генератор?

Согласно мировой статистике, от общего числа выработанной электроэнергии, на ТЭС приходится более 60%. Как известно, для работы тепловых электростанций необходимо органическое топливо, запасы которого не бесконечны. Помимо того, положенный в основу техпроцесс не является экологически чистым. Но низкая стоимость оргтоплива и высокий КПД ТЭС, позволяет получать «дешевое» электричество, что оправдывает применение данной технологии. Выход из сложившейся ситуации – альтернативные источники энергии, к таковым относятся термоэлектрические генераторы (далее ТЭГ), о них и пойдет речь в этой статье.

Что такое термоэлектрический генератор?

Так принято называть устройство, позволяющее преобразовать тепловую энергию в электрическую. Следует уточнить, что термин «Тепловая» не совсем точен, поскольку тепло, это способ передачи, а не отдельный вид энергии. Под данным определением подразумевается общая кинетическая энергия молекул, атомов и других структурных элементов, из которых состоит вещество.

Несмотря на то, что на ТЭС сжигается топливо для получения электричества, ее нельзя отнести к ТЭГ. На таких станциях тепловая энергия вначале преобразуется в кинетическую, а она уже в электрическую. То есть, топливо сжигается для получения из воды пара, который вращает турбину электрического генератора.

Схема работы ТЭС

Исходя из выше изложенного, следует уточнить, что ТЕГ должен генерировать электроэнергию без промежуточных преобразований.

Принцип работы

В основе ТЭГ лежит термоэлектрическое явление, описанное в начале 20-х годов XIX века немецким ученым-физиком Томасом Иоганном Зеебеком. Он обнаружил появление ЭДС в цепи замкнутого типа, состоящей из проводника и сурьмы, при условии создания разности температур в местах, где эти материалы контактируют. Изображение устройства, при помощи которого был зафиксирован данный эффект, представлено ниже.

Обозначения:

  • 1 – медный проводник.
  • 2 – проводник из сурьмы.
  • 3 – стрелка компаса.
  • А и В – места контакта двух проводников.

При нагревании одного из контактов стрелка отклонялась, что свидетельствовало о наличии магнитного поля, вызванного ЭДС. При нагреве другого контакта, направление ЭДС менялось на противоположное. Соответственно, при разрыве цепи, можно зафиксировать разность потенциалов на ее концах.

Через 12 лет, после публикации Зеебеком результатов своих опытов, французским физиком Жаном Пельтье был обнаружен обратный эффект. Если через цепь термопары пропускать ток, то в местах контакта этих веществ возникает разность температур. Мы не будем приводить описание опыта Пельтье, а также данные по современным одноименным элементам, эту информацию можно найти на нашем сайте.

По сути, оба эти эффекта обратные стороны одного термоэлектрического явления, позволяющего напрямую получать электричество из тепловой энергии. Но, до открытия полупроводников, термоэлектрический эффект не находил практического применения, ввиду неприемлемо низкого КПД. Поднять его до 5% удалось только в середине пошлого века. К сожалению, даже у современных полупроводниковых элементов, этот показатель остается на уровне 8%-12%, что не позволяет рассматривать генераторы данного типа в качестве серьезных конкурентов ТЭС.

Современный элемент Пельтье с указанием размеров

Перспективы

В настоящее время продолжаются опыты по подбору оптимальных термопар, что позволит увеличить КПД. Проблема заключается в том, что под данные исследования затруднительно подвести теоретическую базу, поэтому приходится полагаться только на результаты экспериментов. Учитывая, что на эффект влияет процентное соотношение и состав сплавов материала для термопар, говорить о ближайших перспективах неблагодарное занятие.

Велика вероятность, что в ближайшее время для повышения добротности термоэлементов, разработчики перейдут на другой уровень изготовления сплава для термопар, с использованием нано-технологий, ям квантования и т.д.

Вполне возможно, что будет разработан совершенно иной принцип с использованием нетрадиционных материалов. В качестве примера можно привести эксперименты, проводимые в Калифорнийском университете, где для замены термопары использовалась искусственная синтезированная молекула, которая соединяла два золотых микро проводника.

Молекула вместо термопары

Первые опыты показали возможность реализации идеи, насколько она перспективна, покажет время.

Сфера применения и виды термоэлектрических генераторов

В виду низкого КПД для ТЭГ остается два варианта применения:

  1. В местах, где недоступны другие источники электроэнергии.
  2. В процессах, где имеется избыток тепла.

Приведем несколько примеров таких устройств.

Энергопечи

Данные, устройства, совмещающие в себе следующие функции:

  • Варочной поверхности.
  • Обогревателя.
  • Источника электроэнергии.

Это прекрасный образец, объединяющий все оба варианта применения.

Индигирка – три в одном

У представленной на рисунке энергопечи следующие параметры:

  • Вес – чуть больше 50 килограмм (без учета топлива).
  • Размеры: 65х43х54 см (с разобранным дымоходом).
  • Оптимальная загрузка оргтоплива – 30 литров. Допускается использование лиственной древесины, торфа, бурового (не каменного!) угля.
  • Средняя тепловая мощность устройства около 4,5 кВт.
  • Мощность электронагрузки от 45-50 Вт.
  • Стабилизированное постоянное напряжение на выходе – 12 В.

Как видите, эти параметры вполне приемлемы для условий, где нет электричества, отопления и газа. Что касается небольшой электрической мощности, то ее вполне достаточно для зарядки мобильных устройств или питания других гаджетов, через адаптер от автомобильного прикуривателя.

Радиоизотопные ТЭГ

В качестве источника тепла для ТЭГ может выступать тепловая энергия, выделяющаяся в процессе распада нестабильных элементов. Такие источники называют радиоизотопными. Основное их преимущество заключается в том, что не требуется постоянная загрузка топлива. Недостаток – необходимость установки защиты от ионизирующего излучения, невозможность перезаправки топлива и необходимость утилизации.

Срок эксплуатации таких источников напрямую зависит от периода полураспада вещества, используемого в качестве топлива. К последнему предъявляется следующий ряд требований:

  • Высокий коэффициент объемной активности, то есть небольшое количество вещества должно обеспечивать нужный уровень выделения энергии.
  • Поддержка необходимого уровня мощности в течение длительного времени. На этот параметр отвечает, как было отмечено выше, влияет период полураспада, например у стронция-90 он 29 лет, следовательно, источник через это время потеряет половину своей мощности.
  • Ионизирующее излучение должно быть удобным для утилизации, то есть в нем должны преобладать α-частицы.
  • Необходимый уровень безопасности. То есть ионизирующее излучение не должно нанести вред экологии (в случае эксплуатации на земле) и питающемуся от такого источника оборудованию.

Таким критериям отвечают изотопы кюрия-244, плутония-238 и упоминавшийся выше стронций-90.

Сфера применения РИТЕГ

Несмотря на серьезные требования к таким источникам, сфера их применения довольно разнообразна, они используются как в космосе, так и на земле. Ниже на фото, изображен РИТЕГ, работавший на космическом аппарате Кассини. В качестве топлива использовался изотоп плутония-238. Период полураспада этого элемента чуть больше 87 лет. Под конец 20-ти летней мисси источник вырабатывал 650 Вт электроэнергии.

Радиоизотопное «сердце» Кассини

Кассини была приведена в качестве примера, а на счет массовости можно констатировать, что, практически, все КА для электропитания оборудования используют РИТЕГ. К сожалению, характеристики радиоизотопных источников энергии космических аппаратов, как правило, не публикуются.

На земле ситуация приблизительно такая же. Технология РИТЕГ как бы известна, но ее детали относятся к закрытой информации. Достоверно известно, что такие установки применяются в качестве источника питания навигационного оборудования в местности, где по техническим причинам невозможно получать электроэнергию другим способом. То есть, речь идет о труднодоступных регионах.

К сожалению, такие источники не самая подходящая альтернатива ТЭС с экологической точки зрения.

РИТЕГ поднятый с 14-митровой глубины возле Сахалина

Как сделать термоэлектрический генератор своими руками?

В завершении расскажем, как сделать ТЕГ, которым можно пользоваться в турпоходе, на охоте или рыбалке. Естественно, мощность таких устройств будет уступать радиоизотопным генераторам энергии, но ввиду труднодоступности плутония, и его неприятным свойством наносить вред человеческому организму придется довольствоваться малым.

Нам понадобится термоэлектрический элемент, например, ТЕС1 12710. Желательно использовать несколько элементов, подключенных параллельно, для увеличения мощности. К сожалению, тут есть очень серьезный нюанс, потребуется подобрать элементы со сходными параметрами, что у китайской продукции практически не реально, а использовать брендовую дорого, проще купить готовый генератор. Если использовать один модуль Пельте, то его мощности едва хватит для зарядки телефона или другого гаджета. Нам также понадобится металлический корпус, например, отслужившего блока питания ПК и радиатор от процессора.

Основные моменты сборки:

Наносим на корпус термопасту в месте, где будет крепиться термоэлектрический элемент, прислоняем его и фиксируем радиатором. В результате у нас получается конструкция, как на нижнем рисунке.

Туристический ТЭГ

В качестве топлива лучше всего использовать «сухой спирт».

Теперь необходимо подключить к нашему источнику стабилизатор напряжения (схему можно найти на нашем сайте или в других тематических источниках).

Конструкция готова, можно приступать к проверке.

Элементы Пельтье или бесплатное электричество от костра

При помощи простых приспособлений можно использовать теплопотери от нагревания воздуха или жидкостей. В этой статье мы расскажем, как использовать бросовую энергию печей, котлов и открытого огня, преобразовав её в постоянный электрический ток небольшой силы.

  • Конструкция термоэлектрического модуля
  • Собираем ТЭМ на 5 В
  • Энергопечь

Любой химический процесс проходит с выделением разного рода энергии. Такой мощный источник, как горение использовался во все времена. Его можно назвать первичным источником тепла и света. Горят практически все вещества на Земле, выделяя при этом тепло и свет в разных количествах. Преобразовать тепловую энергию в электрическую — дело несложное, если под рукой есть рабочая паротурбина, подобная тем, что установлены на ТЭЦ. Это громоздкое и сложное устройство, которому вряд ли найдётся место в котельной загородного дома. Мы попробуем извлечь пользу из выделения тепла при печном отоплении или нагревании воды.

Эффект Пельтье — это явление перепада температур при взаимодействии термопар двух различных типов проводников (p-типа и n-типа) при прохождении через них постоянного тока. Эффект Зеебека — следствие эффекта Пельтье, когда при нагревании одной из термопар образуется электрический ток. Мы не будем подробно описывать термодинамику процесса — эту сложную для восприятия информацию можно легко найти в справочной литературе. Нас интересует результат и варианты его практического использования.

Конструкция термоэлектрического модуля

Термоэлектрический модуль (ТЭМ) состоит из множества термопар, соединённых между собой медной пластиной. Поле термопар вклеивается между двух керамических пластин. Собрать такой модуль возможно только в заводских условиях. Но скомпоновать несколько ТЭМ для собственных нужд получится и дома. Элементы Пельтье-Зеебека имеются в свободной продаже в специализированных магазинах (и на сайтах) по продаже технологического оборудования.

Собираем ТЭМ на 5 В

  • модуль Пельтье TEC1–12705 (40×40) — 2 шт.;
  • повышающий преобразователь постоянного напряжения ЕК-1674;
  • лист дюралюминия толщиной 3 мм;
  • ёмкость для воды с идеально ровным дном (ковш);
  • термоклей;
  • паяльник.

Вырезаем из листа дюралюминия две одинаковые пластины, размерами чуть более двух модулей, лежащих рядом. Укрепляем термоклеем пластины на модулях с обеих сторон. Фиксируем (термоклеем) получившийся «сэндвич» на дно ковша. Такую конструкцию уже можно ставить на огонь, но мы получим на выходе бесполезные 1,5 В. Для улучшения характеристик нам и нужен повышающий преобразователь, который мы впаиваем в цепь. Он повысит напряжение до 5 В, а этого уже достаточно для зарядки мобильного телефона.

Внимание! Преобразователь имеет размеры 1,5х1,5 см. При отсутствии профессиональных навыков доверьте пайку специалисту.

Разность температур в нашей конструкции получается за счёт нагрева одной стороны (от печи или пламени) и охлаждения другой (вода в ковше). Разумеется, чем больше разница, тем эффективнее работа модуля. Поэтому, для работы в режиме микрогенератора понадобится сравнительно низкая температура воды в ковше (её лучше периодически заменять). Для выработки заветных 5 В достаточно поставить конструкцию на стакан с горящей свечой.

Пропорционально комбинируя большее количество модулей, мы получим более эффективную систему выработки энергии. Соответственно, увеличивая конструкцию, пропорционально увеличиваем теплообменник. При этом охлаждаемая поверхность должна быть полностью покрыта ёмкостью с водой (самый простой и доступный вариант).

Всё так просто, что сразу возникает желание собрать побольше модулей в одну систему и вырабатывать 220 В из костра. А потом подключить масляный обогреватель или кондиционер. Такая простая система имеет свои недостатки, и главный из них — низкий КПД. Обычно этот показатель не превышает 5%. Это обуславливает сравнительно малую силу тока 0,5 — 0,8 А и очень малую мощность — до 4 Вт.

Читать еще:  Как продлить ресурс автомобильных светодиодных ламп без применения стабилизаторов

Для насоса или лампы накаливания это ничтожно мало, но вполне достаточно для:

  • зарядки аккумуляторов вплоть до мотоциклетных (в вариантах, пропорциональных требованиям);
  • работы светодиодных (LED) ламп;
  • радиоприёмника.

В зимнее время система, помещённая на источник тепла, находящийся на улице, будет работать максимально эффективно.

Затраты на материалы для сборки термоэлектрического микрогенератора на 5 В:

НаименованиеЦена, руб.Примечание
Модуль Пельтье TEC1–12705 (40×40)* — 2 шт.600Цена за 2 шт.
Повышающий преобразователь постоянного напряжения ЕК-1674320
Дюралюминий300Лист для варианта с ковшом
Термоклей Radial1502 мл
Ковш100Новый
Итого на материалы1470

*- данная модель элемента выбрана из соображений цены. Ассортимент ТЭМ у фирм-поставщиков довольно широк, что позволяет подобрать более производительные (до 8 В) модели (они ощутимо дороже).

Заводские изделия подобной конструкции только начинают появляться в продаже. Серийное производство ведётся мелкими партиями, да и ассортимент невелик. Стоимость такого «ковшика» стартует с 2500 руб.

Заводской термогенератор — устройство, основанное на эффекте Пельтье-Зеебека, которое можно закрепить прямо на разогретую поверхность. От конструкции, описанной выше, его отличает заводское исполнение (а значит, надёжность), отсутствие жидкостного теплообменника (вместо него — рёбра для воздушного охлаждения) и более высокая цена.

Стандартный «походный» термогенератор имеет следующие характеристики:

Напряжение13,5 В
Сила тока0,16 А
Мощность2,2 Вт
Вес1,6–2 кг
Кабель в бронерукавеДа
Защита от перегреваДа
Набор стандартных разъемовДа
Размеры (примерно)150х150х200 мм
ЦенаОт 7000 руб.

Как видно из таблицы, заводская надёжность и утилитарность обходится недёшево. При этом нельзя сказать, что он функционально превосходит самодельный вариант с ковшом. Впечатляющие 13,5 В ускорят зарядку мобильника, но для этого будет нужно носить с собой 2 кг веса в походе, а это непозволительная роскошь (с учётом размеров прибора). Ну и, конечно, цена заставляет задуматься. На эту сумму можно собрать уже не «термоковшик», а «термокастрюлю» и спокойно заряжать ноутбук. И ещё один нюанс — прибор всё равно требует закрепления на металлической пластине в случае использования открытого огня.

В целом это приятное и удобное дополнение для тех, у кого нет проблем с деньгами и свободным местом в багажнике.

Энергопечь

На сегодняшний день энергопечь — апофеоз применения ТЭМ в быту. Это заводское изделие, по сути дела топка-«буржуйка», для любого вида твёрдого топлива с интегрированным теплоэлектрическим модулем. Идеальный вариант для охотничьих домиков, дач, отдалённых зимовок и вообще любого вида жизни вдали от цивилизации. Рассчитана на автономное использование (без периферических теплоотводов), имеет только очаг и дымоход. Предусматривает приготовление пищи. На эту печь устанавливают самые мощные элементы Пельтье-Зеебека.

Выходная мощность25–50 Вт
Выходное напряжение12 В
Объём топки30–60 литров
Вес30–60 кг
Тепловая мощность4–6 кВт
СтабилизаторДа
Заводские разъёмыДа
Защита от перегреваДа
Цена23000–40000 руб.

Хотя печь и переносная, безусловно, это «супертяжёлая весовая категория» среди бытовых приборов. Однако и спектр задач у энергопечи довольно широк — она может заряжать даже автомобильные аккумуляторы, освещать LED лампами целые комнаты. Ей найдётся место в экспедиционном обозе и в охотничьем вездеходе, в техническом помещении и на даче. Иными словами, в этом случае источник тепла у нас всегда с собой, осталось найти топливо.

В своей нише энергопечь незаменима, хотя и немного настораживает заявленный производителем срок службы — 10 лет. Следует отметить, что, как и в термогенераторе, есть возможность профилактической (или аварийной) замены всех деталей вплоть до корпуса.

Термоэлектрические модули — крайне занятные объекты. Помимо описанных методов применения их также используют для кондиционирования воды и воздуха. При этом на такой же элемент подаётся постоянный ток и он работает «в обратную сторону» — охлаждает воздух. Эта технология с успехом применяется в автомобильных кондиционерах и кулерах для воды, в автомобилестроении и при производстве микропроцессоров. Мы опишем эти устройства в следующей статье.

Электричество из тепла

категория
Альтернативная энергия
материалы в категории

В начале прошлого века изобретатели и учёные уже хорошо представляли ту пользу, которую может дать широкое применение электроэнергии. Однако способов её дешёвого получения в достаточном количестве долго не существовало. Но вот в 1821 году немецким учёным Зеебеком было открыто любопытное явление.

Если взять замкнутую цепь из двух спаянных между собой разнородных проводников и один спай нагревать, а другой охлаждать, то в цепи возникнет ток. В этом удивительно простом устройстве (назвали его термоэлементом) тепловая энергия как бы прямо превращается в электрическую.

В известном задолго до него гальваническом элементе энергия получалась за счёт растворения металла в электролите. Вещества эти достаточно дороги, недёшево получалась и энергия. Термоэлемент — другое дело. Сам он не расходуется, а топливо вполне доступно. Тем более, что нагревать его спаи можно чем угодно: солнцем, вулканическим теплом, продуктами сгорания, вылетающими через трубу печи, и т. д.

Давайте повнимательней разберём некоторые его свойства. Одиночный термоэлемент развивает маленькую ЭДС — десятые, сотые доли вольта. Однако его внутреннее сопротивление очень мало, следовательно, создаваемый ток может быть очень велик.

Давно известен такой красивый эксперимент. Электромагнит с железным сердечником и обмоткой, состоящей из. одного витка. Но виток — скоба из меди толщиной в палец, замкнутая впаянной перемычкой из висмута. Один конец спая нагреваем обычной лабораторной горелкой, другой — охлаждаем водой. Возникает ток в тысячи ампер, и магнит (при одном-то витке!) удерживает чугунный бабушкин утюг.

Низкая ЭДС — не беда, термоэлементы легко соединяются в батарею с последовательным соединением сотен или тысяч источников. Выглядит она такой гармошкой из чередующихся полос двух металлов. Сильный ток при умеренном напряжении в 2-3 вольта как нельзя лучше годился для применения в мелких гальванических мастерских. Его вырабатывали термоэлектрогенераторы, напоминающие небольшую печь на дровах, угле или газе.

Применялись они кустарями ещё в начале века. Были попытки решать и более крупные задачи. Так, например, в конце 80-х годов прошлого века в Париже Клуэ построил термоэлектрический генератор, дававший энергию для 80 «свечей» Яблочкова. КПД установок того времени не превышал 0.3%. Казалось бы, уж очень мало, но всё потерянное тепло можно было использовать для отопления дома, подогрева воды или приготовления пищи. Предлагались и отопительные печи со встроенными термоэлектрогенераторами. Любопытно, что их установка ни в коем случае не увеличивает расхода топлива на отопление. Ведь электричество, если его израсходуют в том же помещении, вновь перейдёт в тепло!

История распорядилась иначе. Электричество оказалось значительно выгоднее производить на электростанциях и централизованно распределять потребителям. Даже в прошлом веке КПД электростанций был в десятки раз выше, чем у термоэлементов. Однако изящная простота, надёжность, вызванная отсутствием движущихся частей, очаровали многих. Попытки повысить КПД без глубокого проникновения в теорию к серьёзному успеху не привели. ЭДС возникает в результате нагревания ветвей термоэлемента, но одновременно возникает и паразитный поток тепла, бесполезно перетекающий от горячего спая к холодному. Пытаясь его использовать, стали собирать каскады термоэлементов, в которых более холодный спай одного нагревает горячий спай другого. Температура горячих спаев на каждом ярусе каскада понижается. Однако, подбирая материалы, наиболее хорошо работающие именно в заданном диапазоне температур, КПД всей системы удаётся значительно повысить.

Есть и другая возможность. Её называют регенерацией тепла. Направим поток воздуха вдоль термоэлектрического каскада от холодного конца к горячему. При этом он обретёт от элементов часть протекающего по ним тепла и нагреется. После этого направим горячий воздух в топку и сэкономим часть топлива. Вся эта процедура равноценна снижению теплопроводности материалов термоэлементов, а принесёт она пользу лишь в том случае, если произойдёт отбор строго определённой части тепла от каждого элемента. Однако регенерация ощутима лишь тогда, когда сами термоэлементы, входящие в каскад, достаточно совершенны.

В 30-е годы теоретические работы в области термоэлектричества особенно интенсивно проводились в нашей стране. Говорят, нет ничего практичнее хорошей теории. Академик А. Ф. Иоффе создал новую теорию процессов, происходящих в твёрдом теле. Некоторые солидные учёные принимали её в штыки, называли «квантово-механическим подсознанием». Но в 1940 году, основываясь на её выводах, удалось поднять КПД термоэлемента в 10 раз. Произошло это благодаря замене металлов на полупроводники — вещества с более высокой термоЭДС и низкой теплопроводностью.

В начале войны в лаборатории Иоффе был создан «партизанский котёл» — термоэлектрогенератор для питания портативных радиостанций. Это был котелок, на днище которого снаружи располагались термоэлементы. Их горючие спаи находились в огне костра, а холодные, прикреплённые ко дну котелка, охлаждались налитой в него водой.

Тщательный подбор материалов, применение регенерации позволили в наше время довести КПД термоэлемента до 15%. В начале века такую эффективность имели обычные электростанции, но теперь она возросла более чем в три раза. Термоэлементу в большой энергетике пока места нет. Но ведь есть и энергетика малая. Несколько десятков ватт требуется для питания радиорелейной станции, стоящей на горной вершине, или морского сигнального буя. Есть и отдалённые места, где живут люди, которым требуются электричество и тепло. В подобных случаях применение находят термоэлементы, подогреваемые газом или жидким топливом. Особенно ценно, что эти устройства можно поместить в небольшой подземный бункер и оставить совершенно без присмотра, лишь раз в год или реже пополнять запас топлива. Ввиду малой мощности расход его при любом КПД оказывается приемлем, а кроме того. нет выбора.

Любопытное применение для термоэлектрогенераторов нашли врачи. Уже более двух десятилетий тысячи людей носят имплантированный, помещённый под кожу ритмоводитель сердечной деятельности. Источником энергии для него служит крохотная (с напёрсток) батарея из сотни соединённых последовательно термоэлементов, подогреваемых распадом безвредного изотопа. Несложная операция по её замене производится раз в 5-10 лет.

В Японии выпускаются электронные часы, энергию которым от тепла руки даёт термоэлемент.

Недавно одна итальянская фирма заявила о начале работы над электромобилем с термоэлектрогенератором. Этот источник тока значительно легче аккумуляторов, поэтому пробег у термоэлектрического автомобиля будет не меньше, чем у обычного. (Напомним, что электромобили способны с одной зарядкой пройти 150 км.) Полагают, что путём разных ухищрений расход топлива удастся сделать приемлемым. Главные достоинства экипажа нового типа — абсолютно безвредный выхлоп, бесшумное движение, применение самого дешёвого жидкого (а возможно, и твёрдого) топлива, очень большая надёжность.

В 30-е годы проводившиеся в нашей стране работы над термоэлементами были широко известны. Вероятно, поэтому писатель Г. Адамов описал в своём романе «Тайна двух океанов» подводную лодку «Пионер», получавшую энергию от тросов-батарей. Так он назвал термоэлектрические генераторы, выполненные в виде длинных тросов. Их горячие спаи при помощи буя поднимались в верхние слои океана, где температура достигает 20-25°C, а холодные — охлаждались глубоководной водой с температурой 1-2°С Так фантастический «Пионер» — лодка, способная дать сто очков вперёд нынешним атомным, заряжал свои аккумуляторы.

Реально ли такое? Сообщение о прямых опытах подобного рода в печати нет. Впрочем, промелькнуло нечто любопытное. Создан термоэлектрогенератор на 1000 кВт, вырабатывающий энергию за счёт тепла горячих подземных источников. Разность температур между горячим и холодным спаями 23°С, как в океане, удельный вес 6 кг на 1 кВт — много ниже, чем у энергетических установок обычных подводных лодок. Не на пороге ли мы новой энергетической революции, нового века электричества?

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector