Принцип работы энергосберегающей лампочки
Как устроена и работает энергосберегающая лампа?
Говоря на тему осветительных приборов для бытового использования, нельзя не отметить то, что на сегодняшний день самыми востребованными остаются компактные люминесцентные лампы, или, как их еще называют, энергосберегающие. В свое время подобные приборы произвели практически прорыв в своей области, что и понятно. Ведь по сравнению с их предшественниками – обычными люминесцентными лампами – они не требуют никакого дополнительного оборудования.
Для того чтобы заменить в квартире лампы накаливания (ЛН) на КЛЛ (компактная люминесцентная лампа), не потребуется никаких усилий, нужно всего лишь вывернуть ЛН и вкрутить на ее место энергосберегающую.
Конечно, стоимость компактных люминесцентных ламп несколько выше, но и экономия на электроэнергии получится значительной. Ведь мощность КЛЛ в 5 раз ниже, чем у ламп накаливания без какой-либо потери силы светового потока.
Но как устроена энергосберегающая лампа? В этом вопросе сейчас и попробуем разобраться.
- Из чего состоит КЛЛ?
- Принцип работы энергосберегающей лампы
- Преимущества и недостатки
Из чего состоит КЛЛ?
Современные энергосберегающие лампы состоят из трех основных частей:
- колба – стеклянная трубка;
- корпус, в котором находится электронный пускорегулирующий аппарат;
- цоколь.
Но основные детали энергосберегающей лампы – это лишь то, что видно снаружи.
Внутри колбы, запаянной с обеих сторон, находятся электроды, на которые непосредственно и подается электроэнергия. Сама колба изнутри покрыта специальным веществом, называемым люминофор. Полость внутри стеклянной трубки заполнена инертным газом, смешанным с парами ртути.
Что касается электронного пускорегулирующего аппарата, тут все гораздо мудренее. ЭПРА представляет собой сложное устройство, выполняющее, по сути, ту же роль, что в старых люминесцентных лампах выполняли дроссель и стартер, т. е. управляет розжигом и поддержанием свечения в колбе.
Цоколи энергосберегающей лампы могут быть различными. Самый распространенный, конечно же, Е27. Он идентичен цоколю обычной лампы накаливания. Вообще, маркировка «Е» обозначает, что он резьбовой, а следующая за ним цифра – это его диаметр в миллиметрах. Также у компактных энергосберегающих ламп могут быть цоколи Е14 (14 мм) и Е40 (40 мм).
Еще одна маркировка – G – обозначает, что цоколь двухштырьковый, а цифра, которая следует за буквенным обозначением, означает размер между штырями.
Принцип работы энергосберегающей лампы
Как наверняка уже стало понятно, устройство и принцип действия КЛЛ и обычной люминесцентной лампы практически идентичны. Исключение лишь в том, что у энергосберегающего осветительного прибора пускорегулирующий аппарат уже встроен и называется балластом или ЭПРА.
Схема энергосберегающей лампы
Если говорить о конкретике, то принцип действия КЛЛ таков: электрический ток, поступая на электроды, создает пробой, в результате чего воспламеняется смесь паров ртути и инертного газа (аргон или ксенон). В результате возникает ультрафиолетовое свечение, которое человек увидеть не может. При помощи люминофора это свечение трансформируется в видимый свет. Вредное ультрафиолетовое излучение блокируется тем же люминофором и не наносит ущерба человеку.
Действительно, суть работы ЛДС и КЛЛ одинаковы. Что же касается электронного балласта, то разница видна даже несведущему в электротехнике человеку.
Работающей компактной люминесцентной лампы совершенно не слышно, исчезло гудение, издаваемое дросселем старых люминесцентных светильников. Да и зажигается она намного быстрее, имея задержку на каких-то полсекунды.
Ну, если то, из чего состоит и как работает энергосберегающая лампа более или менее понятно, то ее достоинства и недостатки следует рассмотреть подробнее.
Преимущества и недостатки
Конечно, не имей компактная люминесцентная лампа преимуществ, никто не стал бы переходить на подобное освещение, но все же попробуем в них разобраться. Из плюсов, конечно же, первое, что замечают – это ее компактность и малое энергопотребление не только в сравнении с «лампочкой Ильича», но и даже с обычной люминесцентной трубкой. Также отмечается тихая работа и быстрый запуск, о которых уже говорилось. И самое главное – это, конечно же, долгий срок службы. Вот, пожалуй, и все.
Из минусов – оставшиеся от предшественника «болячки». Энергосберегающая лампа плохо запускается и теряет в световом потоке на холоде, а после минус 30 вообще перестает работать.
Наличие ртути в трубке тоже радовать не может, а утилизация – процесс недешевый.
И вот что важно. Подобные осветительные приборы очень плохо переносят кратковременный цикл «включение-выключение». Дело в том, что после подачи питания на энергосберегающую лампу необходимо, чтобы она горела как минимум 3–4 минуты. Так же дело обстоит и с выключением. В противном случае резко сокращается ее срок службы и в итоге никакой экономии не получится, т. к. КЛЛ может выйти из строя, не отработав и половины заявленного производителем времени.
Ну а в основном, конечно, такая лампа вполне имеет право на существование, ведь главную задачу она выполняет – экономия электроэнергии налицо. К тому же она удобна в эксплуатации, не требует никакого дополнительного оборудования при установке, а значит, подобные осветительные приборы еще долго будут светить в домах и квартирах.
Энергосберегающие лампы. Принцип работы, устройство и ремонт своими руками
По принципу работы энергосберегающия лампа (ЭСЛ) аналогична светильнику с обычной люминисцентной лампой. Как и светильник сберегающая лампа состоит из пускорегулирующего устройства и люминисцентной лампы (колбы). Основное отличие ЭСЛ от обычной люминисцентной лампы в том, что ЭСЛ имеет встроенное электронное пускорегулирующее устройство.
Колба по форме может быть различной формы (U-образной, спиральной и т. п.). Стенки колбы покрыты изнутри люминофором, а на концах трубки запаяны две спирали. Раскаляясь, спирали обеспечивают эмиссию электронов на их поверхности. Под действием высокого напряжения, приложенного между спиралями, в колбе возникает тлеющий разряд в парах ртути. При этом атомы ртути излучают ультрафиолетовое излучение. Под действием УФ люминофор на стенках колбы излучает видимый свет (люминисценция). Цвет свечения лампы зависит от химического состава люминофора.
Далее будет рассмотрен пример ремонта лампы фирмы Uniel, которая изображена на рисунке 1.
Рисунок 1 — Энергосберегающая лампа Uniel (32 Вт).
В большинстве случаев для вскрытия корпуса необходимо аккуратно подковырнуть отверткой или ножом место стыковки двух частей корпуса, при этом стараясь не повредить плату и колбу. После вскрытия следует отмотать оголенные медные провода колбы от штырьков на плате. После чего можно измерить сопротивление спиралей, которое должно быть примерно 8-10 Ом в холодном состоянии. Если одна из спиралей оборвана, следует заменить колбу. Если другой колбы нет, то можно закоротить между собой штырьки на плате, к которым присоединялась данная спираль. Если нарушена герметичность колбы, то ремонту она не подлежит. Если спирали целы, то причина неисправности скорее всего в плате пускорегулирующего устройства. Плату можно взять от другой лампы, а можно попытаться отремонтировать.
Схема 32-Ваттной лампы Uniel ESL-S12-32 срисована с платы и представлена на рисунке 2.
Рисунок 2 — Схема энергосберегающей лампы Uniel
Схема работает по принципу автогенератора. Положительная обратная связь организована трансформатором (на плате он не обозначен) на ферритовом кольце с тремя «цветными» обмотками. Генератор работает на резонансной частоте контура, образованного конденсаторами С4, C5, и индуктивностями резонансного дросселя и трансформатора обратной связи. Ток в этом контуре поддерживает накал спиралей, а напряжение, снимаемое с конденсатора C5 поддерживает тлеющий разряд в лампе.
По такому принципу работает большинство ЭСЛ и схемы их плат похожи между собой. В зависимости от мощности лампы, варьируются номиналы элементов и размеры плат. В лампах меньшей мощности могут отсутствовать некоторые защитные цепочки. На рисунке 3 изображена плата электронного пускорегулирующего устройства ЭСЛ.
Рисунок 3 — Плата энергосберегающей лампы Uniel
На практике наиболее частыми неисправностями являются пробои транзисторов К1/К2. При этом перегорает предохранитель, обрываются резисторы R5/R6, и иногда обрываются резисторы в цепях баз R3/R4. Часто встречаются вздутые электролиты C2, при этом лампа может работать, но с мерцанием и светиться немного тусклее. Если при запуске слышен писк или звон и лампа не горит, дело может быть в обрыве одной из управляющих обмоток трансформатора ОС, либо одного из резисторов в базах. При пробоях ключей возможно, что будет пробит динистор DB3, генерации при этом не будет.
Ремонт платы обычно заключается в следующем:
Не смотря на то, что рассмотрена одна лампа, методика ремонта применима к большинству энергосберегающих ламп (если, конечно, они не светодиодные), так как принцип работы у них одинаковый.
На момент написания статьи, все лампы (около 8 шт.) рассмотренного типа после ремонта работают более года без замечаний.
Энергосберегающие лампы.
Введение
Мы живем в стремительно меняющемся мире. Меняется все: технологии, мировоззрение, образ жизни, искусство, люди… Век прошлый ознаменовался бурным, если не сказать уникальным, развитием технической мысли. Пытаясь сделать свою жизнь более комфортной, человек подчас меняет не только представление окружающих о том или ином предмете, революционно модифицируя его, но и саму окружающую действительность.
Сложно представить, что еще в начале XX века помещения освещались керосиновыми лампами, свечами, и даже лучинами. Благодаря массовой электрификации страны в двадцатые годы лампочка стала привычным и незаменимым предметом повседневного быта. На наше счастье пришла эпоха электричества, которая дарит не только яркий свет, но и разнообразие освещения.
Почему именно энергосберегающая лампа?
По данным статистики, средняя российская семья тратит на оплату жилищно-коммунальных услуг около 8-10 % своих доходов. Немалую долю этих затрат составляет оплата за электроэнергию. Прежде всего, за счет увеличения количества используемых нами бытовых приборов, изрядное количество электроэнергии расходуется на освещение.
Наиболее привычный для нас способ освещений своих домов — это использование ламп накаливания. Они широко распространены и очень дешевы. Вот только часто перегорают, особенно при скачках напряжения в сети — это тоже известно многим. Есть ли альтернатива лампам накаливания? Да. Есть! Это — люминесцентные лампы. Для освещения квартир выпускаются компактные люминесцентные лампы (энергосберегающие лампы), потребляющие гораздо меньше электроэнергии, на первый взгляд, их цена (110-200 рублей за лампу) шокирует, но даже при такой большой стоимости они быстро окупаются за счет низкого энергопотребления и долгого срока службы. Простая замена привычных источников света на их энергосберегающих родственников сократит расходы энергоресурсов в 4 раза!
По уровню светимости люминесцентная энергосберегающая лампа как минимум в 5 раз ярче ламп накаливания той же мощности. Если у лампы накаливания светоотдача составляет 10-15 лм/ватт, то люминесцентная энергосберегающая лампа имеет светоотдачу порядка 50-80 лм/ватт. Это позволяет экономить до 80% электроэнергии.
Срок службы энергосберегающей лампы – в среднем 10000 часов. При стандартном режиме горения 2,73 часа в сутки, лампа исправно работает до 10 лет. В режиме непрерывного свечения (дежурное освещение и т.д.), люминесцентная энергосберегающая лампа может проработать до 12 000 часов.
Длительный срок службы энергосберегающих ламп, в несколько раз превышающий срок службы ламп накаливания, позволяет использовать энергосберегающие лампы в труднодоступных местах, где замена источников света затруднена (например, если в помещении высокие потолки) – торговых залах, выставочных комплексах, складских помещениях. Энергосберегающие лампы не вызывают никакого стробоскопического эффекта. Они не утомляют зрение и благоприятно воздействует на глаза человека и его нервную систему, сохраняя его здоровье.
Помимо пониженного потребления электроэнергии, энергосберегающие лампы выделяют меньше тепла, чем лампы накаливания. Незначительное тепловыделение позволяет использовать компактные люминесцентные лампы большой мощности в хрупких бра, светильниках и люстрах, в которых от ламп накаливания с высокой температурой нагрева может оплавляться пластмассовая часть патрона, либо сам провод. Так, например, в светильнике, корпус которого сделан из материала, лучше использовать энергосберегающую лампу, так как высокий нагрев лампы накаливания со временем приведет к выгоранию материала.
Утилизация, в случае если энергосберегающая лампа получила повреждение или случайно разбилась, достаточно проветрить помещение и убрать осколки. Так как люминесцентные лампы содержат небольшое количество паров ртути, не вредных для здоровья.
Устройство и принцип действия энергосберегающих ламп
Люминесцентная лампа наполнена парами ртути и инертным газом (аргоном), а ее внутренние стенки покрыты люминофором. Под действием высокого напряжения в лампе происходит движение электронов. Столкновение электронов с атомами ртути образует невидимое ультрафиолетовое излучение, которое, проходя через люминофор, преобразуется в видимый свет. Электронный блок обеспечивает зажигание и дальнейшее горение лампы, благодаря ему энергосберегающая лампа зажигается без мерцания и работает без мигания, свойственного обычным люминесцентным лампам.
Подбирая соответствующие виды люминофора, можно изменять цветовые характеристики ламп, т.е. создавать белый свет с различными световыми нюансами для различных световых решений.
Лампа состоит из трех основных компонентов:
- цоколя,
- люминесцентной лампы
- и электронного блока.
Цоколь (как и у обычной лампочки) предназначен для подключения лампы к сети. Для разных видов цоколя используют следующие обозначения:
- Е14 –«миньон»;
- Е27 – «стандартный»;
- Е40 «для промышленных светильников и т.д.»
Что такое цветовая температура?
Энергосберегающие лампы могут иметь разную цветовую температуру, которая определяет цвет горения лампы:
- Y — 2700 К – теплый (желтый) свет;
- N — 4000 К – нейтральный (дневной) свет;
- W — 6400 К – холодный (белый) свет.
Цветовая температура измеряется градусами по шкале Кельвина:
- чем она ниже, тем ближе цвет к красному;
- чем выше — тем ближе к синему.
Таким образом, потребитель получает возможность любого цветового решения интерьера. Так, например, если в комнате нет естественного освещения, то лучше использовать лампы дневного света, с ними комната будет казаться светлее. От качества люминофора также зависит цветопередача (достоверность цветопередачи лампы показывает, насколько естественно передается цвет предметов в свете этой лампы).
Индекс цветопередачи — относительная величина, определяющая, насколько естественно передаются цвета предметов в свете той или иной лампы.
Цветопередающие свойства ламп зависят от характера спектра их излучения. Индекс цветопередачи (Ra) эталонного источника света принят за 100 (это обычная лампа накаливания, галогеновая лампа). У энергосберегающей лампы индекс Ra составляет 80 и более единиц.
Комфортный для человеческого зрения диапазон цветопередачи составляет 80-100 Ra.
Статья предоставлена компанией ООО «100 Ватт»
Энергосберегающие лампы: устройство и принцип действия
Энергосберегающие лампочки (ЭСЛ) прочно вошли в обиход современных потребителей, так как они имеют массу преимуществ перед устаревшими лампами накаливания. Прежде всего, они позволяют экономить электроэнергию за счет меньшей мощности, при этом светоотдача будет в 4-5 раз больше, чем у «лампочки Ильича». Осветительные приборы данного типа являются разновидностью линейных люминесцентных ламп, но они более совершенны технически и имеют компактную для установки в светильники форму. Рассмотрим, как они устроены и как работают.
Содержание статьи
Из чего состоит ЭСЛ
Устройство энергосберегающей лампы довольно простое. Она состоит из двух основных частей: стеклянной колбы и корпуса. Эти элементы соединены между собой специальными проводами, которые наматываются к четырем штырькам, расположенным попарно на краях платы. В некоторых моделях они могут быть припаяны. В корпусе установлена электронная схема, еще ее называют балластом.
Отличительной особенностью компактных люминесцентных осветительных приборов является то, что они уже имеют электронный пускорегулирующий аппарат, его не придется подключать отдельно.
Корпус, в который умещена вся электроника, может быть выполнен из неплавкой пластмассы или керамики. Он заканчивается цоколем или штырьками, при помощи которых лампочку можно вкрутить в патрон или светильник. Современные ЭСЛ адаптированы к российским пользователям, они имеют такие цоколи:
- Е27 (стандартный цоколь Эдисона диаметром в 27 мм);
- Е14 (уменьшенный цоколь «миньон», в основном встречается в люстрах, светильниках, бра);
- Е40 (большой цоколь диаметром в 40 мм, который чаще всего используется на промышленных производствах).
Чтобы понять принцип работы энергосберегающей лампы, нужно разобраться, как устроена каждая ее составляющая. Рассмотрим более подробно внутреннее строение прибора, особенности его элементов.
Стеклянная колба
Трубка энергосберегающей лампы выполнена из стекла, потому нарушить ее целостность довольно просто. Ее внутренний слой покрыт люминофором, это специальное напыление, которое отвечает за трансформацию ультрафиолетового излучения в видимый для человека свет. Колба может иметь самые различные формы:
- U-образную;
- F-образную;
- спиралевидную и многие другие.
Благодаря закручиванию газоразрядной колбы производителям удалось уменьшить размер лампы, сохранив при этом приемлемые параметры светоотдачи. Она запаяна с обеих сторон, с нее выкачан весь воздух, а внутрь закачан специальный инертный газ (аргон, ксенон, креон и т.д.) и ртуть или ее сплавы.
По краям трубки расположены спирали накаливания, они покрыты слоем оксидов, который необходим для создания термоэлектродной эмиссии.
Устройство корпуса
В самом корпусе расположена электронная схема, которая отвечает за запуск лампы и ее выключение. Пускорегулирующее устройство – это импульсный преобразователь, который из переменного напряжения в 200 Вт делает переменное напряжение в 440 Вт. Высокочастотный преобразователь в этом виде осветительных приборов обеспечивает устранение мерцания, которое возникает при работе электромагнитного дросселя, работающего на частоте 50 Гц.
Сама схема имеет помехозащитный фильтр, он необходим для устранения помех в сети электропитания, когда включаются лампочки, и напряжение становится выше стандартного.
Также важным элементом балласта является предохранитель, именно он защищает всю электронику от перегорания во время скачков напряжения. В некоторых устройствах предохранитель заменяют ограничительным резистором. У резистора есть два выхода, один соединяется с резьбовым контактом цоколя, а второй с самой платой.
Механизм действия
Энергосберегающие лампы, устройство и принцип действия которых мы рассматриваем, не дают мерцания и шума при работе, как их линейные собратья, так как схема электронного запуска уже вмонтирована в устройство. Рассмотрим, как работает осветительный прибор.
Когда преобразованное напряжение поступает на спирали накаливания, они начинают разогреваться. Благодаря наличию оксидного слоя на них, проходит термоэлектродная эмиссия. В колбе образуется большое количество электронов, которые сталкиваются с атомами ртути.
Процесс приводит к тому, что образовывается низкотемпературная амальгама ртути, которая дает ультрафиолетовое излучение. Однако человек не может воспринимать эти лучи, их превращает в видимый свет люминофор, который нанесен на внутреннюю поверхность колбы.
Стоит отметить, что катод и анод в люминесцентной лампе меняются местами. Если бы этого не происходило, то анод постоянно перегревался бы от непрерывного потока электронов, а это очень быстро разрушило бы оксидный слой спирали разогрева.
Как разобрать лампу
Энергосберегающую лампу разбирать очень просто. Все модели имеют похожее крепление. Колба соединяется с корпусом при помощи специальных защелок или приклеивается. Чтобы отделить сегменты друг от друга, нужно найти тонкий стык на пластиковой части и аккуратно вставить в него тонкую отвертку или лезвие. Далее вы увидите провода, при помощи которых схема соединяется с самой трубкой. Эти провода нужно обязательно отсоединить, иногда они просто намотаны, в таком случае, нужно будет снять обмотку. Если же провод цельный, нужно его перерезать, но только так, чтобы потом можно было соединить заново.
Разборка проводится для осмотра ламп и выяснения причин их выхода из строя. Делать это нужно предельно осторожно, чтобы не повредить трубку, так как в ней содержится ртуть, опасная для здоровья.
Детали электронной схемы в некоторых случаях можно заменить, как и спирали накала. Однако делать это должен только квалифицированный специалист, который понимает, как работает экономка, и что именно в ней сломано.
В завершение
Принцип действия энергосберегающих компактных ламп схож с принципом работы люминесцентных линейных осветительных приборов. Однако у компактной версии есть определенные преимущества. Прежде всего, в нее уже вмонтирован ЭПРА, электронный балласт оснащен качественными деталями, которые предотвращают появление мерцания и шума во время работы. Также производителям удалось значительно уменьшить размеры осветительного прибора путем загибания его в спираль или дугу.
Экономки имеют высокий КПД и позволяют потреблять меньше электроэнергии, но будьте осторожны с их применением, внутри газоразрядной трубки содержится ртуть, потому эти изделия требуют специальной утилизации.
Устройство энергосберегающей лампы. Схема и ремонт.
Схема и ремонт люминесцентных энергосберегающих ламп
В настоящее время всё большее распространение получают так называемые люминесцентные энергосберегающие лампы. В отличие от обычных люминесцентных ламп с электромагнитным балластом, в энергосберегающих лампах с электронным балластом используется специальная схема.
Благодаря этому такие лампы легко установить в патрон взамен обычной лампочки накаливания со стандартным цоколем E27 и E14. Именно о бытовых люминесцентных лампах с электронным балластом далее и пойдёт речь.
Отличительные особенности люминесцентных ламп от обычных ламп накаливания.
Люминесцентные лампы не зря называют энергосберегающими, так как их применение позволяет снизить энергопотребление на 20 – 25 % . Их спектр излучения более соответствует естественному дневному свету. В зависимости от состава применяемого люминофора можно изготавливать лампы с разным оттенком свечения, как более тёплых тонов, так и холодных. Следует отметить, что люминесцентные лампы более долговечны, чем лампы накаливания. Конечно, многое зависит от качества конструкции и технологии изготовления.
Устройство компактной люминесцентной лампы (КЛЛ).
Компактная люминесцентная лампа с электронным балластом (сокращённо КЛЛ) состоит из колбы, электронной платы и цоколя E27 (E14), с помощью которого она устанавливается в стандартном патроне.
Внутри корпуса размещается круглая печатная плата, на которой собран высокочастотный преобразователь. Преобразователь при номинальной нагрузке имеет частоту 40 – 60 кГц . В результате того, что используется довольно высокая частота преобразования, устраняется “моргание”, свойственное люминесцентным лампам с электромагнитным балластом (на основе дросселя), которые работают на частоте электросети 50 Гц. Принципиальная схема КЛЛ показана на рисунке.
По данной принципиальной схеме собираются в основном достаточно дешёвые модели, к примеру, выпускаемые под брендом Navigator и ERA. Если вы используете компактные люминесцентные лампы, то, скорее всего они собраны по приведённой схеме. Разброс указанных на схеме значений параметров резисторов и конденсаторов реально существует. Это связано с тем, что для ламп разной мощности применяются элементы с разными параметрами. В остальном схемотехника таких ламп мало чем отличается.
Разберёмся подробнее в назначении радиоэлементов, показанных на схеме. На транзисторах VT1 и VT2 собран высокочастотный генератор. В качестве транзисторов VT1 и VT2 используются кремниевые высоковольтные n-p-n транзисторы серии MJE13003 в корпусе TO-126. Обычно на корпусе этих транзисторов указываются только цифровой индекс 13003 . Также могут применяться транзисторы MPSA42 в более миниатюрном корпусе формата TO-92 или аналогичные высоковольтные транзисторы.
Миниатюрный симметричный динистор DB3 (VS1) служит для автозапуска преобразователя в момент подачи питания. Внешне динистор DB3 выглядит как миниатюрный диод. Схема автозапуска необходима, т.к преобразователь собран по схеме с обратной связью по току и поэтому сам не запускается. В маломощных лампах динистор может отсутствовать вообще.
Диодный мост, выполненный на элементах VD1 – VD4 служит для выпрямления переменного тока. Электролитический конденсатор С2 сглаживает пульсации выпрямленного напряжения. Диодный мост и конденсатор С2 являются простейшим сетевым выпрямителем. С конденсатора C2 постоянное напряжение поступает на преобразователь. Диодный мост может выполняться как на отдельных элементах (4 диодах), либо может применяться диодная сборка.
При своей работе преобразователь генерирует высокочастотные помехи, которые нежелательны. Конденсатор С1, дроссель (катушка индуктивности) L1 и резистор R1 препятствуют распространению высокочастотных помех по электросети. В некоторых лампах, видимо из экономии 🙂 вместо L1 устанавливают проволочную перемычку. Также, во многих моделях нет предохранителя FU1, который указан на схеме. В таких случаях, разрывной резистор R1 также играет роль простейшего предохранителя. В случае неисправности электронной схемы потребляемый ток превышает определённое значение, и резистор сгорает, разрывая цепь.
Дроссель L2 обычно собран на Ш-образном ферритовом магнитопроводе и внешне выглядит как миниатюрный броневой трансформатор. На печатной плате этот дроссель занимает довольно внушительное пространство. Обмотка дросселя L2 содержит 200 – 400 витков провода диаметром 0,2 мм. Также на печатной плате можно найти трансформатор, который указан на схеме как T1. Трансформатор T1 собран на кольцевом магнитопроводе с наружным диаметром около 10 мм. На трансформаторе намотаны 3 обмотки монтажным или обмоточным проводом диаметром 0,3 – 0,4 мм. Число витков каждой обмотки колеблется от 2 – 3 до 6 – 10.
Колба люминесцентной лампы имеет 4 вывода от 2 спиралей. Выводы спиралей подключаются к электронной плате методом холодной скрутки, т.е без пайки и прикручены на жёсткие проволочные штыри, которые впаяны в плату. В лампах малой мощности, имеющих малые габариты, выводы спиралей запаиваются непосредственно в электронную плату.
Ремонт бытовых люминесцентных ламп с электронным балластом.
Производители компактных люминесцентных ламп заявляют, что их ресурс в несколько раз больше, чем обычных ламп накаливания. Но, несмотря на это бытовые люминесцентные лампы с электронным балластом выходят из строя довольно часто.
Связано это с тем, что в них применяются электронные компоненты, не рассчитанные на перегрузки. Также стоит отметить высокий процент бракованных изделий и невысокое качество изготовления. По сравнению с лампами накаливания стоимость люминесцентных довольно высока, поэтому ремонт таких ламп оправдан хотя бы в личных целях. Практика показывает, что причиной выхода из строя служит в основном неисправность электронной части (преобразователя). После несложного ремонта работоспособность КЛЛ полностью восстанавливается и это позволяет сократить денежные расходы.
Перед тем, как начать рассказ о ремонте КЛЛ, затронем тему экологии и безопасности.
Опасность люминесцентных ламп и рекомендации по использованию.
Несмотря на свои положительные качества люминесцентные лампы вредны как для окружающей среды, так и для здоровья человека. Дело в том, что в колбе присутствуют пары ртути. Если её разбить, то опасные пары ртути попадут в окружающую среду и, возможно, в организм человека. Ртуть относят к веществам 1-ого класса опасности .
При повреждении колбы необходимо покинуть на 15 – 20 минут помещение и сразу же провести принудительное проветривание комнаты. Необходимо внимательно относиться к эксплуатации любых люминесцентных ламп. Следует помнить, что соединения ртути, применяемые в энергосберегающих лампах опаснее обычной металлической ртути. Ртуть способна оставаться в организме человека и наносить вред здоровью .
Кроме указанного недостатка необходимо отметить, что в спектре излучения люминесцентной лампы присутствует вредное ультрафиолетовое излучение. При длительном нахождении близко с включенной люминесцентной лампой возможно раздражение кожи, так как она чувствительна к ультрафиолету.
Наличие в колбе высокотоксичных соединений ртути является главным мотивом экологов, которые призывают сократить производство люминесцентных ламп и переходить к более безопасным светодиодным.
Разборка люминесцентной лампы с электронным балластом.
Несмотря на простоту разборки компактной люминесцентной лампы, следует быть аккуратным и не допускать разбития колбы. Как уже говорилось, внутри колбы присутствуют пары ртути, опасные для здоровья. К сожалению, прочность стеклянных колб невысока и оставляет желать лучшего.
Для того чтобы вскрыть корпус где размещена электронная схема преобразователя, необходимо острым предметом (узкой отвёрткой) разжать пластмассовую защёлку, которая скрепляет две пластмассовые части корпуса.
Далее следует отсоединить выводы спиралей от основной электронной схемы. Делать это лучше узкими плоскогубцами подхватив конец вывода провода спирали и отмотать витки с проволочных штырей. После этого стеклянную колбу лучше поместить в надёжное место, чтобы не допустить её разбития.
Оставшаяся электронная плата соединена двумя проводниками со второй частью корпуса, на которой смонтирован стандартный цоколь E27 (E14).
Восстановление работоспособности ламп с электронным балластом.
При восстановлении КЛЛ первым делом следует проверить целостность нитей накала (спиралей) внутри стеклянной колбы. Целостность нитей накала просто проверить с помощью обычного омметра. Если сопротивление нитей мало (единицы Ом), то нить исправна. Если же при замере сопротивление бесконечно велико, то нить накала перегорела и применить колбу в данном случае невозможно.
Наиболее уязвимыми компонентами электронного преобразователя, выполненного на основе уже описанной схемы (см. принципиальную схему), являются конденсаторы.
Если люминесцентная лампа не включается, то следует проверить на пробой конденсаторы C3, C4, C5. При перегрузках эти конденсаторы выходят из строя, т.к приложенное напряжение превосходит напряжение, на которое они рассчитаны. Если лампа не включается, но колба светиться в районе электродов, то возможно пробит конденсатор C5.
В таком случае преобразователь исправен, но поскольку конденсатор пробит, то в колбе не возникает разряд. Конденсатор C5 входит в колебательный контур, в котором в момент запуска возникает высоковольтный импульс, приводящий к появлению разряда. Поэтому если конденсатор пробит, то лампа не сможет нормально перейти в рабочий режим, а в районе спиралей будет наблюдаться свечение, вызываемое разогревом спиралей.
Холодный и горячий режим запуска люминесцентных ламп.
Бытовые люминесцентные лампы бывают двух типов:
С холодным запуском
С горячим запуском
Если КЛЛ загорается сразу после включения, то в ней реализован холодный запуск. Данный режим плох тем, что в таком режиме катоды лампы предварительно не прогреваются. Это может привести к перегоранию нитей накала вследствие протекания импульса тока.
Для люминесцентных ламп более предпочтителен горячий запуск. При горячем запуске лампа загорается плавно, в течение 1-3 секунд. В течение этих несколько секунд происходит разогрев нитей накала. Известно, что холодная нить накала имеет меньшее сопротивление, чем разогретая. Поэтому, при холодном запуске через нить накала проходит значительный импульс тока, который может со временем вызвать её перегорание.
Для обычных ламп накаливания холодный запуск является стандартным, поэтому многие знают, что они сгорают как раз в момент включения.
Для реализации горячего запуска в лампах с электронным балластом применяется следующая схема. Последовательно с нитями накала включается позистор (PTC — терморезистор). На принципиальной схеме этот позистор будет подключен параллельно конденсатору С5.
В момент включения в результате резонанса на конденсаторе С5, а, следовательно, и на электродах лампы возникает высокое напряжение, необходимое для её зажжения. Но в таком случае нити накала плохо прогреты. Лампа включается мгновенно. В данном случае параллельно С5 подключен позистор. В момент запуска позистор имеет низкое сопротивление и добротность контура L2C5 значительно меньше.
В результате напряжение резонанса ниже порога зажжения. В течение нескольких секунд позистор разогревается и его сопротивление увеличивается. В это же время разогреваются и нити накала. Добротность контура возрастает и, следовательно, растёт напряжение на электродах. Происходит плавный горячий запуск лампы. В рабочем режиме позистор имеет высокое сопротивление и не влияет на рабочий режим.
Нередки случаи, что выходит из строя как раз этот позистор, и лампа попросту не включается. Поэтому при ремонте ламп с балластом следует обратить на него внимание.
Довольно часто сгорает низкоомный резистор R1, который, как уже говорилось, играет роль предохранителя.
Активные элементы, такие как транзисторы VT1, VT2, диоды выпрямительного моста VD1 –VD4 также стоит проверить. Как правило, причиной их неисправности служит электрический пробой p-n переходов. Динистор VS1 и электролитический конденсатор С2 на практике редко выходят из строя.
Электрооборудование, свет, освещение
В связи с популяризацией энергосберегающих ламп возрастает потребность в развенчивании мифов об этом устройстве. Одни источники гласят о безвредности и экономичности данного прибора, а другие — о вреде для здоровья и об неэффективности энергосбережения. В данной статье попробуем разобраться как работают энергосберегающие лампы и о целесообразности покупки так называемых “экономок”.
Оглавление:
- Устройство и принцип работы энергосберегающих ламп
- Разновидности энергосберегающих ламп
- Виды люминесцентных энергосберегающих ламп
- Рекомендации по выбору энергосберегающей лампы
- Устранение основных неисправностей энергосберегающих ламп
- Энергосберегающие лампы — влияние на здоровье человека
- Энергосберегающие лампы характеристики и обзор производителей
Устройство и принцип работы энергосберегающих ламп
Принцип работы обычной энергосберегающей лампы напоминает люминесцентный светильник. Основные составляющие энергосберегающей лампы:
- пускорегулирующее устройство;
- люминесцентная колба.
Обычная энергосберегающая лампа отличается от люминесцентного светильника наличием электрического пускорегулирующего устройства.
Люминесцентные колбы бывают U-образных или спиральных форм. Внутренние стенки колбы имеют люминофоровое покрытие и состоят из двух спиралей, которые запаяны в конце трубки. При раскалении ЭСЛ происходит выход электронов на поверхность спирали. Между спиралями возникает большое напряжение и в парах ртути выделяется ультрафиолетовое излучение, которое обеспечивает процесс освещения. От количества ртути в составе люминофора зависит цвет свечения лампы. Строк эксплуатации ЭСЛ составляет от 6000 до 15000 часов.
Схема энергосберегающей лампы мощностью 11 Вт:
- помехозащитный дроссель;
- предохранитель;
- диодный мост;
- фильтрирующий конденсатор.
Разновидности энергосберегающих ламп
Некоторые источники называют энергосберегающими лампами, только люминесцентные лампы, но это неправильно. Ведь энергосберегающей лампой имеет право называться любое устройство, которое обладает хорошей светоотдачей, но при этом потребляет небольшое количество электроэнергии.
Поэтому к энергосберегающим лампам относят:
- люминесцентные лампы компактного типа;
- линейные люминесцентные лампы;
- некоторые разновидности светодиодных ламп.
Последний вариант имеет больше преимуществ, чем обычные люминесцентные лампы. Светодиодные лампы не содержат в составе ртути и других опасных для жизни человека веществ. Уровень светоотдачи светодиодных ламп намного выше, а механическая прочность обеспечивает долгую и бесперебойную работу такого устройства.
По составу определяется температура энергосберегающих ламп, а, соответственно, и цвет, который излучает обычная ЭСЛ. Для получения мягкого белого цвета выбирают лампу 2700 К (измерение по шкале Кельвина), лампа 4200 К — обладает мягким белым цветом, а 6400 К — излучает холодный белый оттенок.
Виды люминесцентных энергосберегающих ламп
По типу устройства выделяют люминесцентные лампы:
- с электромагнитным дросселем;
- с электрическим дросселем.
Второй вариант отличается бесшумностью и лучшим качеством работы.
По размерам цоколя выделяют:
- Е14 имеет резьбовое отверстие 1,4 см и устанавливаются в уменьшенные бытовые патроны;
- Е27- 2,7 см подходит для установки в стандартные патроны;
- Е40- 4,0 см отличаются встроенным электронным балластом.
Рекомендации по выбору энергосберегающей лампы
Энергосберегающие лампы имеют международную маркировку, которая характеризует яркость света, излучаемого лампой. Чтобы узнать показатель цветопередачи, первую цифру маркировки умножьте на 10. Интервал показателя от 60 до 100.
Вторая и третья цифры маркировки, это температура по шкале Кельвина, разделенная на 100. Например, покупая лампу с индексом маркировки 827, необходимо 8*10, а 27*100. Получается показатель цветопередачи 80, а температура и цвет — 2700.
Для освещения метро, магазинов, общественных помещений используют энергосберегающие лампы с маркировкой от 2700 до 3500 К.
Наилучший вариант освещения жилого помещения обеспечивает ЭСЛ с маркировкой 830, 840.
Чтобы увеличить строк службы энергосберегающих ламп необходимо придерживаться некоторых правил:
- избегать колебаний напряжения, по возможности установить стабилизаторы напряжения;
- ограничить количество включений и выключений лампы.
Устранение основных неисправностей энергосберегающих ламп
Причины появления неисправностей в работе энергосберегающей лампы:
- использование некачественных компонентов при изготовлении или при ремонте лампы;
- использование деталей, которые не подходят под существующее напряжение;
- постоянная работа лампы приводит к перегреву корпуса и выходу лампы из строя, так как в колбе отсутствует вентиляция, все детали быстро нагреваются.
При прекращении работы энергосберегающей лампы первым делом проверьте целостность ламповых нитей. Потемнения стекла энергосберегающей лампы является главным признаком того, что нить оборвалась. Для восстановления такой лампы воспользуйтесь резистором 10 Ом 0,25 Вт, удалите диод, который шунтирует данную спираль. После этой процедуры, при запуске лампы на протяжении 10 секунд будет наблюдаться мерцание.
В следствии нарушений теплового режима выходят из строя транзисторы.Чтобы осуществить замену транзисторов, сначала выпаяйте данные элементы, а затем установите новые. При выборе транзисторов ориентируйтесь на серию 13003.
Наименование транзисторов в зависимости от мощности энергосберегающих ламп:
- от 1 до 9 Вт — 13001 ТО-92;
- 9 Вт — 13002 ТО-92;
- от 15 Вт до 20 Вт — 13003 ТО-126;
- от 25 Вт до 40 Вт — 13005 ТО-220;
- от 40 Вт до 65 Вт — 13007 ТО-200;
- 85 Вт — 13009 ТО-220;
Для устранения мерцания энергосберегающей лампы нужно проверить конденсатор. В следствии повышенного напряжения возникает пробой. В таком случае замените конденсатор.
Если быстро перегорают энергосберегающие лампы, значит отсутствует вентиляция, например, в точечных светильниках или присутствуют резкие скачки напряжения. Для этого следует установить стабилизатор.
Энергосберегающие лампы — влияние на здоровье человека
Перед тем как разобрать вопрос о влиянии энергосберегающих ламп на здоровье человека, рассмотрим основные преимущества и недостатки данного устройства.
- длительный срок использования;
- использование небольшого количества электроэнергии;
- гарантия, которая позволяет произвести замену лампы;
- наличие стабильного светового потока;
- использование при высоких ограничениях температурного режима;
- возможность выбора типа освещения.
- высокая стоимость, по сравнению с обычными лампочками;
- при механическом повреждении возможно проникновение ртути в окружающую среду;
- довольно большая цокольная часть, которая не вписывается во все светильники;
- научно доказанный вред энергосберегающих ламп на здоровье человека.
При проведении исследований энергосберегающих ламп было выявлено, что данные устройства обладают высоким уровнем электромагнитного и ультрафиолетового излучения, поэтому рекомендуется устанавливать энергосберегающие лампы на расстоянии 300 см от человека. Не рекомендуется устанавливать такие лампы в светильники или приборы, вблизи которых человек постоянно находится. Последствия электромагнитного излучения:
- обострение хронических болезней;
- влияние на нервную и сердечно-сосудистую систему;
- ускорение расхода ресурсных сил организма.
Большое количество включенных энергосберегающих ламп наносит вред не только здоровью человека, но и негативно влияет на электротехническую безопасность.
Содержание ртути в одной лампочке способно с легкостью отравить большое количество людей, поэтому рекомендуется сдавать данные устройства на утилизацию в специальные заведения. Продолжительное влияние минимальных паров ртути также негативно влияет на здоровье человека и приводит к микромеркуализму — отравлению ртутью, сопровождающееся повышенной усталостью, сонливостью, апатией и другими симптомами.
Для людей, чувствительных к ультрафиолету, такие лампы представляют большую опасность. Ведь через колбу выходит наружу небольшое количество ультрафиолета, который вызывает кожные мутации. Ультрафиолетовый свет энергосберегающих ламп представляет наибольшую опасность для глаз, поэтому не используйте энергосберегающие лампы на расстоянии, которое превышает 200-300 см.
Энергосберегающие лампы характеристики и обзор производителей
Энергосберегающие лампы купить возможно в любом магазине электроники или на строительном рынке. Среди разнообразия торговых марок, изготавливающих ЭСЛ, тяжело не растеряться, поэтому рассмотрим основных производителей энергосберегающих ламп:
1. OSRAM (Германия) — энергосберегающие лампы, которые имеют различные формы: спирали, шара, круга, свечи, цоколя и более сложные комбинации.
Разновидности энергосберегающих ламп OSRAM:
- интегрированного типа;
- неинтегрированного типа.
Первый вариант запускается автоматически, а второй — требует наличия специального пускового устройства в патроне светильника.
У данного производителя энергосберегающих ламп отзывы только положительного характера. Лампы не перегорают и исполняют функции в течении длительного времени.
2. UNIEL (Россия) — представляет три серии энергосберегающих ламп:
- Премиум — ЭСЛ имеют улучшенные характеристики и длительный срок службы;
- Промо — имеют высокий световой поток и первый класс энергопотребления;
- Стандарт — лампы имеют форму открытой спирали, экономят 80 % электроэнергии.
Разнообразие форм: спираль, груша, полуспираль, точечные лампы, рефлекторы, свечи, линейные лампы, модульные, прожекторные и ультрафиолетовые лампы.
3. Philips (Голландия) — представляет большой выбор энергосберегающих ламп, которые отличаются разнообразием форм, цветов и сферы применения.
- высокая энергоэффективность;
- разнообразие цветовых температур;
- отсутствие нагревания колбы.
4. Camelion (Гонконг) — энергосберегающие лампы, которые имеют ряд преимуществ:
- срок службы в восемь раз выше, чем у обычной лампочки;
- использование как в открытых, так и в закрытых светильниках;
- при включении лампы отсутствует мерцание;
- излучение мягкого света, который не ослепляет глаза;
- термоустойчивость от -25 до +50 градусов;
- широкий выбор мощностей и моделей ламп;
- три серии: Классик, ПРО и Эко.
5. Космос (Россия) — представляет энергосберегающие лампы, которые излучают максимальный свет при минимальных размерах.
- спальня или гостиная для создания романтической атмосферы;
- лампы, выполнены в необычной декоративной форме, которая позволяет использовать их без светильника;
- жилые или промышленные помещения;
- освещение декоративных потолков или выставочных центров.
6. Wolta (Германия) — используются для освещения рабочих мест или жилых помещений.
- компактные модели;
- широкий спектр применения;
- экономичность;
- высокая надежность и долговечность.
7. Vito (Турция) — энергосберегающие лампы, которые представлены сериями Spiral и Vito T8.
- эксплуатация в течении 8000 часов;
- спиралевидная форма ламп;
- цвета: от теплого белого до холодного синего;
- крепкий корпус, для предотвращения механических повреждений.
8. General Electric (США) — представляет разнообразные модели ЭСЛ.
- линейка энергосберегающих ламп Link — представляет собой “умные лампы”, которые управляются при помощи смартфона. Стоимость таких устройств составляет от 25 до 60 $;
- компания создала вакуумные лампы накаливания, которые актуальны уже более 30-ти лет.
Принцип работы энергосберегающей лампочки
База самоделок для всех!
- Главная
- Самоделки
- Дизайнерские идеи
- Видео самоделки
- Книги и журналы
- Партнеры
- Форум
- Самоделки для дачи
- Приспособления
- Автосамоделки
- Электронные самоделки
- Самоделки для дома
- Альтернативная энергетика
- Мебель своими руками
- Строительство и ремонт
- Для рыбалки и охоты
- Поделки и рукоделие
- Самоделки из материала
- Самоделки для ПК
- Cуперсамоделки
- Другие самоделки
Энергосберегающие лампы. Принцип работы, устройство и ремонт своими руками
По принципу работы энергосберегающия лампа (ЭСЛ) аналогична светильнику с обычной люминисцентной лампой. Как и светильник сберегающая лампа состоит из пускорегулирующего устройства и люминисцентной лампы (колбы). Основное отличие ЭСЛ от обычной люминисцентной лампы в том, что ЭСЛ имеет встроенное электронное пускорегулирующее устройство.
Колба по форме может быть различной формы (U-образной, спиральной и т.п.). Стенки колбы покрыты изнутри люминофором, а на концах трубки запаяны две спирали. Раскаляясь, спирали обеспечивают эмиссию электронов на их поверхности. Под действием высокого напряжения, приложенного между спиралями, в колбе возникает тлеющий разряд в парах ртути. При этом атомы ртути излучают ультрафиолетовое излучение. Под действием УФ люминофор на стенках колбы излучает видимый свет (люминисценция). Цвет свечения лампы зависит от химического состава люминофора.
Далее будет рассмотрен пример ремонта лампы фирмы Uniel, которая изображена на рисунке 1.
Рисунок 1 — Энергосберегающая лампа Uniel (32 Вт).
В большинстве случаев для вскрытия корпуса необходимо аккуратно подковырнуть отверткой или ножом место стыковки двух частей корпуса, при этом стараясь не повредить плату и колбу. После вскрытия следует отмотать оголенные медные провода колбы от штырьков на плате. После чего можно измерить сопротивление спиралей, которое должно быть примерно 8-10 Ом в холодном состоянии. Если одна из спиралей оборвана, следует заменить колбу. Если другой колбы нет, то можно закоротить между собой штырьки на плате, к которым присоединялась данная спираль. Если нарушена герметичность колбы, то ремонту она не подлежит. Если спирали целы, то причина неисправности скорее всего в плате пускорегулирующего устройства. Плату можно взять от другой лампы, а можно попытаться отремонтировать.
Схема 32-Ваттной лампы Uniel ESL-S12-32 срисована с платы и представлена на рисунке 2.
Рисунок 2 — Схема энергосберегающей лампы Uniel
Схема работает по принципу автогенератора. Положительная обратная связь организована трансформатором (на плате он не обозначен) на ферритовом кольце с тремя «цветными» обмотками. Генератор работает на резонансной частоте контура, образованного конденсаторами С4, C5, и индуктивностями резонансного дросселя и трансформатора обратной связи. Ток в этом контуре поддерживает накал спиралей, а напряжение, снимаемое с конденсатора C5 поддерживает тлеющий разряд в лампе.
По такому принципу работает большинство ЭСЛ и схемы их плат похожи между собой. В зависимости от мощности лампы, варьируются номиналы элементов и размеры плат. В лампах меньшей мощности могут отсутствовать некоторые защитные цепочки. На рисунке 3 изображена плата электронного пускорегулирующего устройства ЭСЛ.
Рисунок 3 — Плата энергосберегающей лампы Uniel
На практике наиболее частыми неисправностями являются пробои транзисторов К1/К2. При этом перегорает предохранитель, обрываются резисторы R5/R6, и иногда обрываются резисторы в цепях баз R3/R4. Часто встречаются вздутые электролиты C2, при этом лампа может работать, но с мерцанием и светиться немного тусклее. Если при запуске слышен писк или звон и лампа не горит, дело может быть в обрыве одной из управляющих обмоток трансформатора ОС, либо одного из резисторов в базах. При пробоях ключей возможно, что будет пробит динистор DB3, генерации при этом не будет.
Ремонт платы обычно заключается в следующем:
- при пробое одного или двух транзисторов, заменить оба на аналогичные;
- при обрывах резисторов R5/R6, заменить на аналогичные, либо заменить перемычками;
- в случае обрывов резисторов R3/R4 в базах, заменить на резисторы тех же номиналов;
- предохранитель заменить на аналогичный;
- если вздут электролит C2, заменить на аналогичный, рассчитанный на напряжение 400В;
- если пробит динистор DB3, следует заменить его на соответствующий.
Не смотря на то, что рассмотрена одна лампа, методика ремонта применима к большинству энергосберегающих ламп (если, конечно, они не светодиодные), так как принцип работы у них одинаковый.
На момент написания статьи, все лампы (около 8 шт.) рассмотренного типа после ремонта работают более года без замечаний.