Astro-nn.ru

Стройка и ремонт
9 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Какое устройство вырабатывает электрический ток

Трансформаторы

Генераторы, которые стоят на электростанциях, вырабатывают очень мощное ЭДС. На практике такое напряжения редко когда бывает нужно. Поэтому такое напряжение необходимо преобразовывать.

Для преобразования напряжения используются устройства, называются трансформаторами. Трансформаторы могут как и повысить напряжение, так и понизить его. Существуют также стабилизирующие трансформаторы, которые не повышают и не понижают напряжение.

Рассмотрим устройство трансформатора на следующем рисунке.

Устройство и работа трансформатора

Трансформатор состоит из двух катушек с проволочными обмотками. Эти катушки надевают на стальной сердечник. Сердечник не является монолитным, а собирается из тонких пластин.

Одна из обмоток называется первичной. К этой обмотке подсоединяют переменное напряжение, которое идет от генератора, и которое нужно преобразовать. Другая обмотка называется вторичной. К ней подсоединяют нагрузку. Нагрузка это все приборы и устройства, которые потребляют энергию.

На следующем рисунке представлено условное обозначение трансформатора.

Работа трансформатора основана на явлении электромагнитной индукции. Когда через первичную обмотку проходит переменный ток, в сердечнике возникает переменный магнитный поток. А так как сердечник общий, магнитный поток индуцирует ток и в другой катушке.

В первичной обмотке трансформатора имеется N1 витков, её полная ЭДС индукции равняется e1 = N1e, где е – мгновенное значение ЭДС индукции во всех витках. е одинаково для всех витков обоих катушек.

Во вторичной обмотке имеется N2 витков. В ней индуцируется ЭДС e2 = N2 e.

Сопротивлением обмоток пренебрегаем. Следовательно, значения ЭДС индукции и напряжения будут приблизительно равны по модулю: |u1|≈|e1|.

При разомкнутой цепи вторичной обмотки в ней не идет ток, следовательно: |u2|=|e2|.

Мгновенные значения ЭДС e1, e2 колеблются в одной фазе. Их отношение можно заменить отношением значений действующих ЭДС: E1 и E2. А отношение мгновенных значений напряжения заменим действующими значениями напряжения. Получим:

К – коэффициент трансформации. При K>0 трансформатор повышает напряжение, при K

Это магнитный поток будет уменьшать изменение магнитного потока сердечника. Для нагруженного трансформатора будет справедлива следующая формула: U1/U2≈ I2/I1.

То есть при повышении напряжения в несколько раз, мы во столько же раз уменьшим силу тока.

1. Какое устройство вырабатывает электрический ток? Конденсатор
Трансформатор
Генератор
Выпрямитель
2. Как называется статичная часть генератора?
Скользящие контакты
Ротор
Щетки
Статор
3. По какой формуле определяют коэффициент трансформации
K=e1/e2
K=N2/N1
4. Роторы ГЭС приводятся в действие с помощью.

1. u041au0430u043au043eu0435 u0443u0441u0442u0440u043eu0439u0441u0442u0432u043e u0432u044bu0440u0430u0431u0430u0442u044bu0432u0430u0435u0442 u044du043bu0435u043au0442u0440u0438u0447u0435u0441u043au0438u0439 u0442u043eu043a?

2. u041au0430u043a u043du0430u0437u044bu0432u0430u0435u0442u0441u044f u0441u0442u0430u0442u0438u0447u043du0430u044f u0447u0430u0441u0442u044c u0433u0435u043du0435u0440u0430u0442u043eu0440u0430?

3. u041fu043e u043au0430u043au043eu0439 u0444u043eu0440u043cu0443u043bu0435 u043eu043fu0440u0435u0434u0435u043bu044fu044eu0442 u043au043eu044du0444u0444u0438u0446u0438u0435u043du0442 u0442u0440u0430u043du0441u0444u043eu0440u043cu0430u0446u0438u0438

K=N2/N1 (u044du0442u043e u0438u0437 u0434u0430u043du043du044bu0445 u043eu0442u0432u0435u0442u043eu0432). u0412u043eu043eu0431u0449u0435-u0442u043e u0444u043eu0440u043cu0443u043bu0430 u0432u044bu0433u043bu044fu0434u0438u0442 u0442u0430u043a K=N1/N2, u0433u0434u0435 N1 u0447u0438u0441u043bu043e u0432u0438u0442u043au043eu0432 u043fu0435u0440u0432u0438u0447u043du043eu0439 u043eu0431u043cu043eu0442u043au0438 (u043au043eu0442u043eu0440u0430u044f u0431u043bu0438u0436u0435 u043a u0441u0435u0440u0434u0435u0447u043du0438u043au0443), N2 u0447u0438u0441u043bu043e u0432u0438u0442u043au043eu0432 u0432u0442u043eu0440u0438u0447u043du043eu0439 u043eu0431u043cu043eu0442u043au0438, u0435u0441u043bu0438 u041a (u0432u044bu0441u0447u0438u0442u0430u043du043du043eu0435 u043fu043e u0432u0442u043eu0440u043eu0439 u0444u043eu0440u043cu0443u043bu0435) u043cu0435u043du044cu0448u0435 u0435u0434u0438u043du0438u0446u044b, u0442u043e u044du0442u043e u043fu043eu0432u044bu0448u0430u044eu0449u0438u0439 u0442u0440u0430u043du0441u0444u043eu0440u043cu0430u0442u043eu0440, u0435u0441u043bu0438 u0431u043eu043bu044cu0448u0435, u0442u043e u0442u0440u0430u043du0441u0444u043eu0440u043cu0430u0442u043eu0440 u043fu043eu043du0438u0436u0430u044eu0449u0438u0439. u041fu043e u0412u0430u0448u0435u0439 u0444u043eu0440u043cu0443u043bu0435 u043du0430u043eu0431u043eu0440u043eu0442.

4. u0420u043eu0442u043eu0440u044b u0413u042du0421 u043fu0440u0438u0432u043eu0434u044fu0442u0441u044f u0432 u0434u0435u0439u0441u0442u0432u0438u0435 u0441 u043fu043eu043cu043eu0449u044cu044e.

u0413u042du0421 u044du0442u043e u0413u0438u0434u0440u043eu042du043bu0435u043au0442u0440u043eu0421u0442u0430u043du0446u0438u044f u0441u043eu043eu0442u0432u0435u0442u0441u0442u0432u0435u043du043du043e u0440u043eu0442u043eu0440u044b u0442u0430u043au043eu0439 u044du043bu0435u043au0442u0440u043eu0441u0442u0430u043du0446u0438u0438 u043fu0440u0438u0432u043eu0434u044fu0442u0441u044f u0432 u0434u0435u0439u0441u0442u0432u0438u0435 u0441 u043fu043eu043cu043eu0449u044cu044e u0432u043eu0434u044b. u0412u043eu0434u0430 u043au0440u0443u0442u0438u0442 u0442u0443u0440u0431u0438u043du0443, u0442u0443u0440u0431u0438u043du0430 u043au0440u0443u0442u0438u0442 u0441u043eu0431u0441u0442u0432u0435u043du043du043e u0440u043eu0442u043eu0440 u0433u0435u043du0435u0440u0430u0442u043eu0440u0430. «>]» data-test=»answer-box-list»>

Электростанции: типы и особенности

Выработка электричества распространенным способом происходит в результате преобразования механического усилия: вал генератора приводится в движение, что и создает электрический заряд. На электростанциях устанавливают генераторные установки, производительность которых зависит от параметров вращения и технической конструкции. Принципиально иной способ получения электрозаряда используется в солнечных панелях, которые поглощают световые лучи и преобразуют энергию солнца в напряжение.

Откуда берется электричество?

Электростанции подразделяются по источнику первичной энергии, которая участвует в производстве электроэнергии. Для этой цели человек приспособил природные силы и разработал технологии передачи энергетического потенциала горючих соединений в проводные коммуникации в виде электрического тока. На службу техническому прогрессу призваны: реки, ветер, океанские приливы и отливы, солнечный свет, а также — топливные, невозобновляемые ресурсы.

В крупных промышленных масштабах электричество получают на электростанциях следующих типов:

  • гидроэлектростанции (ГРЭС);
  • тепловые (ТЭС, в том числе, ТЭЦ — теплоэлектроцентрали);
  • атомные (АЭС или АТЭЦ).

Благодаря развитию технологий возрастает количество электростанций, использующих альтернативные источники энергии. К ним относятся приливные, ветровые, солнечные, геотермальные электрогенерирующие объекты. В отдельную категорию можно выделить комплексные автономные решения, состоящие из нескольких газотурбинных или дизельных генераторов, которые объедены для обеспечения высокой производительности.

Автономные электростанции

Генераторные комплексы автономного типа применяют для резервного электроснабжения, а также в ситуациях, когда прокладка высоковольтной ЛЭП затруднена природными условиями и оказывается нерентабельной. Необходимость установки мобильных электростанций возникает рядом с месторождениями полезных ископаемых, на производственных или строительных участках, значительно удаленных от проложенных электросетей.

Выработка электричества генераторными комплексами (производительность) зависит от количества генерирующих модулей, подключенных в единую цепь, и, по сути, ограничена только экономическими издержками. По сравнению с производством электроэнергии в крупных промышленных масштабах на АЭС, ТЭС, ГРЭС стоимость одного «дизельного» или «газотурбинного» мегавата обходится дороже. Поэтому при наличии подходящих условий инженеры-проектировщики и архитекторы производственных предприятий, населенных пунктов, жилых массивов ориентируются на подключение к подаче магистрального напряжения.

Производство электроэнергии в крупных масштабах

В двадцатом веке наибольший процент выработки электрической энергии приходился на ТЭС и ТЭЦ. С развитием атомной энергетики общемировая доля производства электроэнергии на АЭС превысила 10%. Строительство ГРЭС ограничено несколькими природными факторами, и поэтому гидроспособ преобразования используется локально, с привязкой к равнинным рекам. Полностью экологичное электричество или «зеленые мегаватты» — продукция объектов альтернативной выработки, — в 21-ом веке набирает популярность, что связано с заботой об окружающей среде и со стремлением рационально расходовать природные ресурсы.

Тепловые электростанции стали популярными по причине сравнительно небольших затрат для выхода на проектную мощность. Строительство ТЭС не связано с созданием плотин и монтажом ядерных реакторов. Для преобразования энергетического потенциала углеводородов в электроэнергию необходима технологическая система, состоящая из паровых котлов, паропровода и турбогенераторов. Масштабы и схемы могут быть разными, в том числе, в комбинации с теплоцентралью, но основной принцип работы ТЭС неизменен для всех случаев: тепло от сгорания через промежуточное парообразование преобразуется в электрическое напряжение.

Гидроэлектростанции в отличие от тепловых не требуют топлива, удаления твердых отходов (угольные, торфяные, сланцевые ТЭС) и не загрязняют атмосферу продуктами сгорания. Но на широтах с холодными зимами и замерзающими водоемами производительность ГРЭС зависит от сезонных факторов. Затраты, вложенные в строительство плотин, окупаются продолжительное время, а уничтожение пахотных земель в результате затопления требует тщательной оценки того, насколько целесообразно возводить гидротехнические сооружения в определенном регионе.

Атомные электростанции преобразуют энергию ядерного распада в электричество. Тепло от реактора поглощает теплоноситель первичного контура с нагревом через парогенератор воды во втором контурном цикле, откуда пар подается на генераторные турбины — и вращает их. Сложность процесса и опасность, связанная с аварийными ситуациями, ограничивают распространение данного виды выработки. Работа реактора должна контролироваться современными технологиями, а отработанное топливо — утилизироваться с соблюдением защитных мер.

26 января 2018

Поделитесь ссылкой со своими друзьями:

Какое устройство вырабатывает электрический ток

Производство и передача электроэнергии. Трансформатор.

1. Какое устройство вырабатывает электрический ток?

2. Как называется вращающаяся часть генератора?

3. Чем отличается в генераторе ротор от якоря?

Ротор и якорь — это одно и то же.

4. В индукционных генераторах происходит превращение.

. механической энергии в электрическую.

5. В электродвигателях происходит превращение.

. электрической энергии в механическую.

6. В нагревательных элементах происходит превращение.

. электрической энергии во внутреннюю.

7. В колебательном контуре происходит превращение.

. . энергии электрического поля в энергию магнитного поля.

Читать еще:  Всепогодный теннисный стол своими руками: чертежи, размеры

8. В МГД-генераторах происходит превращение.

. . внутренней энергии плазмы в электрическую.

9. В индукционном генераторе индуктор и якорь имеют железные сердечники для.

. увеличения потока магнитной индукции, а, следовательно, и амплитуды индуцируемой ЭДС.

10. Зазор между сердечниками ротора и статора делают как можно меньше для.

. увеличения потока магнитной индукции, а, следовательно, и амплитуды индуцируемой ЭДС.

11. Скользящие контакты на роторах промышленных генераторов служат для.

. подвода тока к ротору или отвода его во внешнюю цепь.

12. Сердечники генераторов набирают из тонких, изолированных друг от друга пластин для.

. ослабления паразитных вихревых токов (токов Фуко).

13. В технике и в быту чаще используется.

14. Для питания большинства радиосхем требуется.

15. . имеет те преимущества, что напряжение и силу тока можно почти без потерь мощности преобразовывать в широких пределах.

16. Для питания ротора генератора переменного тока используют.

17. У повышающего трансформатора.

18. Для уменьшения потерь мощности в линиях электропередачи.

. уменьшают силу тока, увеличивая напряжение.

19. Если увеличивать частоту переменного тока, то сопротивление цепи, содержащей конденсатор.

20. Если увеличивать частоту переменного тока, то сопротивление цепи, содержащей катушку индуктивности. . увеличивается.

Принцип работы и устройство современного автомобильного генератора

В стандартном исполнении в автомобиле существуют два источника питания – генератор и аккумулятор. Разница между ними заключается в том, что АКБ накапливает электроэнергию, а автомобильный генератор ее вырабатывает. То есть это устройство преобразует механическую энергию от двигателя в электрическую с целью дальнейшего питания всех потребителей и заряда аккумулятора.

  1. Функции генератора
  2. Виды генераторов
  3. Устройство генератора переменного тока
  4. Корпус
  5. Привод
  6. Ротор
  7. Статор
  8. Выпрямительный блок или диодный мост
  9. Регулятор напряжения
  10. Щеточный узел
  11. Принцип работы
  12. Параметры генератора
  13. Мощность автогенератора
  14. Основные неисправности
  15. Механические неисправности
  16. Электрические неисправности

Функции генератора

При запуске двигателя пусковой ток на стартер подается от аккумулятора. Но сам аккумулятор не вырабатывает энергию, а только ее накапливает и потом отдает. Если использовать для питания всех потребителей только АКБ, то она быстро разрядится. Автомобильный генератор производит электроэнергию, заряжает АКБ и питает бортовую сеть автомобиля во время работы двигателя (при достижении им определенных оборотов вращения коленчатого вала).

Автомобильный генератор

Генератор начинает вырабатывать электрический ток начиная с частоты вращения холостого хода, однако, на оптимальный режим работы он выходит при достижении двигателем 1600-1800 об/мин и более.

Виды генераторов

Выделяют два вида автомобильных генераторов:

  • постоянного тока;
  • переменного тока.

Первый вид генераторов в настоящее время уже не используется. Такие устройства устанавливались на старых моделях автомобилей (ГАЗ-51, Победа и др.). Они имеют много недостатков, такие как:

  • малая мощность и эффективность;
  • необходимость в постоянном контроле и обслуживании;
  • небольшой срок службы.

Сейчас применяются генераторы переменного тока. Главное их отличие в том, что вне зависимости от режима работы двигателя автомобильную сеть питает постоянный ток. Это достигается благодаря полупроводниковому выпрямителю.

Устройство генератора переменного тока

Работу любого генератора можно сравнить с электродвигателем, который работает в обратном режиме, то есть не потребляет, а вырабатывает ток. По типу конструкции современные генераторы делятся на два вида: компактный и традиционный. Они имеют общее устройство, но различаются в компоновке корпуса, вентилятора, выпрямительного узла и приводного шкива. Также у современных устройств имеется три фазы.

Устройство генератора

Генератор состоит из следующих основных элементов:

  • привод со шкивом, подшипниками и валом;
  • ротор с обмоткой возбуждения и контактными кольцами;
  • статор с сердечником и обмоткой;
  • корпус, состоящий из двух крышек;
  • регулятор напряжения;
  • выпрямительный блок или диодный мост;
  • щеточный узел.

Разберем каждый элемент устройства отдельно и подробно.

Корпус

В корпусе находятся все основные элементы генератора. Он состоит из двух крышек (передняя и задняя). Крышки соединяются между собой болтами. Для изготовления крышек используют легкие сплавы алюминия, которые не намагничиваются и хорошо отводят тепло. В крышках есть вентиляционные отверстия и крепежные фланцы.

В задней крышке установлен диодный мост и щеткодержатель со щетками. Также в задней крышке расположен выводной контакт, по которому ток поступает от генератора.

Привод

Вращение от коленчатого вала передается на шкив генератора и вращает ротор. Частота вращения шкива больше частоты вращения коленвала в 2-3 раза. Крутящий момент от двигателя передается посредством ременной передачи. Могут использоваться поликлиновый и клиновый ремень в зависимости от конструкции. Поликлиновый ремень считается более универсальным и современным.

Ротор

На валу ротора находится обмотка возбуждения, которая создает магнитное поле и, по сути, представляет собой обычный электромагнит. Обмотка находится между двух полюсных половин (сердечников), необходимых для регулирования и направления магнитного поля. Каждая из половин имеет по шесть треугольных выступов, называемых клювами. Также на валу ротора расположены два медных контактных кольца. Иногда они изготавливаются из стали или латуни. Через контактные кольца на обмотку возбуждения поступает питание от аккумулятора. Контакты обмотки припаяны к кольцам.

Ротор генератора

На переднем конце вала ротора находится приводной шкив, а на другом крепится крыльчатка вентилятора. Их может быть две. Они нужны для охлаждения внутренних деталей генератора. Также на обоих концах ротора установлены необслуживаемые шариковые подшипники.

Статор

Конструктивно статор имеет форму кольца. Это основная деталь, служащая для создания переменного тока от магнитного поля ротора. Состоит из обмотки и сердечника. В свою очередь, сердечник состоит из соединённых стальных пластин, в которых образуются 36 пазов. В пазы навивается три обмотки, которые образуют трехфазное соединение. Может быть две схемы соединения обмоток: «звезда» и «треугольник». По схеме «звезда» концы каждой из трех обмоток соединены в одной точке. По схеме «треугольник» концы обмоток выводятся отдельно.

Выпрямительный блок или диодный мост

Выпрямительный блок выполняет задачу по преобразованию переменного тока генератора в постоянный, который необходим для питания бортовой сети автомобиля. Другими словами, он выдает напряжение стабильной и одинаковой величины.

Диодный мост

Блок также называют диодным мостом, который состоит из двух радиаторных пластин (положительной и отрицательной) и диодов. На каждую фазу приходится по два диода. Сами диоды герметично вмонтированы в пластины. Диодный мост имеет форму подковы.

С обмотки статора ток поступает на диодный мост, затем «выпрямляется», и подается на выводной контакт на задней крышке.

Через диоды ток проходит только в одном направлении, при этом отсекаются токи обратной полярности. Диодный мост может находиться в корпусе генератора, а может быть вынесен за корпус. Но чаще всего он крепится на внутренней стороне задней крышки.

Регулятор напряжения

Регулятор поддерживает напряжение генератора в определенных пределах. В современных моделях применяются полупроводниковые электронные регуляторы напряжения. Они устанавливаются сверху блока щеткодержателей.

Регулятор напряжения и щеточный узел

Когда двигатель работает на больших оборотах, то напряжение на обмотке статора может доходить до 16В. Такое напряжение не должно поступать в бортовую сеть. Чтобы это исключить, регулятор напряжения, получая ток от АКБ, будет снижать его значение. Малый ток на обмотке ротора будет создавать такое же малое магнитное поле. Это значит, что на обмотке статора будет понижаться напряжение.

Щеточный узел

Щеточный узел в современных генераторах объединен с регулятором напряжения в один неразборный механизм. Он передает ток возбуждения на медные контактные кольца ротора. Это простая конструкция, которая состоит из щеткодержателя, двух графитовых щеток и прижимающих пружин.

Принцип работы

Теперь разберем подробнее работу генератора переменного тока в автомобиле. При включении зажигания, на щеточный узел подается ток от аккумуляторной батареи. Через щеточный узел он попадает на медные контактные кольца, а затем на обмотку возбуждения ротора. Напомним, что ротор, по сути, является электромагнитом, который создает магнитное поле. Коленчатый вал через шкив и ременную передачу начинает вращать ротор. Вокруг ротора расположен статор, который от вращения начинает вырабатывать переменный ток. Когда вращение ротора достигает определенной частоты, обмотка возбуждения питается от самого генератора.

Читать еще:  Проект РЗА

Через диодный мост переменный ток “выпрямляется” и преобразуется в постоянный, необходимый для питания бортовой сети. Так автомобильный генератор обеспечивает питание потребителей и подзаряжает аккумулятор. Регулятор напряжения изменяет работу обмотки возбуждения при возрастании частоты вращения ротора. Таким образом поддерживается стабильная нагрузка.

В салоне автомобиля на приборной панели есть контрольная лампа генератора, которая показывает состояние устройства. Например, лампа может загореться при обрыве ремня. Тогда питание сети будет идти только через аккумулятор. Продолжительность работы в этом случае будет зависеть от уровня заряда АКБ.

Параметры генератора

Работу генератора оценивают по нескольким параметрам:

  • номинальный ток и номинальное напряжение;
  • номинальная частота возбуждения;
  • частота самовозбуждения;
  • коэффициент полезного действия (КПД).

Номинальное напряжение для бортовой сети автомобиля от генератора 12В или 24В. Токоскоростная характеристика показывает зависимость силу тока от частоты вращения генератора.

Характеристика генератора

Напряжение генератора можно измерить мультиметром. При всех выключенных потребителях без нагрузки на холостом ходу мультиметр должен показывать напряжение в пределах 14,3В – 15,5В. Если напряжение после запуска двигателя свыше 14В, то это может говорить о разряде АКБ и зарядке его генератором. При поочередном включении потребителей (фары, подогрев, кондиционер и т.д.) напряжение уменьшается примерно на 0,2 после каждого включения. Но в итоге напряжение не должно снижаться ниже 12,8В. Если значение меньше, то аккумулятор начнет разряжаться. Если напряжение, наоборот, сильно высокое (14В и выше), то это может привести к выходу АКБ из строя. При этом на выходе самого аккумулятора напряжение должно быть в пределах 12,6В – 12,7В.

Напряжение генератора под нагрузкой может отличаться от номинальных значений 12В. После включения всех потребителей тока значение должно быть в пределах 13,5В – 14В. Если ниже, то это может указывать на неисправность устройства. Допустимым пределом считается 13В.

На картинке ниже показана подробная схема подключения генератора в автомобиле.

Схема подключения генератора

Мощность автогенератора

Если включить все энергоемкие приборы в автомобиле, то генератор может не справляться с нагрузкой и часть энергии будет отдавать аккумулятор.

Чтобы рассчитать мощность генератора достаточно воспользоваться простой формулой из школьного курса P = I * U, где Р – мощность, I – сила тока, U – напряжение.

Мы узнали, что напряжение на выходе генератора должно быть в районе 13,5В – 14,2В. Сила тока у разных моделей может отличаться. В среднем это от 80А до 140А. Возьмем среднее значение в 100А.

По формуле получаем 13,5В*100А = 1 350 Вт или 1,35 КВт. Это и есть мощность генератора, которая измеряется в Ваттах. Нужно также учитывать, что это максимальное значение, которое достигается при определенных оборотах двигателя, как правило, от 3000 об/мин и выше. На холостом ходе выдаваемая мощность равняется 75% от максимально возможной. Считается, что для автомобиля хватает 80А. Если применить более мощный автогенератор, то бортовая сеть может не справиться с нагрузкой. Нужно это учитывать. Большая мощность не всегда идет на пользу.

Основные неисправности

Устройство довольно надежное и должно работать продолжительное время, но некоторые компоненты могут выходить из строя по разным причинам. Неисправности могут иметь механический или электрический характер.

Механические неисправности

Главной возможной поломкой может быть обрыв приводного ремня. В этом случае вращение от коленвала на ротор не будет передаваться. Всю нагрузку на себя берет аккумулятор, который начнет разряжаться. Это покажет контрольная лампа в салоне автомобиля. Чтобы избежать обрыва ремня, нужно периодически проверять его состояние и натяжение.

Также может случиться простой износ графитовых щеток. В этом случае надо менять весь щеточный узел.

Электрические неисправности

Неполадки с электрикой в генераторе случаются нередко, и заметить их трудно. Может возникнуть замыкание в обмотках возбуждения ротора или статора, обрыв обмотки. Может выйти из строя регулятор напряжения, что чревато большими проблемами для всей электроники и АКБ. Также случается так называемый пробой диодного моста по различным причинам. Нельзя отключать генератор или АКБ во время работы двигателя. Также нужно следить за надежностью соединений, чистить клеммы и т.д.

Каждому водителю нужно знать устройство и принцип работы автомобильного генератора. Это поможет избежать многих проблем, которые могут возникнуть с устройством. Нужно регулярно следить за компонентами генератора. Проверять натяжение и состояние приводного ремня, крепление устройства, напряжение и другое. При правильной эксплуатации устройство прослужит исправно долгие годы.

Электрический ток и его использование

Урок 29. Технология 8 класс ФГОС

Конспект урока «Электрический ток и его использование»

Сейчас можно с уверенностью сказать, что самым главным достижением человечества является открытие электрического тока и его использование.

Электрическая энергия имеет огромное значение, как в жизни каждого отдельно взятого человека, так и в развитии современного общества в целом.

На сегодняшний день сложно представить нашу жизнь без электричества. Ведь именно оно освещает наше жильё и улицы, приводит в движение трамваи, троллейбусы и поезда.

Да, и все бытовые приборы, которыми мы пользуемся дома, работают при помощи электрической энергии.

Работа современных средств связи, без которых мы не представляем свою жизнь — телефона, радио, телевидения, интернета — также основана на использовании электрической энергии.

Электроэнергия поселилась во всех сферах деятельности человека. Без электричества не могут обойтись ни промышленность, ни сельское хозяйство, ни даже наука.

Без него невозможно было бы развитие кибернетики, вычислительной и космической техники.

Но, важно понимать, что электрическая энергия, которую мы используем, не существует в природе в готовом для потребления виде. Её нельзя добыть, как полезное ископаемое – нефть или уголь.

Так откуда же она берётся?

Чтобы любая энергия стала полезной человеку, он должен был научиться с ней обращаться, это значит, должен был научиться преобразовывать одни виды энергии в другие.

Человечество справилось с этой нелёгкой задачей. Люди стали получать электрическую энергию, которая так необходима для производственных и бытовых нужд, из других видов энергии: механической, тепловой, световой, химической.

Преобразования энергии различных видов в электрическую энергию происходят на электростанциях. Устройство, которое преобразует какую-либо энергию в электрическую, называют источником.

Основную часть электрической энергии люди получают преобразованием механической энергии при помощи специальных электромеханических машин.

Эти машины называются – электрогенераторы. В электрогенераторе механическая энергия турбины преобразуется в электрическую энергию. Турбина – это такое вращающееся колесо специальной конструкции. Так, например, на гидроэлектростанциях турбина вращается за счёт энергии падающей воды.

На тепловых электростанциях турбина вращается с помощью энергии движения пара.

А на ветряных электростанциях – за счёт энергии ветра.

На космических станциях источником электрической энергии являются фотоэлементы. Именно они преобразуют солнечную энергию в электрическую.

Помимо стационарных источников существуют переносные источники электрической энергии. Это гальванические элементы, различные аккумуляторы, а также батареи из них.

В переносных источниках электрическая энергия получается за счёт химического процесса взаимодействия разнородных металлов с особым веществом – электролитом. Существуют ещё и малогабаритные механические генераторы, которые работают за счёт мускульной силы рук или ног человека. Примером малогабаритного механического генератора может послужить генератор для велосипедной фары.

Читать еще:  Туалет для дачи своими руками: пошаговая инструкция для строительства

Давайте попробуем разобраться, как же происходит процесс передачи электрической энергии.

Вообще, первые сведения об электричестве появились много столетий назад и относились они тогда к электрическим зарядам, которые получались посредством трения. Ещё в Древней Греции было установлено, что если янтарь натереть шерстяной тканью, то он приобретёт способность притягивать лёгкие предметы.

Кстати, по-гречески слово «янтарь» звучит как «электрон». От этого слова и произошёл термин «электричество». Затем люди выяснили, что точно такими же свойствами обладают и многие другие вещества. Тогда такие вещества были названы наэлектризованными. Сейчас же мы говорим, что на телах в таком состоянии имеются электрические заряды, а сами же тела называем заряженными.

Итак, электрическая энергия передаётся при помощи потока мельчайших заряженных частиц.

Эти заряженные частицы всегда возникают при тесном контакте различных веществ. В некоторых телах электрические заряды могут свободно перемещаться между различными частями, в других же это невозможно. В первом случае вещества называют проводниками, во втором – диэлектриками или изоляторами.

Проводниками являются все металлы, растворы солей, кислот, включая обычную питьевую воду.

Примерами изоляторов могут служить стекло, резина, различные пластмассы.

Следует знать, что деление веществ на проводники и диэлектрики весьма условно. Так как все вещества в большей или меньшей степени проводят электричество.

В природе различают два вида электрических зарядов. Условно их называют положительными и отрицательными.

Вокруг каждого из этих зарядов существует электрическое поле, за счёт которого одноимённые заряды отталкиваются друг от друга, а разноимённые притягиваются друг к другу. В случае взаимодействия различных веществ разноимённые заряды будут стремиться перейти из одного вещества в другое. Перемещение этих заряженных частиц и будет представлять собой электрический ток.

Вообще, электрическим током называется упорядоченное (направленное) движение заряженных частиц под действием электрического поля.

Исторически за направление электрического тока было принято движение положительных зарядов, которые перемещаются от положительного полюса источника к отрицательному по проводнику, подключённому к полюсам.

Количество зарядов, прошедших за единицу времени через поперечное сечение проводника, называется силой тока.

Выражается эта зависимость следующей формулой: , где – сила тока, – количество зарядов, – время.

Единицу силы тока называют ампером, в честь французского учёного Андре Ампера.

Электропитание всех электрических устройств осуществляется постоянным и переменным током. Электрический ток, направление и значение которого не меняются со временем, называют постоянным. А электрический ток, направление и значение которого способны периодически изменяться, называют переменным.

Электропитание большинства электротехнических устройств осуществляется переменным током.

А теперь давайте рассмотрим особенности протекания электрического тока в различных средах и его применение.

Итак, при рассмотрении вопроса протекания электрического тока надо учитывать наличие различных носителей тока – элементарных зарядов – характерных для данного физического состояния вещества. Само по себе вещество может быть твёрдым, жидким или газообразным.

В металлических проводниках ток образуется за счёт движения электронов, имеющих отрицательный заряд. Вообще, все металлы являются проводниками тока. Применение тока в металлах используется для передачи электроэнергии на расстояние.

Из жидкостей электрический ток проводят только электролиты – растворы солей, кислот и щелочей. Прохождение постоянного электрического тока через жидкие среды сопровождается химическими реакциями. Это свойство широко применяют в аккумуляторах, в электрометаллургии для получения алюминия и бокситов, а также при электрохимической обработке материалов и очистке металлов от примесей.

Электрический ток в газовой среде вызывает свечение газа. На основе этого явления работают лампы дневного света, лазеры, прожекторы.

Устройства, которые преобразуют электрическую энергию в другие виды энергии – свет, тепло, механическую и химическую энергию, – называют приёмниками или потребителями электрической энергии, а в электротехнике – нагрузкой.

Для того чтобы электрическое устройство (или нагрузка) работало, его нужно соединить с полюсами источника тока. На практике источник с нагрузкой часто соединяют с помощью дополнительных проводников, в быту и электротехнике их называют проводами.

То, о чём мы сейчас с вами говорили: источник электрической энергии, нагрузка и соединительные провода – всё вместе это называется электрической цепью.

Итоги урока

На этом уроке мы говорили об электрическом токе и его использовании. Рассмотрели различные источники электроэнергии. Разобрались, как происходит процесс передачи электрической энергии. А также рассмотрели особенности протекания электрического тока в различных средах и его применение.

Как угорь и скат вырабатывают электричество (6 фото)

Кто вырабатывает электричество?

Как рыбы вырабатывают электричество?

Все виды электрических морских существ вырабатывают электричество во время движения. За счет того, что мышцы постоянно меняют свою форму и взаимодействуют с окружением, они накапливают электричество. При этом, голова и хвост выступают в роли плюса и минуса соответственно. Это помогает удерживать заряд в мышцах, словно в батареи.

Подробнее разберем, что представляют собой мышцы для накапливания зарядов. Они могут отличаться внешне у каждого вида рыбы, но имеют схожую структуру. Мышцы состоят из столбиков, которые, в свою очередь, разбиты на пластины. Для накапливания электричества столбики соединены параллельно, а пластины последовательно. Между ними находится разность потенциалов, из-за чего при движении аккумулируется энергия, происходит накопление заряда.

Как рыбы бьют током?

Удар током осуществляется с помощью импульсов. Рыба целенаправленно бьет ими жертву. Некоторые виды намеренно испускают в жертву примерно 500 импульсов, чтобы окончательно поразить противника. Соответственно, удары являются осознанными и направленными, нельзя получить заряд, просто дотронувшись до рыбы.

В большинстве случаев используют свое “оружие” рыбы только при прямом контакте с жертвой. В определенных ситуациях могут пустить ток на небольших расстояниях, чтобы отогнать более крупного хищника. У вышеперечисленных рыб разность потенциалов, развиваемая на концах электрических органов, может достигать 1200 вольт (электрический угорь), а мощность разряда в импульсе от 1 до 6 киловатт (электрический скат Torpedo nobiliana).

Опасны ли электрические рыбы человеку?

Электрический угорь

Электрические угри обитают в Южной Америке, в реках, и охотятся на мелкую рыбу. Взрослые особи вырастают в длину от 1 до 3 метров, но даже они нередко становятся жертвами местных хищников. Из-за этого угри вынуждены использовать электричество не только для охоты, но и для обороны.

Мышцы для накопления энергии, которые также часто называются “электрические органы”, располагаются вдоль позвоночника и составляют примерно 80% от общей массы угря. Заряд постепенно накапливается в специальных пузырчатых складках, после чего в нужный момент распространяется в пространстве, поражая все живое в радиусе. Данным способом рыба парализует жертву, после чего может приниматься за поедание. Чтобы ток ударил существо, оно должно находиться как можно ближе. Но бывали ситуации, когда рыбаки ловили угря на крючок и получали разряд без контакта с ним: ток проходил по леске вверх и бил сразу, как только человек до нее дотрагивался.

Электрический скат

Данный вид существ знаменит не только способностью вырабатывать электричество, но и своей приплюснутой формой, напоминающей небольшое полотенце. Они обитают преимущественно на дне океанов и достигают 180см в длину.

Электрическую энергию скаты накапливают по всему телу за счет сокращения мышц. Даже юные особи способны бить током с напряжением от 8В. Это помогает охотиться и обездвиживать маленькую рыбу.

О свойствах скатов знали еще в Древнем Египте. Местные врачи использовали легкие удары током юных особей в медицинских целях. Считалось, что небольшие разряды помогают человеку избавиться от болезней.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector