Astro-nn.ru

Стройка и ремонт
33 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Где используют переменный электрический ток

Какой электрический ток называют переменным: где используют

Переменным называется электрический ток, I, изменяющийся по величине и направлению с определённой периодичностью, T. В классическом определении, переменный ток представляет собой гармонические колебания изменяющиеся по форме синусоиды. Периодичность изменения направления и величины называется частотой, f, выражаемой в Герцах, Гц. Частота отражает, сколько раз за секунду происходит смена направления тока. Российские сети работают на частоте 50 Гц. Это значит, напряжение меняет полярность, а ток направление 50 раз за секунду.

Свойства переменного тока

С переменным током неразрывно связано явление возникновения электромагнитной индукции. Переменный ток, пропущенный через обмотку, формирует вокруг неё изменяющееся во времени магнитное поле, которое приводит к появлению электродвижущей силы, ЭДС и электрического тока в проводнике, взаимодействующем с этим полем.

Электромагнитная индукция — ключевое явление, обеспечивающее генерацию, транспортировку, использование электроэнергии. Именно электромагнитная индукция лежит в основе принципа действия трансформаторов, генераторов, двигателей. Это физическое явление определило преимущественное использование переменного тока для электроэнергетики.

Переменный ток входит в повседневную жизнь не только в виде розетки, от которой питаются наши компьютеры, телевизоры, холодильники, лампы освещения. Он способен вызывать резонансные явления в цепях, обладающих емкостью и индуктивностью. Это свойство используется для излучения электромагнитных волн, называемых радиоволнами. Радиоволны — это электромагнитные волны, излучаемые антенной, питающейся токами высокой частоты. Диапазон радиочастот от 3 до 3*10 12 Гц. На радиочастотах работают системы радиосвязи, беспроводные системы передачи данных Bluetooth, WiFi, WiMAX, спутниковое и эфирное телевидение, мобильные телефоны, навигационные системы.

Мощное высокочастотное электромагнитное поле способно вызывать нагрев. Эта особенность широко используется в бытовых микроволновых СВЧ печах, индукционных плитах. На производстве с помощью индукционных печей нагревают заготовки, закаливают и плавят металл.

Трёхфазная и однофазная сеть

Различие заключается в количестве проводников и уровне напряжения между ними.

Токи, протекающие в трёхфазной сети имеют вид синусоид, сдвинутых между собой на 120º.

Трёхфазная сеть состоит из трёх фазных проводников, АВС. Однофазная сеть использует один из фазных проводов и нулевой N.

Напряжение между фазами в точках A, B, C, называется линейным, Uл. Между нулевым N и одним из фазных проводов — фазным, Uф. Фазное напряжение меньше линейного в 1,73 раза, что составляет 58 % от его величины. Такое напряжение используется в европейских странах, Росиии, на него рассчитано большинство бытовых приборов.

Преимущества переменного тока

Основные преимущества перед постоянным определили его как основу энергетики:

  • генератор переменного напряжения проще и дешевле генератора постоянного;
  • способность к трансформации в любые уровни напряжения;
  • простое преобразование в механическую энергию;
  • легко преобразуется в постоянный.

Генератор переменного напряжения конструктивно проще, он более компактный, имеет меньшую массу медных деталей, а потому дешевле.

За счёт явления электромагнитной индукции появляется возможность повышать и понижать напряжение до любого уровня с помощью трансформаторов.

Трехфазная сеть очень эффективно используется при работе электродвигателей. Благодаря сдвигу фаз, в машине образуется вращающееся магнитное поле, увлекающее за собой статор. Современные электромоторы имеют КПД на уровне 90%.

Где используется

Переменный ток частотой 50 Гц является промышленным стандартом в энергетике, применяется во всех отраслях промышленности, транспорте, сельском хозяйстве, жилом секторе. На переменном токе работает электрооборудование рудников заводов, фабрик. Он вращает двигатели станков, насосов, конвейеров, подъёмных механизмов. Им снабжается вся инфраструктура метрополитенов от освещения, эскалаторов до электропоездов. Тоже самое относится к электрифицированным железным дорогам. В наши дома и квартиры так же подаётся переменное напряжение.

Как поставляется электроэнергия

Цепь поставки состоит из нескольких звеньев и упрощённо выглядит так:

  1. Генератор электростанции вырабатывает переменный электрический ток с частотой 50 Гц.
  2. Трансформаторы на электростанции повышают напряжение до десятков или сотен тысяч вольт. Энергия поступает на магистральные линии электропередач, ЛЭП.
  3. Трансформаторы на распределительных подстанциях понижают напряжение, энергия передаётся потребителям.

Повышение с последующим понижением напряжения имеет огромный смысл. Нужно это для того, чтобы передать энергию на большие расстояния с наименьшими затратами. Крупные электростанции могут находятся в сотнях, а то и тысячах километров от потребителей. Высокое напряжение позволяет уменьшить сечение проводников, снизить потери при передаче энергии на большие расстояния. Из формулы мощности P = U*I очевидно, при неизменной мощности повышение напряжение приводит к снижению тока, а следовательно, потребуется меньшее сечение проводов.

Например, станция генерирует 100 МВт мощности, которую нужно передать в соседний город при напряжении ЛЭП 1000 В, ток в линии I = P/U= 100*10 6 /1000 = 100 000 кА. Для таких токов потребуется проводник сечением 10 000 мм 2 . При повышении U до 100 кВ, сечение проводника уменьшится в 100 раз. По этой причине магистральные ЛЭП способны работать под напряжением 220-750 кВ.

На стороне потребителя напряжение снижается с помощью трансформаторов до необходимой величины. В ряде случаев используются промежуточные уровни: 10, 6, 0.6, 0.4 кВ для локальных ЛЭП или отдельных потребителей.

Переменный электрический ток

Урок 13. Физика 11 класс

Конспект урока «Переменный электрический ток»

«Кто действительно хочет понять все

величие нашего времени, тот должен

познакомиться с историей науки об электричестве.

И тогда он узнает сказку, какой нет и

среди сказок «Тысячи и одной ночи»

Никола Тесла «Сказка об электричестве»

Данная тема посвящена изучению переменного электрического тока.

Электромагнитные колебания – это периодические изменения со временем электрических и магнитных величин в электрической цепи.

Свободные электромагнитные колебания – это колебаниями, которые происходят в идеальном колебательном контуре за счет расходования сообщенной этому контуру энергии, которая в дальнейшем не пополняется.

Свободные колебания не могут существовать сколь угодно долго и со временем затухают. Поэтому, наибольшее практическое значение в настоящее время получили вынужденные электромагнитные колебания, которые представляют собой периодические изменения силы тока в контуре и других электрических величин под действием переменной электродвижущей силы от внешнего источника.

С такими колебаниями знаком каждый человек. Только люди их называют переменным электрическим током.

Переменный электрический ток — это ток, периодически изменяющийся со временем.

В каждом доме есть розетки, в которые включают всю домашнюю технику и осветительные приборы, «питающиеся» переменным током напряжением 220 вольт. В школьных мастерских имеются станки — к ним тоже подведен переменный ток, только более высокого напряжения. Во всех микрорайонах стоят будки с надписями «Трансформатор», в которых находятся трансформаторы, преобразующие переменный ток; вдоль дорог и по лесным просекам протянулись линии электропередачи опять же переменного тока. Миллионы и миллионы генераторов, трансформаторов, электродвигателей во всем мире производят, передают и используют электрическую энергию благодаря особенностям этого вида тока, обнаруженным без малого двести лет назад.

Крупнейший ученый XIX века Герман Гельмгольц говорил, что до тех пор, пока люди пользуются благами электричества, они всегда будут с благодарностью вспоминать имя Фарадея. Явление электромагнитной индукции — фундаментальное научное открытие, совершенное английским физиком Майклом Фарадеем, — легло в основу современной технической цивилизации и кардинально преобразило окружающий нас мир.

Долгие десятилетия шли активные поиски наилучшей реализации этого открытия — вплоть до отчаянной борьбы между сторонниками постоянного и приверженцами переменного тока. Правда, начавшаяся более ста лет назад «война» давно закончилась тесным и плодотворным взаимодействием, когда недостатки одного из видов тока компенсируются достоинствами другого.

Каким способом можно получить переменный электрический ток?

Поместим в постоянное и однородное магнитное поле виток проволоки abcd.

При равномерном вращении этого витка вокруг оси OO магнитный поток, пронизывающий его площадь будет постоянно меняться как по величине, так и по направлению. Вследствие этого, согласно закону электромагнитной индукции, в витке возникает переменная по величине и направлению ЭДС индукции.

Когда плоскость вращающегося витка становится перпендикулярна силовым линиям магнитного поля, пронизывающий ее магнитный поток наибольший, скорость же изменения его равна нулю, так как при прохождении через это положение проводники витка ab и cd скользят вдоль силовых линий поля, не пересекая их. Следовательно, ЭДС индукции, возникающая в витке, которая пропорциональна скорости изменения магнитного потока, будет равна нулю.

Когда же плоскость витка параллельна силовым линиям поля, поток, пронизывающий ее, равен нулю, скорость же изменения его при прохождении через это положение наибольшая, так как в этом случае проводники витка ab и cd движутся перпендикулярно к силовым линиям поля. ЭДС, возникшая в этом случае в витке, имеет наибольшее значение. В части ab витка, ЭДС будет направлена от чертежа к наблюдателю, а в части cd наоборот — от наблюдателя за чертеж.

При дальнейшем вращении витка ЭДС, сохраняя неизменным свое направление, будет уменьшаться до тех пор, пока опять не станет равной нулю. Т.е. в том положении, когда величина магнитного потока будет наибольшей, а скорость его изменения — наименьшей.

При дальнейшем вращении витка скорость изменения потока, пронизывающего виток, будет увеличиваться; следовательно, ЭДС по абсолютной величине будет возрастать. Но, так как теперь виток движется навстречу магнитным силовым линиям другой стороной плоскости, то направление в нем ЭДС изменяется на противоположное: в части ab ЭДС направлена от наблюдателя за чертеж, а в части bc — из-за чертежа к наблюдателю. И опять это направление ЭДС сохраниться и при дальнейшем движении витка, при этом абсолютная ее величина будет убывать.

При последующих оборотах витка все эти явления будут повторяться вновь.

Таким образом, величина ЭДС индукции во вращающемся витке за один его оборот изменяется от минус ξmax до плюс ξmax.

Для того чтобы пронаблюдать за происходящими изменениями ЭДС непосредственно, разомкнем виток и присоединим его концы к осциллографу. При вращении витка в магнитном поле осциллограф запишет все изменения тока, по которым можно будет судить и об изменениях ЭДС индукции в витке.

На рисунке изображен график изменения ЭДС индукции в витке за время совершения одного полного оборота. Вверху показаны последовательные положения витка в магнитном поле, против них (т.е. внизу) — значения ЭДС индукции в витке. Направление силовых линий магнитного потока, пронизывающего виток, показано стрелками. Кружочки изображают сечение витка плоскостью чертежа с указанием направления тока в нем.

Как показывает осциллограмма, ток, возникающий в витке при равномерном его вращении в однородном магнитном поле, изменяется синусоидально. Поэтому такой ток еще иногда называют переменным синусоидальным током.

В дальнейшем будем изучать вынужденные электрические колебания, происходящие в цепях под действием напряжения (или ЭДС), меняющегося с циклической частотой по закону синуса или косинуса:

где Um — амплитуда напряжения, т.е. максимальное по модулю значение напряжения.

Аналогичные формулы записываются и для ЭДС индукции.

Если в цепи напряжение меняется с циклической частотой «Омега», то и сила тока в цепи будет меняться с той же частотой. Однако колебания силы тока в цепи не обязательно должны совпадать с колебаниями напряжения. Поэтому, в общем случае, мгновенное значение силы тока будет определяться по формуле:

Рассмотрим еще 2 основные характеристики переменного тока — период и частоту.

Под периодом переменного тока понимают промежуток времени, в течении которого ЭДС (или напряжение, или сила тока) совершает одно полное колебание. Напомним, что обозначается период большой латинской буквой T и измеряется он в секундах.

Частотой переменного тока называется число колебаний переменного тока за одну секунду. Обозначается греческой буквой n и измеряется в Гц (герцах).

Стандартная частота переменного тока, применяемого в промышленности и осветительной сети в России и многих других странах, равна 50 Гц. Этот выбор был сделан с участием русского ученого Михаила Осиповича Доливо-Добровольского.

В США по рекомендации известного ученого Тесла, работавшего в фирме Вестингауз, основным производителем тогда электромагнитной техники, стандартная частота переменного тока равна 60 Гц.

Частота в 50 Гц означает, что на протяжении 1 секунды ток 50 раз течет в одну сторону и 50 раз в другую.

Основные выводы:

Переменный электрический ток — это ток, периодически изменяющийся со временем.

Переменный электрический ток представляет собой вынужденные электрические колебания, происходящие в электрической цепи под действием периодически изменяющейся по закону синуса или косинуса внешней ЭДС.

Периодом переменного тока называют промежуток времени, в течении которого сила тока (или напряжение, или ЭДС) совершает одно полное колебание.

Частота переменного тока — число колебаний переменного тока в секунду.

Постоянный и переменный ток в технике

Гальванические элементы дают постоянный ток.

В наше время нет такой отрасли народного хозяйства, в которой не применялось бы электричество. И каждая из них предъявляет к электрическим машинам и аппаратам определенные требования, от которых зависит не только конструкция этих машин, но и род используемого тока. Хотя в технике и в промышленности широко используются и переменный и постоянный токи, области их применения весьма четко разграничены.

Впервые люди получили электрический ток от гальванических элементов. Эти элементы создавали в электрической цепи поток электронов, движущихся все время в одном определенном направлении. Такой ток получил название «постоянного».

Первые вращающиеся генераторы, электрические двигатели и приборы также работали на постоянном токе. И когда в конце прошлого столетия русский электротехник М. О. Доливо-Добровольский предложил применять трехфазный переменный ток, многие ученые отнеслись к этому с недоверием. Даже знаменитый американский электротехник Эдисон считал переменный ток выдумкой, не заслуживающей внимания. Однако очень скоро переменный ток стали использовать во многих областях электротехники. Электрические генераторы переменного тока создают в электрической цепи поток электронов, непрерывно изменяющий направление своего движения. Так, в цепи электрической лампочки, освещающей вашу комнату, электроны успевают за одну секунду

Читать еще:  14key › Блог › Почему моргают светодиодные лампочки в автомобилях

Генераторы электрических станций вырабатывают переменный ток с частотой 50 пер/сек.

100 раз изменить направление своего движения: 50 раз они движутся в одном направлении и 50 — в обратном. Про такой ток говорят, что он имеет частоту 50 периодов в секунду.

Эта особенность движения электронов придает переменному току целый ряд свойств, определивших его главенствующее положение в современной электротехнике.

Одно из важнейших свойств переменного тока — его способность к трансформации. Как мы знаем, передача электрической энергии на большие расстояния возможна только при очень высоком напряжении, достигающем 110, 220 и даже 500-800 тыс. в. Столь высокое напряжение нельзя получить непосредственно в генераторах. В то же время для различных электрических машин и аппаратов нужен электрический ток напряжением в несколько десятков или сотен вольт. Вот здесь-то и пригодилась его способность к трансформации,— она позволила с помощью трансформаторов изменять напряжение переменного тока в любых пределах.

С помощью трансформаторов можно изменять напряжение переменного тока в любых пределах.

Мало того. Соединение обмоток генератора в трехфазную систему позволило получить трехфазный переменный ток. Это система трех переменных токов, которые имеют одинаковую частоту, но различаются по фазе на одну треть периода. Трехфазный ток обладает важными достоинствами. Во-первых, трехфазные линии электропередач выгоднее однофазных: по ним при той же затрате проводов и изоляции можно передать больше электрической энергии, чем при однофазном переменном токе. А во-вторых, благодаря свойству трехфазного переменного тока создавать вращающееся магнитное поле, удалось построить очень простые и надежные асинхронные электрические двигатели без коллектора и щеток.

Эти качества переменного тока и послужили причиной того, что в наши дни все промышленные электростанции вырабатывают только трехфазный переменный ток.

Больше половины электрической энергии, вырабатываемой этими электростанциями, расходуется электрическими двигателями. Чтобы они могли выполнять разнообразную работу, их делают различными и по устройству и по размерам.

Электрические двигатели позволили создать автоматические станочные линии.

Кроме простых асинхронных двигателей, которые широко используются для привода станков, есть двигатели с обмоткой и контактными кольцами на роторе. Они развивают большие усилия при трогании с места и поэтому успешно применяются на подъемных кранах. Есть еще синхронные двигатели, имеющие постоянную скорость вращения. По своим размерам электрические двигатели бывают маленькими — с катушку ниток — и огромными, как карусель.

Применение для привода станков сразу нескольких электрических двигателей дало возможность упростить механизмы станка, облегчило управление ими и позволило создать автоматические станочные линии.

Малые размеры электрических двигателей позволили использовать электрическую энергию там, где раньше применялся только ручной труд. Электрические дрели, пилы, рубанки и другой электрифицированный инструмент намного облегчили труд рабочих, сделали его более производительным.

Электрические полотеры, пылесосы, стиральные машины и холодильники пришли на помощь домашним хозяйкам.

Электрические дуговые и индукционные печи широко применяются в технике и промышленности. Небольшие печи сопротивления можно встретить в вагонах поездов, в троллейбусах и даже дома.

Переменный ток — хороший источник тепла. В мощных дуговых электропечах плавят и варят металл. Электрические печи сопротивления широко используются для кондиционирования воздуха, обогрева сушильных шкафов и различных помещений.

Электрические лампочки дают свет независимо от того, какой ток идет через их нити. Но поскольку передача переменного тока более экономична, а трансформаторы позволяют легко поддерживать необходимое для них напряжение, вся осветительная сеть городов и сел обслуживается переменным током.

Непрерывное изменение направления движения электронов в переменном токе, его способность к трансформации открыли ему широкую дорогу во многие области техники. Но не всегда хорош ток, все время меняющий свое направление. Вот вы сели в троллейбус, поезд метро или в вагон «электрички» на железной дороге. Здесь вы попали во владения постоянного тока.

Дело в том, что простые и удобные электрические двигатели переменного тока не позволяют в широких пределах плавно менять скорость своего вращения. А вспомните, сколько раз водителю приходится изменять скорость движения троллейбуса; с такой беспокойной работой хорошо справляется только двигатель постоянного тока. Питание этих двигателей осуществляется с тяговых выпрямительных подстанций. Приходящий на них с электростанций переменный ток при помощи ртутных выпрямителей преобразуется в постоянный, а затем подается в контактную сеть — в провода и рельсы.

Применение тяговых двигателей постоянного тока на транспортных машинах оказалось настолько выгодным, что их можно встретить на тепловозах и теплоходах.

Их основными двигателями служат дизели, которые приводят в движение генераторы, вырабатывающие постоянный ток. А он в свою очередь заставляет работать электрические двигатели, вращающие колеса или гребные винты.

Однако высокая стоимость и сложность преобразовательных подстанций заставили ученых и инженеров задуматься над использованием переменного тока на транспорте. Сейчас уже есть участки железных дорог, использующие однофазный переменный ток. С успехом используют его и на многих дизель-электрических кораблях.

Для питания двигателей электровозов вдоль электрифицированной железной дороги устанавливаются тяговые выпрямительные подстанции, на которых переменный ток преобразуется в постоянный при помощи ртутных выпрямителей.

Дальнейшая электрификация железных дорог в нашей стране будет осуществляться преимущественно с использованием переменного тока напряжением 25 тыс. в. Этот ток будет превращаться в постоянный непосредственно на электровозах при помощи выпрямительных устройств.

Хорошие регулировочные способности электродвигателей постоянного тока позволили с успехом применить их также на подъемно-транспортных механизмах. На обычных кранах, которые вы видите на строительстве, работают двигатели переменного тока. Но на мощных подъемных кранах больших металлургических заводов устанавливают двигатели постоянного тока. Ведь здесь надо плавно поднимать и переносить огромные ковши с расплавленным металлом, разливать его в изложницы или подавать раскаленные болванки на прокатные станы.

Эти двигатели приводят в движение и механизмы гигантских шагающих экскаваторов.

В гальванических ваннах при помощи постоянного тока покрывают различные предметы тонким слоем никеля или хрома.

Двигатели постоянного тока могут развивать очень большие скорости вращения — до 25 тыс. об/мин. Это позволяет получать большую мощность при очень небольших размерах двигателя. Поэтому они незаменимы в качестве моторов управления, применяемых на самолетах для поворотов рулей, элеронов и закрылков, для подъема и опускания шасси и других механизмов.

Неизменное направление движения электронов в цепи постоянного тока определило большую и важную область его применения, в которой переменный ток с ним соперничать не может. Речь идет об электролизе — процессе, связанном с прохождением тока через жидкие растворы — электролиты. Под воздействием постоянного тока, проходящего через электролит, он разлагается на отдельные элементы, которые осаждаются на определенных электродах — на аноде или катоде. Это свойство широко используется в цветной металлургии — для получения алюминия, магния, цинка, меди, марганца. В химической промышленности при помощи электролиза получают фтор, хлор, водород и другие вещества.

В гальванотехнике электролиз применяют для осаждения металла на поверхность различных изделий. Таким образом наносят защитные покрытия на металлические изделия (никелирование, хромирование), изготавливают металлические монументы, печатные формы и т. д. Гальванизацию применяют в медицине для лечения некоторых болезней.

Постоянное направление движения электронов помогает постоянному току соперничать с переменным в сварочном деле и некоторых видах освещения. При сварке постоянным током частички металла переносятся с электрода на изделие более правильно и шов получается качественнее, чем при сварке переменным током.

Зайдите на киностудию. Мощные дуговые кинопроекторы заливают светом съемочный павильон. На переменном токе дуга горит менее устойчиво, дает меньше света и издает гул, мешающий записи звука при киносъемке. Поэтому кинопрожекторы питают постоянным током, который дает бесшумную устойчивую дугу. В мощных военных прожекторах и дуговых кинопроекционных аппаратах также используется постоянный ток.

На киностудиях на постоянном токе работают мощные дуговые кинопрожекторы.

Чтобы получить переменный ток, нужно непрерывно вращать генератор переменного тока, а постоянный ток могут давать неподвижные аккумуляторные батареи или же гальванические элементы. Эти свойства источника электрического тока также в ряде случаев определяют область применения постоянного тока.

Автомобиль стоит на месте. Как завести его двигатель? К вашим услугам аккумуляторная батарея. Вы нажимаете кнопку стартера, и двигатель постоянного тока, получая питание от аккумуляторной батареи, заводит мотор. А когда мотор работает, он вращает генератор, который заряжает аккумулятор, восстанавливает израсходованную энергию. Такой обратимый процесс недоступен для переменного тока.

Что было бы, если бы в поездах освещение питалось переменным током? Остановился поезд — перестали вращаться колеса вагонов, а вместе с ним остановились бы электрические генераторы и свет в вагонах погас бы. Но этого не происходит, потому что под вагонами установлены генераторы постоянного тока, работающие параллельно с аккумуляторными батареями. Идет поезд — генераторы вращаются, дают энергию для освещения и одновременно заряжают батарею. Остановился состав — аккумуляторная батарея посылает ток в осветительную сеть.

Представьте себе, что на электростанции произошла авария: все турбо- или гидрогенераторы остановились и линии электропередачи, связывавшие ее с другими электростанциями, отключились. В таких случаях выручает постоянный ток, получаемый от больших аккумуляторных батарей. С его помощью приводят в движение вспомогательные механизмы, включают отключившиеся выключатели и снова пускают в работу главные турбо- или гидрогенераторы. Питание от аккумуляторной батареи очень надежно, поэтому все цепи защиты управления, автоматики и сигнализации на больших электростанциях работают на постоянном токе.

Аккумуляторные батареи применяются в различных областях техники.

Может ли плавать подводная лодка без постоянного тока? На поверхности воды может. В этом случае ее гребные винты вращаются дизелями. Но под водой дизели останавливаются — не хватает воздуха. Там работает двигатель постоянного тока, получающий энергию от аккумуляторных батарей. Когда лодка вновь всплывает на поверхность и включаются в работу дизели, электрический двигатель превращается в генератор и вновь заряжает батареи.

В шахтах не везде можно подвесить контактный провод для электровозов. Как же им передвигаться? И тут опять выручает аккумуляторная батарея. На многих шахтах рудничные аккумуляторные электровозы доставляют уголь из самых отдаленных забоев. Электрические тележки с аккумуляторами — электрокары — вы часто видите на вокзалах. Они есть и в цехах больших заводов и фабрик.

Обратите внимание, как кинооператор снимает какое-нибудь важное событие. В руках у него легкий киносъемочный аппарат, а на поясе — аккумулятор. Нажал кнопку, и аппарат заработал. Такие легкие аккумуляторные батареи широко применяются для переносных радиостанций, сигнальных устройств, электрических измерительных приборов.

Конечно, перечисленными здесь примерами не исчерпываются все области применения электрической энергии. Мы ничего не рассказали о ее использовании для телеграфной и телефонной связи, для радио и телевидения и других целей — об этом вы прочтете в соответствующих статьях нашего сайта.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Физика. 11 класс

Конспект урока

Физика, 11 класс

Урок 8. Переменный электрический ток

Перечень вопросов, рассматриваемых на уроке:

1) Свойства переменного тока;

2) Понятия активного сопротивления, индуктивного и ёмкостного сопротивления;

3) Особенности переменного электрического тока на участке цепи с резистором;

4) Определение понятий: переменный электрический ток, активное сопротивление, индуктивное сопротивление, ёмкостное сопротивление.

Глоссарий по теме

Переменный электрический ток — это ток, периодически изменяющийся со временем.

Сопротивление элемента электрической цепи (резистора), в котором происходит превращение электрической энергии во внутреннюю называют активным сопротивлением.

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Величину ХC, обратную произведению ωC циклической частоты на электрическую ёмкость конденсатора, называют ёмкостным сопротивлением.

Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.

Основная и дополнительная литература по теме урока:

Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. Физика.11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2014. – С. 86 – 95.

Рымкевич А.П. Сборник задач по физике. 10-11 класс. — М.: Дрофа, 2014. – С. 128 – 132.

Степанова. Г.Н. Сборник задач по физике. 10-11 класс. М., Просвещение 1999 г.

Е.А. Марон, А.Е. Марон. Контрольные работы по физике. М., Просвещение, 2004

Основное содержание урока

Сейчас невозможно представить себе нашу цивилизацию без электричества. Телевизоры, холодильники, компьютеры – вся бытовая техника работает на нем. Основным источником энергии является переменный ток.

Электрический ток, питающий розетки в наших домах, является переменным А что это такое? Каковы его характеристики? Чем же переменный ток отличается от постоянного? Об этом мы поговорим на данном уроке.

В известном опыте Фарадея при движении полосового магнита относительно катушки появлялся ток, что фиксировалось стрелкой гальванометра, соединенного с катушкой. Если магнит привести колебательное движение относительно катушки, то стрелка гальванометра будет отклоняться то в одну сторону, то в другую – в зависимости от направления движения магнита. Это означает, что возникающий в катушке ток меняет свое направление. Такой ток называют переменным.

Электрический ток, периодически меняющийся со временем по модулю и направлению, называется переменным током.

Переменный электрический ток представляет собой электромагнитные вынужденные колебания. Переменный ток в отличие от постоянного имеет период, амплитуду и частоту.

Сила тока и напряжение меняются со временем по гармоническому закону, такой ток называется синусоидальным. В основном используется синусоидальный ток. Колебания тока можно наблюдать с помощью осциллографа.

Если напряжение на концах цепи будет меняться по гармоническому закону, то и напряженность внутри проводника будет так же меняться гармонически. Эти гармонические изменения напряженности поля, в свою очередь вызывают гармонические колебания упорядоченного движения свободных частиц и, следовательно, гармонические колебания силы тока. При изменении напряжения на концах цепи, в ней с очень большой скоростью распространяется электрическое поле. Сила переменного тока практически во всех сечениях проводника одинакова потому, что время распространения электромагнитного поля превышает период колебаний.

Читать еще:  Как включить кондиционер на тепло зимой

Рассмотрим процессы, происходящие в проводнике, включенном в цепь переменного тока. Сопротивление проводника, в котором происходит превращение электрической энергии во внутреннюю энергию, называют активным. При изменении напряжения на концах цепи по гармоническому закону, точно так же меняется напряженность электрического поля и в цепи появляется переменный ток.

При наличии такого сопротивления колебания силы тока и напряжения совпадают по фазе в любой момент времени.

— мгновенное значение силы тока;

m— амплитудное значение силы тока.

– колебания напряжения на концах цепи.

Колебания ЭДС индукции определяются формулами:

При совпадении фазы колебаний силы тока и напряжения мгновенная мощность равна произведению мгновенных значений силы тока и напряжения. Среднее значение мощности равно половине произведения квадрата амплитуды силы тока и активного сопротивления.

Часто к параметрам и характеристикам переменного тока относят действующие значения. Напряжение, ток или ЭДС, которая действует в цепи в каждый момент времени — мгновенное значение (помечают строчными буквами — і, u, e). Однако оценивать переменный ток, совершенную им работу, создаваемое тепло сложно рассчитывать по мгновенному значению, так как оно постоянно меняется. Поэтому применяют действующее, которое характеризует силу постоянного тока, выделяющего за время прохождения по проводнику столько же тепла, сколько это делает переменный.

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Um — амплитудное значение напряжения.

Действующие значения силы тока и напряжения:

Электрическая аппаратура в цепях переменного тока показывает именно действующие значения измеряемых величин.

Конденсатор включенный в электрическую цепь оказывает сопротивление прохождению тока. Это сопротивление называют ёмкостным.

Величину ХC, обратную произведению циклической частоты на электрическую ёмкость конденсатора, называют ёмкостным сопротивлением.

Ёмкостное сопротивление не является постоянной величиной. Мы видим, что конденсатор оказывает бесконечно большое сопротивление постоянному току.

Если включить в электрическую цепь катушку индуктивности, то она будет влиять на прохождение тока в цепи, т.е. оказывать сопротивление току. Это можно объяснить явлением самоиндукции.

Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.

Если частота равна нулю, то индуктивное сопротивление тоже равно нулю.

При увеличении напряжения в цепи переменного тока сила тока будет увеличиваться так же, как и при постоянном токе. В цепи переменного тока содержащем активное сопротивление, конденсатор и катушка индуктивности будет оказываться сопротивление току. Сопротивление оказывает и катушка индуктивности, и конденсатор, и резистор. При расчёте общего сопротивления всё это надо учитывать. Основываясь на этом закон Ома для переменного тока формулируется следующим образом: значение тока в цепи переменного тока прямо пропорционально напряжению в цепи и обратно пропорционально полному сопротивлению цепи.

Если цепь содержит активное сопротивление, катушку и конденсатор соединенные последовательно, то полное сопротивление равно

Закон Ома для электрической цепи переменного тока записывается имеет вид:

Преимущество применения переменного тока заключается в том, что он передаётся потребителю с меньшими потерями.

В электрической цепи постоянного тока зная напряжение на зажимах потребителя и протекающий ток можем легко определить потребляемую мощность, умножив величину тока на напряжение. В цепи переменного тока мощность равна произведению напряжения на силу тока и на коэффициент мощности.

Мощность цепи переменного тока

Величина cosφ – называется коэффициентом мощности

Коэффициент мощности показывает какая часть энергии преобразуется в другие виды. Коэффициент мощности находят с помощью фазометров. Уменьшение коэффициента мощности приводит к увеличению тепловых потерь. Для повышения коэффициента мощности электродвигателей параллельно им подключают конденсаторы. Конденсатор и катушка индуктивности в цепи переменного тока создают противоположные сдвиги фаз. При одновременном включении конденсатора и катушки индуктивности происходит взаимная компенсация сдвига фаз и повышение коэффициента мощности. Повышение коэффициента мощности является важной народнохозяйственной задачей.

Разбор типовых тренировочных заданий

1. Рамка вращается в однородном магнитном поле. ЭДС индукции, возникающая в рамке, изменяется по закону e=80 sin 25πt. Определите время одного оборота рамки.

Дано: e=80 sin 25πt.

Колебания ЭДС индукции в цепи переменного тока происходят по гармоническому закону

Согласно данным нашей задачи:

Время одного оборота, т.е. период связан с циклической частотой формулой:

Подставляем числовые данные:

2. Чему равна амплитуда силы тока в цепи переменного тока частотой 50 Гц, содержащей последовательно соединенные активное сопротивление 1 кОм и конденсатор емкости С = 1 мкФ, если действующее значение напряжения сети, к которой подключен участок цепи, равно 220 В?

Напишем закон Ома для переменного тока:

Для амплитудных значений силы тока и напряжения, мы можем записать Im=Um/Z?

Полное сопротивление цепи равно:

Подставляя числовые данные находим полное сопротивление Z≈3300 Ом. Так как действующее значение напряжения равно:

то после вычислений получаем Im ≈0,09 Ом.

2. Установите соответствие между физической величиной и прибором для измерения.

Школьная Энциклопедия

Nav view search

Навигация

Искать

Переменный электрический ток

Подробности Категория: Электричество и магнетизм Опубликовано 20.03.2015 09:56 Просмотров: 9804

Электрический ток, меняющий свою величину и направление с течением времени, называется переменным током.

Переменный ток, как и постоянный, также является упорядоченным движением заряженных частиц. Но постоянный ток всегда имеет одно направление, от «+» к «-». А переменный ток своё направление постоянно меняет, то есть течёт то в одну, то в другую сторону. Поэтому одно из его направлений условно принимают за положительное, а направление, противоположное ему, считают отрицательным. В зависимости от этого в конкретный момент времени алгебраическая величина тока будет иметь знак «плюс» или знак «минус».

Чтобы ток был переменным, он должен быть подключен к источнику переменной ЭДС. Такими источниками являются генераторы переменного тока – электрические машины, которые преобразуют механическую энергию в электрическую энергию тока.

Периодический переменный ток

Основные параметры переменного тока – период, частота и амплитуда.

Представим, что за какое-то время Т переменный ток пройдёт цикл изменений и вернётся к своему первоначальному значению. Следующий такой же цикл он также пройдёт за такое же время Т. Такой ток называется периодическим переменным током, а величина Тпериодом тока. Это наименьший промежуток времени, через который изменения силы тока и напряжения повторяются. Измеряется период в секундах.

Величина, обратная периоду, называется частотой тока ( f ). Она отображает количество периодов (полных колебаний), которые ток проходит в единицу времени. Измеряется в герцах (Гц).

f = 1/ T

Переменный ток изменяется с частотой в 1 Гц, если его период равен 1 с.

В России, как и в большинстве стран мира, стандартная частота переменного тока в электротехнике 50 Гц. В США и Канаде – 60 Гц. В Японии же используются оба варианта. В западной части применяется частота 60 Гц, а в восточной – 50 Гц. Так случилось, потому что в 1895 г. для Токио были закуплены генераторы немецкой компании AEG, а немного позже для Осаки — а мериканские генераторы General Electric. Так как приведение этих сетей к единому стандарту оказалось весьма дорогостоящим делом, то всё было оставлено как есть, а между сетями установили четыре преобразователя частоты.

Величину тока в данный момент времени называют мгновенным значением переменного тока. Его максимальное значение называется амплитудой и обозначается Im .

Синусоидальный ток

Наиболее распространён в электротехнике синусоидальный ток. Это периодический переменный ток, изменяющий по закону синуса:

i = Im · sin ( ωt + ψ) ,

где i – значение тока в любой момент времени t ;

Im – мгновенное значение синусоидального тока;

ω = 2π f = 2π f / T , где ω – угловая частота; ψ – начальная фаза переменного синусоидального тока (фаза в момент времени t = 0).

Наибольшее положительное или отрицательное значение переменного тока называют амплитудой.

График переменного синусоидального тока представляет собой синусоиду.

Два синусоидальный тока совпадают по фазе, если они одновременно достигают максимальных и нулевых значений. Если же их фазы различны, то говорят, что токи сдвинуты по фазе.

Наиболее широко в электротехнике применяется трёхфазный ток. Трёхфазная система состоит из трёх однофазных электрических цепей. Электродвижущие силы, действующие в каждой из них, имеют одинаковую частоту, но сдвинуты по фазе относительно друг друга на 120 0 .

В электротехнике однофазную электрическую цепь, входящую в состав многофазовой цепи называют фазой. Если все фазы электрически соединены между собой, то такую систему называют электрически связанной. Фазы в трёхфазной системе могут соединяться «треугольником», «звездой с нейтральным проводом» и «звездой без нейтрального провода».

Если мы сложим все мгновенные значения (положительные и отрицательные) переменного синусоидального тока за период, то получим алгебраическую сумму, равную нулю. Но в таком случае и среднее значение тока также равно нулю. Следовательно, это значение нельзя использовать для измерения синусоидального тока.

Как же определить величину переменного синусоидального тока?

Переменный синусоидальный ток, как и постоянный, обладает тепловым действием. Сравнив его тепловое действие с тепловым действием постоянного тока, можно судить о его величине.

Согласно закону Джоуля-Ленца количество теплоты Q , выделяемое на участке электрической цепи за время t при прохождении тока, определяется следующей формулой:

Q = I 2 Rt ,

где I – величина тока; R – электрическое сопротивление.

Если два тока, постоянный и переменный, протекая через одинаковые по величине сопротивления, за одинаковое время выделяют одинаковое количество тепла, то они считаются эквивалентными по тепловому действию.

Величина постоянного тока, который произвёл такое же количество теплоты, что и переменный ток за такое же время, называется действующим значением переменного синусоидального тока.

Величина действующего значения синусоидального тока связана с его амплитудой соотношением:

Передача переменного тока

Промышленный переменный ток вырабатывается электростанциями. К потребителям он поступает по линиям электропередач (ЛЭП). Поскольку ЛЭП имеют большую протяжённость, то потери энергии при нагревании проводов довольно велики. Чтобы уменьшить тепловые потери, уменьшают силу тока. Для этого с помощью трансформатора повышают электрическое напряжение в сети до нескольких сот тысяч вольт. К примеру, самая высоковольтная в мире ЛЭП Экибастуз-Кокшетау рассчитана на напряжение 1150 кВ (1 миллион 450 тысяч вольт). Работает под напряжением 500 кВ. В конечной точке ЛЭП напряжение понижается до нужного потребителю значения.

«Война токов»

Томас Алва Эдисон

Какой ток лучше, постоянный или переменный? Споры на эту тему начались в 80-х годах XIX века и превратились в «войну токов», начало которой было положено двумя великими людьми – американским изобретателем Томасом Эдисоном и сербом по происхождению, инженером и физиком Никола Тесла.

Основанная Эдисоном в 1878 г. компания « Edison Electric Light » занималась строительством электростанций постоянного тока. На постоянном токе в то время работали лампочки накаливания, электродвигатели и счётчики электроэнергии. Других приборов, нуждавшихся в токе, на тот момент не существовало. Для передачи электроэнергии использовалась разработанная Эдисоном «технология трёх проводов». В 1887 г. в США по системе Эдисона работало более 100 электростанций постоянного тока. Но расстояние, на которое удавалось передавать электричество, не превышало 1,5 км.

Основным противником Эдисона в «войне токов» в то время был Джордж Вестингауз, изобретатель и промышленник, хорошо разбиравшийся в физике и считающий переменный ток более перспективным. В 1885 г. он приобрёл несколько трансформаторов, созданных в 1881 г. французом Люсьеном Голаром и англичанином Джоном Гиббсом, и генератор переменного тока фирмы «Siemens & Halske». И в 1886 г. в штате Массачусетс начала работу первая гидроэлектростанция переменного тока.

В 1882 г. Тесла изобрёл многофазный электродвигатель, а в 1888 г. — счётчик переменного тока, отсутствие которого ранее было одним из препятствий в развитии технологий переменного тока. В том же году Вестингауз приглашает его к себе на работу. Изобретённые Тесла трансформаторы давали возможность получать любое напряжение. А это позволяло передавать переменный ток на большие расстояния. Казалось бы, ничто уже не могло помешать созданию сетей переменного тока. Но Эдисон прибегнул к чёрному пиару, спонсировав разработку электрического стула для казни и предложив использовать переменный ток для этой цели. Журналисты красочно описали мучения, которые испытывал осуждённый в момент казни. Общество получило отрицательный сигнал, и переменный ток некоторое время не использовали.

И всё-таки Тесла оказался победителем. Компания Вестингауза выиграла тендер на строительство первой в США гидроэлектростанции переменного тока на Ниагаре.

До 1928 г. обе технологии существовали параллельно. Но постоянный ток постепенно уступал свои позиции переменному. В Европе это произошло быстрее. Последними перешли на переменный ток в 40-60-х годах XX века потребители скандинавских стран. В США окончательный перевод электрических сетей с постоянного тока на переменный произошёл в конце 2007 г. Так закончилась длившаяся более 100 лет «война токов».

Но это совершенно не означает, что в настоящее время постоянный ток не используется в электроэнергетике. Конечно, подавляющее большинство ЛЭП транспортируют переменный ток. Но наряду с линиями электропередач переменного тока существуют высоковольтные ЛЭП постоянного тока, спообные передавать ток на большие расстояния, например, ЛЭП Экибастуз — Центр, Южная Корея (материк) — остров Чеджудо и др.

Производство и передача переменного электрического тока

Переменным током называется ток, величина и направление которого периодически меняются. Именно благодаря переменному току в наших домах сегодня есть свет и тепло. Только благодаря переменному току работают все промышленные предприятия и производства нашего времени. Не будь переменного тока, технологический прогресс современной цивилизации был бы попросту невозможен.

Читать еще:  Таблица соотношения мощности светодиодных, энергосберегающих и ламп накаливания

Для получения переменного тока используются электромеханические устройства, называемые индукционными генераторами. В них получаемая тем или иным способом механическая энергия передается ротору, ротор вращается, в результате механическая энергия вращения ротора преобразуется в электрическую энергию посредством электромагнитной индукции.

Напомним, что если вращать магнит внутри проводящей рамки, то в рамке будет индуцироваться переменный ток. На этом принципе и работает генератор. Только в промышленном генераторе роль рамки играет статор, а роль магнита — ротор с намагничивающей обмоткой, по сути — вращающийся электромагнит.

В промышленном генераторе статор представляет собой огромную стальную конструкцию в виде кольца с пазами на его внутренней стороне. В эти пазы уложена медная трехфазная обмотка. Магнитное поле, как мы уже сказали, создается ротором, который представляет собой стальной сердечник с парой (или с несколькими парами, в зависимости от номинальной скорости вращения ротора) полюсов, формируемых током обмотки ротора. Постоянный ток подается к обмотке ротора от возбудителя.

По принципиальной схеме двухполюсного индукционного генератора переменного тока легко понять, что силовые линии магнитного поля ротора пересекают витки обмотки статора, при этом один раз за один оборот магнитный поток ротора изменяет свое направление по отношению к одним и тем же виткам статора.

Таким образом в обмотке статора получается именно переменный ток, а не пульсирующий постоянный. Если речь идет об атомной электростанции, то механическое вращение ротор генератора получает от пара, который под огромным давлением подается на лопасти турбины сопряженной с ротором. Пар на атомной электростанции получается из воды, которая разогревается теплом от ядерной реакции, подводимым к воде через теплообменник.

В России частота переменного тока в сети равна 50 Гц, это значит, что ротору двухполюсного генератора необходимо совершить 50 оборотов за секунду. Так, на атомной электростанции ротор совершает 3000 оборотов в минуту, что как раз и дает частоту генерируемого тока в 50 Гц. Направление генерируемого тока изменяется по синусоидальному (гармоническому) закону.

Обмотка генератора разделена на три части, поэтому переменный ток получается трехфазным. Это значит, что в каждой из трех частей обмотки статора получаемые ЭДС смещены по фазе относительно друг друга на 120 градусов. Действующее значение генерируемого на электростанции напряжения может быть от 6,3 до 36,75 кВ, в зависимости от вида генератора.

Чтобы передать электрическую энергию на большое расстояние, используются высоковольтные линии электропередач (ЛЭП). Но если электричество передавать без преобразования, при том же напряжении какое выходит с генератора, то потери энергии при передаче окажутся колоссальными, и до конечного потребителя практически ничего не дойдет.

Дело в том, что потери энергии в передающих проводах пропорциональны квадрату величины тока и прямо пропорциональны сопротивлению проводов (см. Закон Джоуля-Ленца). Значит для более эффективной передачи и распределения электроэнергии, напряжение необходимо сначала в несколько раз повысить, чтобы во столько же раз уменьшился ток и следовательно сильно сократились транспортные потери. И только повышенное напряжение имеет смысл передавать на ЛЭП.

Поэтому электричество от электростанции сначала подается на трансформаторную подстанцию. Здесь напряжение повышается до 110-750 кВ и только после — подается на провода ЛЭП. Но потребителю необходимо 220 или 380 вольт, поэтому в конце линии высокое напряжение обратно понижают, при помощи опять же трансформаторных подстанций, до 6-35 кВ.

На подстанции вблизи нашего дома или встроенной в дом, установлен трансформатор. Здесь напряжение снова понижается — от 6-35кВ до 220 (380) вольт, которые уже раздаются потребителям. Через вводно-распределительное устройство в разные помещения расходится сеть проводов и кабелей.

—> Сайт Георгия Таненгольца —> Главная | —> Мой профиль | —> Регистрация | —> Выход | —> Вход | RSS

—> —>Категории раздела —>

—> —>Статистика —>

Каталог статей

Переменный электрический ток

Переменным называют такой ток, величина которого меняется во времени.

По форме переменные токи подразделяются на периодические и непериодические.

Переменный непериодический ток

Переменный периодический ток (импульсы)

Периодические токи бывают несинусоидальные и синусоидальные.

Токи могут быть изменяющиеся по направлению и не изменяющиеся по направлению.

Наибольшее значение в электротехнике имеют синусоидальные токи. Синусоидальные токи производятся генераторами переменного тока.

Зачем нам переменный ток?

Этого не понимал даже великий Эдиссон. Он считал, что логичнее и проще использовать постоянный ток. Вся современная электроэнергетика – это энергетика переменного тока.

Дело в том, что переменное напряжение легко менять — повышать и понижать. Это очень важно! Например, для передачи электроэнергии на расстояние. Переменное напряжение можно поднять трансформатором до сотен тысяч Вольт и с минимальными потерями передавать электроэнергию на тысячи км.

Распределять электроэнергию в местных сетях тоже выгоднее в виде переменного тока.

Переменный ток легче производить – генераторы переменного тока проще и дешевле, чем генераторы постоянного тока.

Переменным током можно крутить самые надежные и недорогие электродвигатели — асинхронные, на них построена вся промышленность.

В быту и промышленности – везде используется переменный ток.

В домашних розетках действует переменное напряжение 220 Вольт. На это напряжение рассчитаны лампочки освещения, утюги, стиральные машины, пылесосы, электроинструмент и все остальные бытовые приборы. Электронные устройства – радио и теле аппаратура питаются постоянным током, но включаются они вилками в розетки 220 Вольт, а преобразование делается уже в самих аппаратах.

В промышленных помещениях используется переменное напряжение 220 Вольт и 380 Вольт. Под 380 Вольт подключают промышленное оборудование.

Нужно научиться считать токи, напряжения и мощности в цепях переменного тока, Это необходимо для правильного выбора источников, переменного напряжения и правильного выбора потребителей переменного тока.

В основе рассуждений о переменных процессах в электрических цепях лежат свойства синусоидального переменного процесса, то есть гармонических колебаний.

Гармоническое колебание изображается синусоидой

График изображает изменение значения переменной величины. В каждый следующий момент времени величина становится другой и если изменение происходит по закону синуса, то получается синусоида. Синусоида это изображение гармонического колебания.

Основные параметры синусоиды — Период Т в секундах, частота f в Гц и Амплитуда

Гармония – это согласованность, слаженность, взаимная обусловленность частей в целом. Синусоидальное колебание происходит равномерно без рывков и неожиданных изменений, она полностью предсказуема. Синусоида получается как линейная развертка равномерного вращения.

Колебание напряжения от источника получается гармоническим, — синусоидальным, потому, что процесс генерации этого напряжения происходит симметричной круглой конструкцией с равномерно вращающимся ротором.

Генератор переменного тока

Переменное напряжение, которое получается на выходе обмотки этого генератора, получается примерно синусоидальным

На самом деле получить идеально синусоидальный процесс невозможно, но мы будем рассматривать именно гармонический процесс как наиболее простой, а всеми отклонениями от синусоидального процесса для начала можно пренебречь

Синусоида достаточно сложная кривая и расчеты всех значений по синусоиде затруднительны. Более просто те же самые процессы гармонического колебания можно изобразить вращающимся вектором. Синусоида строится как набор точек, которые соответствуют положению конца радиус – вектора. Радиус – вектор переменной величины равен ее максимальному значению, а изменения переменной величины отражаются положением этого вектора.

Мгновенное значение переменной величины (точка на синусоиде) соответствует данному положению вращающегося радиус – вектора. Вертикальная проекция радиус вектора, определяет мгновенное значение переменной величины. Эта проекция радиус-вектора — противолежащий катет треугольника, а он, как известно, равен радиус вектору (гипотенузе) на синус угла поворота радиус вектора. То есть, положение точки – ее высота на синусоиде определяется синусом угла поворота радиус вектора.

Радиус -вектор рассматривают как вращающийся вокруг точки начала, против часовой стрелки, . График синусоиды откладывается на шкале времени вправо. Каждая точка синусоиды получается, как проекция конца радиус вектора в данный момент. А поскольку он крутится, значит, каждое следующее положение вектора, можно определить углом его положения.

Каждая точка синусоиды может быть описана углом положения радиус вектора в данный момент.

Для того, чтобы понятны формулы вспомним, как измеряются углы окружности.

Традиционное измерение в градусах –

360 –вся окружность

270 –три четверти окружности половина

180 – половина окружности

Анализ синусоиды в градусах неудобен, поэтому используется измерение углов в радианах

Что такое «ПИ». π – это число которое показывает сколько раз диаметр окружности укладывается в ее длине – Важнейшая мировая константа, она равна 3,14

Построим в окружности угол так, чтобы радиусы приходили в точки окружности на концах дуги равной тоже радиусу. Таких кусочков дуги укладывается в окружности 6,28 раза, значит, таких углов можно уложить в окружность тоже 6,28.

Угол, который опирается на дугу, равную радиусу называется радиан, в окружности 6, 28 радиан. А что такое 6,28 – это 2 π, то есть, в окружности 2 π радиан.

Тогда просто сравнить и понять

360 –вся окружность 6, 28 радиан — 2 π

270 –три четверти окружности 3 π/2

180 – половина окружности 3,14 радиана — π

90 — четверть окружности π/2

Значит, угол можно измерять в градусах и можно в радианах с коэффициентом π , в нашем случае это гораздо удобнее.

Как протекает переменный синусоидальный процесс во времени? Какой величины будет мгновенное значение переменной через такое -то время? Это зависит от скорости вращения радиус вектора.

Угловая скорость или угловая частота.

Скорость это путь на время. Полный путь вращающегося вектора это 2 π -целая окружность, и этот путь надо разделить на время Т, за которое радиус вектор, проходит всю окружность. Время Т называется период вращения Таким образом угловая частота обозначается ω и равна она 2 π /Т

Теперь у нас есть возможность определить значение переменной величины в любой точке (момент t) , то есть, любое мгновенное значение. Например, мгновенное значение переменного напряжения.

u=UmSin ω t, где t – это мгновение времени от нуля, в которое нас интересует переменная величина.

u — мгновенное значение переменного напряжения

Um — максимальное значение переменной величины (радиус –вектор)

Sin ω t – закон изменения переменной величины

Фаза

Фазой называется начальный угол, в котором мы начинаем рассматривать переменный процесс.

В электротехнике начальная фаза нас интересует обычно, когда мы рассматриваем одновременно 2 и больше переменных процесса.

Радиус вектор, вращается против часовой стрелки. Каждое мгновенное положение вектора соответствует определенной фазе.

Сдвиг фаз

Сдвиг фаз позволяет оценить 2 синусоидальных процесса во времени.

Фаза красной синусоиды -0, фаза синей синусоиды π / 2 , когда красная синусоида еще имеет значение 0, синяя уже выросла до максимального значения, синяя синусоида опережает красную по фазе.

Шкала времени синусоиды откладывается вправо от нуля. Если возьмем условно ноль времени за начало отсчета, то видно, что в этот момент мгновенное значение красной синусоиды равно нулю, ее фаза равна 0, в этот же момент синяя синусоида уже имеет максимальное значение, ее фаза π/2 или 90 градусов, Синяя синусоида впереди.

Фаза красной синусоиды -0, фаза синей синусоиды — π / 2, когда красная синусоида уже имеет значение 0, синяя еще в отрицательном максимуме, красная синусоида опережает синюю по фазе.

Начальная фаза- это угол радиус вектора в условный момент, который мы считаем моментом начала процесса. Начальная фаза важна для понимания сдвига фаз между разными переменными процессами

Начальная фаза обозначается буквой, Ψ и она прибавляется к углу поворота радиус вектора для данного мгновенного значения.

В дальнейшем слово «начальная» мы опускаем и когда говорим «фаза», то подразумеваем, что это начальная фаза.

Синусоида, фаза которой будет больше, опережает ту синусоиду, фаза которой меньше.

Впереди та синусоида, вектора которой повернут на больший угол.

Векторы, смотрящие вверх от горизонтального направления, считаются опережающими, а векторы, смотрящие вниз от горизонтального направления, считаются отстающими или позади.

Действующее значение переменной величины

На примере напряжения.

Переменное напряжение все время меняется. Как сказать, какое это напряжение, если оно в каждое следующее мгновение другое. Чтобы объявить значение переменного напряжения, его сравнивают со значением постоянного напряжения, которое дает такой же результат. Например, выделяет на одной и той же лампочке такую же мощность. То есть, если лампочка горит одинаково под переменным напряжением и под постоянным напряжением, значит переменное напряжение по действию равно постоянному.

Такое значение переменного напряжения принято называть действующим.

Для того чтобы получить нужное действующее значение синусоиды, ее амплитуда должна быть в корень из двух раз больше соответствующего значения постоянной величины.

Например, переменное напряжение 220 Вольт – это действующее значение переменного напряжения, Оно дает такой же результат, что и постоянное напряжение 220 Вольт, то есть мы не узнаем, глядя на лампочку, переменное напряжение на ней действует или постоянное.

Оказалось, что чтобы получить действующее напряжение 220 Вольт. Надо создать переменное напряжение, такой величины, чтобы амплитуда напряжение достигала 310 Вольт, то есть, было в корень из двух больше соответствующего действующего. 220 * 1,41= 310

Действующее значение – главная оценка переменной величины и обычно она обозначается символом без индекса, например I, U, E.

Амплитудные значения используют индексы Iа, Uа, Eа , или Im, Um, Em. В практических расчетах оно нас редко интересует.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector