Astro-nn.ru

Стройка и ремонт
14 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ионизационный датчик пламени принцип работы

Назначение и принцип работы ионизационного электрода

Ионизационный электрод контроля наличия и состояния пламени. Автоматическое отключение подачи газа при погасшем пламени горелки. Отслеживание состояния воздушно-газовой смеси и восстановление процесса горения. Совмещение в одном устройстве запальной и контрольной функций.

Ионизационные электроды используют в датчиках контроля пламени газовых горелок. Их главная задача — сигнализировать блоку управления о прекращении горения и необходимости перекрыть поступление газа. Эти устройства применяют для контроля непрерывности пламени в промышленных печах, домашних котлах отопления, газовых колонках и кухонных плитах. Нередко их дублируют фотодатчиками и термопарами, но в самых простых тепловых аппаратах ионизационный электрод является единственным средством контроля за зажиганием газа и непрерывностью его горения.

Назначение, принцип работы и конструкция ионизационного электрода

Если в нагревательном устройстве по каким-то причинам пропадает пламя, то сразу же должна быть прекращена подача газа. В противном случае он достаточно быстро заполнит объем установки и помещение, что может привести к объемному взрыву от случайной искры. Поэтому все нагревательные установки, работающие на природном газе, в обязательном порядке должны оснащаться системой слежения за наличием пламенем и блокировки подачи газа. Ионизационные электроды контроля пламени обычно выполняют две функции: во время зажигания газа от запальника разрешают его подачу при наличии устойчивой искры, а при исчезновении пламени подают сигнал на отключение газа основной горелки.

Принцип работы

Принцип работы ионизационного электрода основан на физических свойствах пламени, которое по своей сути является низкотемпературной плазмой, т. е. средой, насыщенной свободными электронами и ионами и поэтому обладающей электропроводностью и чувствительностью к электромагнитным полям. Обычно на него подается положительный потенциал от источника постоянного тока, а корпус горелки и запальник присоединяются к отрицательному. На рисунке ниже показан процесс возникновения тока между корпусом запальника и электродным стержнем, возвышающийся торец которого предназначен для контроля пламени основной горелки.

Процесс зажигания газа в нагревательной установке происходит в два этапа. На первом в запальник подается небольшое количество газа и включается электроискровое зажигание. При возникновении в запальнике устойчивого воспламенения происходит ионизация и начинает протекать постоянный ток в сотые доли миллиампер. Устройство контроля электрода подает сигнал системе управления, открывается электроклапан, и происходит поджигание основного потока газа. С этого момента электрод формирует управляющий сигнал уже от ионизации его пламени. Система управления настроена на определенный уровень ионизации, поэтому, если ее интенсивность снижается до заданного предела и ток в плазме падает, происходит отключение подачи газа и гашение пламени. После этого весь цикл с использованием запальника повторяется в автоматическом режиме до тех пор, пока процесс горения не станет устойчивым.

  • неправильная пропорция газовоздушной смеси, формируемой в запальнике;
  • нагар или загрязнение на ионизационном электроде;
  • недостаточная мощность потока пламени;
  • уменьшение сопротивления изоляции из-за накопления в запальнике токопроводящей пыли.

Одним из главных достоинств ионизационных электродов является мгновенная скорость срабатывания при погасании пламени. В отличие от них термопарные датчики формируют сигнал только через несколько секунд, которые им требуются для остывания. Кроме того, ионизационные электроды недороги, т. к. имеют очень простую конструкцию: металлический стержень, изолирующая втулка и разъем. Также они очень просты в эксплуатации и обслуживании, которое заключается в очистке стержня от нагара.

К недостаткам датчиков ионизационного контроля можно отнести их ненадежность при работе с газовым топливом, содержащим большие доли водорода или окиси углерода. В этом случае в пламени генерируется недостаточное количество свободных ионов и электронов, что приводит к невозможности удержания стабильного тока. Кроме того, этот метод может оказаться непригодным при работе в условиях повышенной запыленности.

Конструктивные особенности

Ионизационный электрод может быть только контрольным, а может выполнять сразу две функции: запальную и контрольную. Во втором случае для зажигания пламени запальника на него подается высокое напряжение, формирующее искру. Через несколько секунд оно отключается, происходит переключение на питание постоянным током и переход в контрольный режим. Если электрод выполняет только контрольную функцию, то его изоляция, разъем и кабель должны соответствовать требованиям низковольтной аппаратуры, эксплуатируемой при высоких температурах. При использовании его в качестве запального сопротивление изоляции должно выдерживать на пробой напряжение 20 кВ, а подсоединение к блоку управления производиться высоковольтным кабелем.

При установке ионизационного электрода в корпус конкретной горелки необходимо применять изделие оптимальной длины. Слишком большой стержень будет перегреваться, деформироваться и быстрее покрываться нагаром. В случае малой длины возможны ситуации, когда ионизационный поток будет прерываться при уходе пламени от конца электрода к другому краю корпуса горелки. В реальных условиях длину электрода обычно подбирают экспериментальным путем.

В бытовых газовых плитах для зажигания используют электроискровые запальные электроды, а для контроля за пламенем — термопарные датчики. А почему в бытовых устройствах не применяют ионизационные электроды в раздельном или совмещенном виде? Ведь они дешевле термопар. Если вы знаете ответ на этот вопрос, поделитесь, пожалуйста, информацией в комментариях к данной статье.

Большая Энциклопедия Нефти и Газа

Действие — пламенно-ионизационный детектор

Действие пламенно-ионизационного детектора основано на эффекте ионизации молекул органических соединений в пламени водорода. [1]

Действие пламенно-ионизационного детектора связано с ионизацией органических молекул в водородном пламени. Когда органические пары поступают в водородное пламя, проводимость пламени повышается. Истинный механизм ионизации в пламени недостаточно изучен. Теория, выдвинутая Штерном [14], предполагает, что в пламени образуются агрегаты углеродных атомов, которые ведут себя подобно твердому углероду. Твердый углерод, имеющий чрезвычайно низкую работу выхода ( 4 3 эв), легко ионизируется в водородном пламени. Наблюдаемая пропорциональность сигнала детектора числу углероднмх атомов в молекуле подтверждает эту теорию. [2]

Действие пламенно-ионизационного детектора основано на ионизации определяемых веществ, которая возникает при их сгорании в пламени водорода. При этом возникает ионный ток, вызывающий сигнал детектора. Очень важно поддерживать в этом детекторе определенное соотношение расходов газа-носителя, водорода и воздуха. Пламенно-ионизационный детектор является по сравнению с катарометром более чувствительным, но менее универсальным. Пламенно-ионизационный детектор применяют для анализа органических соединений. К большинству неорганических газов ( азот, кислород, окислы азота, сероводород, двуокись серы и др.) он не чувствителен. [3]

Действие пламенно-ионизационного детектора основано на эффекте ионизации молекул органических соединений в пламени водорода. [5]

Действие пламенно-ионизационного детектора основано на ионизации молекул органических веществ в пламени водорода. Датчик прибора предназначен для отбора пробы анализируемого газа, разделения ее на составляющие компоненты и определения их содержания на чувствительном пламенно-ионизационном детекторе. [6]

Принцип действия пламенно-ионизационного детектора основан на измерении электропроводности водородного пламени, в котором сжигается газ, выходящий из хроматографической колонки. Одним электродом служит сама горелка, а вторым — платиновая сетка. Анализируемое вещество в результате термической диссоциация и окислительно-восстановительных превращений в водородном пламени за счет образующихся заряженных частичек уменьшают сопротивление межэлектродного пространства, в результате чего во внешней цепи возникает ток. [8]

Принцип действия пламенно-ионизационного детектора основан на ионизации молекул анализируемых органических соединений в водородном пламени с последующим изменением ионного тока. Сигнал детектора ( ионный ток) прямо пропорционален количеству анализируемого вещества, поступающего в него в единицу времени. Пламенно-ионизационный детектор обладает большой чувствительностью и малой инерционностью. [9]

Определение состава и содержания микропримесей углеводородов в газах предусматривает использование метода газожидкостной хроматографии в сочетании с высокочувствительным пламенно-ионизационным детектором. Действие пламенно-ионизационного детектора основано на измерении электропроводности пламени водорода, в котором сжигается анализируемая газовая смесь. При сгорании углеводородов происходит ионизация пламени и соответственно возрастает его электропроводность, что фиксируется электронным устройством. Однако чувствительность пламенно-ионизационного детектора недостаточна для непосредственного определения микропримесей углеводородов в воздухе и кислороде. Поэтому разработанная Е. В. Вагиным методика, приведенная в [34], предусматривает предварительное обогащение микропримесей углеводородов в специальном концентраторе при низкой температуре и последующее хроматографическое определение содержания углеводородов. Чувствительность метода по пропану составляет 2 — 10 — п мол. Метод позволяет осуществить раздельное определение предельных и непредельных углеводородов ( от С2 до С7) в уазах. [11]

Для анализа углеводородов, содержащихся в атмосферном воздухе, в мировой практике принят пламенно-ионизационный метод. Ионизирующее свойство пламени было-известно еще в XIX в. Однако более стройная теория принципа действия пламенно-ионизационного детектора ( ПИД) была разработана в 60 — е годы XX в. Экспериментальным путем доказано, что процесс ионизации имеет две стадии: термическая диссоциация углеводородов без участия кислорода в первой горячей зоне пламени; окисление продукта диссоциации с участием кислорода и образование ионов. [12]

Наиболее часто применяют детектор по теплопроводности и пламенно-ионизационный. Действие детектора по теплопроводности основано на изменении теплопроводности газа-носителя в присутствии других веществ. Он характеризуется большой универсальностью, так как чувствителен практически ко всем летучим органическим соединениям. Действие более чувствительного пламенно-ионизационного детектора основано на измерении тока насыщения ионизированной газовой смеси в зависимости от ее состава. Детектор чувствителен к органическим соединениям и нечувствителен к парам воды. Кроме этих двух детекторов, в газохроматографическом анализе лекарственных веществ, особенно если требуется повышенная чувствительность определения, можно использовать селективные детекторы, такие, как термоионный и электронозахватный. [13]

Другим широко распространенным типом детекторов являются ионизационные детекторы. Как известно, газы при обычных условиях имеют очень низкую электропроводность. Если же под воздействием источников ионизации, например водородного пламени или радиоактивного источника, в газе образуются ионы, радикалы или свободные электроны, то даже при очень небольшой концентрации этих частиц электропроводность газа резко увеличивается. На этом основано действие пламенно-ионизационного детектора . [15]

Детектор ионизации пламени — Flame ionization detector

Пламенно — ионизационный детектор (ПИД) представляет собой научный прибор , который измеряет аналитов в газовом потоке. Его часто используют в качестве детектора в газовой хроматографии . Измерение иона в единицу времени делает этот прибор чувствительным к массе. Автономный FIDS можно также использовать в приложениях , таких как мониторинг газа из органических отходов , неорганизованных выбросов мониторинга и двигателя внутреннего сгорания выбросов измерения в стационарных или переносных приборов.

Содержание

  • 1 История
  • 2 Принцип работы
  • 3 Описание
  • 4 Достоинства и недостатки
    • 4.1 Преимущества
    • 4.2 Недостатки
    • 4.3 Альтернативное решение
  • 5 См. Также
  • 6 Ссылки
  • 7 Источники

История

Первые пламенно-ионизационные детекторы были разработаны одновременно и независимо в 1957 году Маквильямом и Дьюаром в Центральной исследовательской лаборатории Imperial Chemical Industries Австралии и Новой Зеландии (ICIANZ, см. Историю компании Orica ), Аскот-Вейл, Мельбурн , Австралия . и Харли и Преториус из Университета Претории в Претории , Южная Африка .

В 1959 году Perkin Elmer Corp. включила пламенно-ионизационный детектор в свой паровой фрактометр.

Принцип работы

Работа ПИД основана на обнаружении ионов, образующихся при горении органических соединений в водородном пламени . Генерация этих ионов пропорциональна концентрации органических веществ в потоке анализируемого газа.

Измерения FID обычно обозначаются как «метан», что означает количество метана, при котором будет такой же отклик. Углеводороды обычно имеют молярные факторы отклика, равные количеству атомов углерода в их молекуле, в то время как оксигенаты и другие разновидности, содержащие гетероатомы, как правило, имеют более низкий коэффициент отклика. Окись углерода и двуокись углерода не обнаруживаются FID.

Читать еще:  Как клеить гипсокартон – 3 технологии для любых стен

Измерения FID часто обозначаются как «общее содержание углеводородов» или «общее содержание углеводородов» (THC), хотя более точное название было бы «общее содержание летучих углеводородов» (TVHC), поскольку конденсированные углеводороды не обнаруживаются, даже если они важно, например, для безопасности при работе со сжатым кислородом.

Для обнаружения этих ионов используются два электрода , обеспечивающие разность потенциалов. Положительный электрод служит головкой сопла, где образуется пламя. Другой отрицательный электрод расположен над пламенем. Первоначально отрицательный электрод представлял собой платиновую пластину в форме капли или угловатую. Сегодня конструкция была преобразована в трубчатый электрод, обычно называемый коллекторной пластиной. Таким образом, ионы притягиваются к пластине коллектора и, ударяясь о пластину, индуцируют ток. Этот ток измеряется пикоамперметром с высоким импедансом и подается на интегратор . Способ отображения окончательных данных зависит от компьютера и программного обеспечения. Обычно отображается график, на котором время по оси x и общее количество ионов по оси y.

Измеренный ток примерно соответствует доле восстановленных атомов углерода в пламени. В частности, не обязательно понимать, как образуются ионы, но отклик детектора определяется количеством атомов (ионов) углерода, попадающих в детектор в единицу времени. Это делает детектор чувствительным к массе, а не к концентрации, что полезно, потому что на отклик детектора не сильно влияют изменения скорости потока газа-носителя.

Описание

Конструкция пламенно-ионизационного детектора варьируется от производителя к производителю, но принципы одинаковы. Чаще всего FID присоединяется к системе газовой хроматографии.

Элюент выходит из колонны газовой хроматографии (A) и поступает в печь детектора FID (B). Термостат необходим, чтобы гарантировать, что как только элюент покидает колонку, он не выходит из газовой фазы и не осаждается на границе раздела между колонкой и FID. Это осаждение приведет к потере элюента и ошибкам в обнаружении. По мере продвижения элюента вверх по ПИД он сначала смешивается с водородным топливом (C), а затем с окислителем (D). Смесь элюент / топливо / окислитель продолжает двигаться до головки сопла, где существует положительное напряжение смещения. Это положительное смещение помогает отталкивать восстановленные ионы углерода, создаваемые пламенем (E), пиролизирующим элюент. Ионы (F) отталкиваются вверх к пластинам коллектора (G), которые подключены к очень чувствительному амперметру, который обнаруживает ионы, попадающие на пластины, а затем подает этот сигнал на усилитель, интегратор и систему отображения (H). Наконец, продукты пламени выводятся из детектора через выхлопное отверстие (J).

Преимущества и недостатки

Преимущества

Детекторы ионизации пламенем очень широко используются в газовой хроматографии из-за ряда преимуществ.

  • Стоимость: детекторы ионизации пламени относительно недороги в приобретении и эксплуатации.
  • Низкие требования к техническому обслуживанию: помимо очистки или замены жиклера ПИД, эти детекторы не требуют значительного технического обслуживания.
  • Прочная конструкция: ПИД относительно устойчивы к неправильному использованию.
  • Линейность и диапазоны обнаружения: FID могут измерять концентрацию органических веществ при очень низких (10 -13 г / с) и очень высоких уровнях, имея линейный диапазон отклика 10 7 г / с.

Недостатки

Детекторы ионизации пламени не могут обнаруживать неорганические вещества, а некоторые сильно оксигенированные или функционализированные вещества, такие как инфракрасные и лазерные технологии, могут. В некоторых системах CO и CO 2 могут быть обнаружены в FID с использованием метанизатора , который представляет собой слой Ni-катализатора, восстанавливающего CO и CO 2 до метана, который, в свою очередь, может быть обнаружен FID. Метанатор ограничивается его неспособностью уменьшить другие , чем СО и СО соединений 2 и его тенденции быть отравлен рядом химических веществ , обычно встречаются в сточных водах газовой хроматографии.

Другим важным недостатком является то, что пламя ПИД окисляет все проходящие через него окисляемые соединения; все углеводороды и оксигенаты окисляются до диоксида углерода, а вода и другие гетероатомы окисляются в соответствии с термодинамикой. По этой причине FID, как правило, являются последними в цепочке детекторов, а также не могут использоваться для подготовительных работ.

Альтернативное решение

Усовершенствованием метанизатора является реактор Polyarc , который представляет собой последовательный реактор, который окисляет соединения перед их восстановлением до метана. Этот метод может быть использован для улучшения отклика FID и позволяет обнаруживать гораздо больше углеродсодержащих соединений. Полное преобразование соединений в метан и теперь эквивалентный отклик в детекторе также устраняет необходимость калибровки и стандартов, поскольку все факторы отклика эквивалентны показателям метана. Это позволяет проводить быстрый анализ сложных смесей, содержащих молекулы, где стандарты недоступны.

Ионизационные пожарные извещатели: виды и принцип действия

Ионизационный пожарный извещатель – это высокотехнологичное автоматическое устройство для регистрации очага пожара по появлению в газовоздушной среде защищаемого помещения летучих продуктов процесса горения – мельчайших частиц копоти, гари. Такой способ обнаружения основан на свойстве ионизированного воздуха притягивать частицы дымового потока, что и послужило появлению такого названия.

По своей эффективности, это одна из последних ступеней технического развития дымовых пожарных извещателей, сравнимая по чувствительности, скорости/инерционности обнаружения характерных признаков процесса горения с образованием дымов, лишь с газовыми, аспирационными, проточными датчиками; превышая показатели оптико-электронных устройств, предназначенных для таких же целей.

Ионизационные пожарные извещатели способны обнаруживать очаг возгорания не только на самой ранней стадии по появлению летучих частиц реакции горения, но и реагируют на любой их размер; а также цвет, зависящий от физико-химических параметров пожарной нагрузки в защищаемых помещениях, так называемый серый и черный дым; что недоступно большинству других автоматических устройств, фиксирующих образование дымового потока.

Из-за сложности производства, технического контроля при создании подобных устройств; необходимости утилизации/дезактивации, отслуживших свой срок ионизационных пожарных извещателей только на специализированных предприятиях атомной промышленности, созданы предпосылки для высокой стоимости изделий.

В силу наличия в них, пусть и в допустимых государственными нормами, небольшого количества радиоактивных веществ внутри миниатюрных радиоизотопных излучателей, являющихся неотъемлемым элементом конструкции в большинстве моделей изделий; отчасти из-за сформировавшегося предвзятого общественного мнения в нашей стране они серийно не производятся.

Однако, за рубежом их изготовление продолжается, и сертифицированные в установленном порядке изделия можно приобрести на российском рынке пожарно-технической продукции.

Согласно определения, данному в ГОСТ Р 53325-2012, это автоматическое устройство обнаружения очага возгорания, способ действия которого основывается на изменении значений электрического тока, проходящего через искусственно ионизированный воздух, при появлении в них дымовых частиц, образовавшихся в процессе горения твердых, жидких материалов.

По контролируемому признаку пожара, конструкции изделий, техническому устройству чувствительных элементов датчиков, способу обнаружения дымовых частиц к ионизационным пожарным извещателям относят два вида:

Радиоизотопный дымовой извещатель КИ-1

Радиоизотопные

Это дымовой пожарный извещатель, который срабатывает вследствие воздействия продуктов горения на ионизационный ток внутренней рабочей камеры извещателя. Принцип действия радиоизотопного извещателя основан на ионизации воздуха камеры при облучении его радиоактивным веществом. Принцип действия радиоизотопного извещателя основан на ионизации воздуха камеры при облучении его радиоактивным веществом. При введении в такую камеру противоположно заряженных электродов возникает ионизационный ток. Заряженные частички «прилипают» к более тяжёлым частичкам дыма, снижая свою подвижность — ионизационный ток уменьшается. Его уменьшение до определённого значения извещатель воспринимает как сигнал «тревога».

Структурная схема радиоизотопного пожарного извещателя РИД-1

Подобный извещатель эффективен в дымах любой природы. Однако наряду с описанными выше достоинствами радиоизотопные извещатели имеют существенный недостаток, о котором не следует забывать. Речь идёт об использовании в конструкции извещателей источника радиоактивного излучения. В связи с этим возникают проблемы соблюдения мер безопасности при эксплуатации, хранении и транспортировке, а также утилизации извещателей после окончания срока эксплуатации. Эффективен для обнаружения возгораний, сопровождающихся появлением так называемых «чёрных» видов дыма, характеризующихся высоким уровнем поглощения света.

Электроиндукционные

Аэрозольные частицы засасываются из окружающей среды в цилиндрическую трубку (газоход) при помощи малогабаритного электрического насоса и попадают в зарядную камеру. Под воздействием униполярного коронного разряда, частицы приобретают объёмный электрический заряд и, двигаясь далее по газоходу, попадают в измерительную камеру, где наводят на её измерительном электроде электрический сигнал, пропорциональный объёмному заряду частиц и, следовательно, их концентрации. Сигнал с измерительной камеры попадает в предварительный усилитель и далее в блок обработки и сравнения сигнала. Датчик осуществляет селекцию сигнала по скорости, амплитуде и длительности и выдаёт информацию при превышении заданных порогов в виде замыкания контактного реле.

Структурная схема электроиндукционного пожарного извещателя

Структурная схема электроиндукционного пожарного извещателя

  1. Высоковольтный модулятор.
  2. Регулятор напряжения.
  3. Блок питания.
  4. Усилитель.
  5. Блок обработки информации.
  6. Зарядная камера, электрод кольцо.
  7. Зарядная камера, электрод игла.
  8. Конденсатор.
  9. Резистор.
  10. Резистор.
  11. Стабилитрон.
  12. Индукционный электрод.
  13. Светодиод.
  14. Побудитель расхода аэрозоля.
  15. F – Выходной сигнал.

Конструктивно, измерительная линия представляет из себя цилиндрический газоход, на входе которого расположена зарядная камера типа игла-цилиндр, а на выходе измерительный электрод-кольцо и побудитель расхода воздушной смеси.

Основным параметром электроиндукционного пожарного извещателя, который позволяет применить плавающий порог, является его чувствительность, которая позволяет обеспечить устойчивый уровень электрического сигнала, пропорционального весовой концентрации аэрозоля, во всем его возможном диапазоне изменения.

В СП 5.13130.2009, о требованиях к проектированию систем АПС, АУПТ, выбор точечных дымовых пожарных извещателей рекомендовано выполнять в соответствии с их чувствительностью к различным типам дыма. По этому характерному показателю ионизационные пожарные извещатели находятся вне конкуренции среди подобных устройств, в т.ч. эффективно выявляют «черный» дым.

Принцип действия

Удивительна история изобретения дымового радиоизотопного детектора. В конце 1930-х гг. физик Вальтер Йегер занимался разработкой ионизационного датчика для обнаружения отравляющего газа. Он полагал, что ионы молекул воздуха, образованные под действием радиоактивного элемента (схема А, Б), будут связываться молекулами газа и за счет этого будет уменьшаться электрический ток в цепи прибора. Однако небольшие концентрации ядовитого газа не оказывали никакого влияния на проводимость в измерительной ионизационной камере датчика. Вальтер с расстройства закурил и вскоре с удивлением заметил, что микроамперметр, подключенный к датчику, зафиксировал падение тока. Оказалось, что частицы дыма от сигареты воспроизвели тот эффект, который не смог обеспечить отравляющий газ (схема В). Этот эксперимент Вальтера Йегера проложил путь для создания первого детектора дыма.

Основывается на фиксации, регистрации изменений показателей электротока, проходящего через ионизированные молекулы воздушной среды в чувствительном элементе датчика, при воздействии на них мелких частиц летучих продуктов реакции горения.

При попадании таких частиц в камеру датчика ионизационного дымового извещателя они за счет разности электрических потенциалов присоединяются к ионам, что снижает скорость их движения и, как результат, силу тока; при снижении их количества, удалении из чувствительного элемента устройства – сила тока начинает расти.

Уменьшение силы электротока, проходящего через ионизированный воздух, до порогового/критического значения, установленного настройками изделия, воспринимается устройством как признак обнаружения очага пожара в контролируемой зоне, защищаемом помещении; с формированием, передачей тревожного сообщения на приемно-контрольную аппаратуру установки АПС или блок управления системы автоматического пожаротушения.

Читать еще:  Устройство и принцип работы печи Булерьян

Принцип работы радиоизотопных дымовых извещателей основывается на ионизации воздушной среды в контрольной камере чувствительного элемента, размещенного внутри корпуса изделия, при интенсивном излучении его маломощным узконаправленным источником радиоактивного излучения; в электроиндукционных пожарных датчиках ионизация воздуха осуществляется униполярным коронным разрядом электрического тока.

Конструкция

Получившего наибольшее распространение по сравнению с электроиндукционным устройством, ионизационного радиоизотопного дымового извещателя состоит из следующих элементов:

  • Корпуса из высококачественного пластика, например, негорючего поликарбоната с отверстиями для входа и выпуска воздуха, дымовых газов, защищенными как мелкой металлической сеткой от проникновения насекомых, так и формой корпуса вокруг них, их расположением на нем для защиты от воздействия прямых воздушных потоков.
  • Монтажной базы с электронной печатной платой, на которой установлены две, последовательно включенные в электрическую цепь ионизационные камеры – контрольная и измерительная; блок управления с микроконтроллером, предназначенный для обработки данных, передачи сигналов, адресации устройства; входными/выходными скользящими зажимными контактами/клеммами для подключения к шлейфу установки АПС.
  • Конструктивно контрольная камера размещена внутри измерительной, являясь закрытым объемом, защищенным от проникновения частиц дыма; в то время как измерительная камера открыта, предназначена для свободного проникновения, фильтрации газовоздушной среды для фиксации происходящих в ней изменений.

Типовая конструкция ионизационного извещателя

  • Компактного источника радиоактивного излучения, чаще содержащего ничтожно малое количество изотопа америция-241, нанесенного на металлическую фольгу, установленного внутри контрольной камеры. Его излучение проникает через обе камеры, образуя в воздухе положительно и отрицательно заряженные частицы – ионы воздуха; при этом радиоизотопный источник излучения несет положительный, а внешняя измерительная камера – отрицательный заряд. При подаче электропитания на входные контакты ионизационного пожарного извещателя внутри него возникает электрическое поле.
  • При накоплении на сигнальном электроде, установленном на границе соединения контрольной и измерительной дымовой камер, положительного заряда достаточной силы, установленного настройками микроконтроллера; он через аналого-цифровой преобразователь, входящий в состав электронной интегральной схемы, формируется в тревожный сигнал, передаваемый на прибор/блок установки АПС.

Сила тока в ионизированном пространстве внутри такого пожарного извещателя остается стабильной только при сохранении нормальных условий в зоне контроля.

При малейших изменениях в воздухе ионизационные пожарные извещатели чутко реагируют, приводя в действие весь комплекс автоматической противопожарной защиты, что дает возможность, если не сразу ликвидировать очаг возгорания; то дать возможность локализовать его, дать время до прибытия пожарных подразделений, минимизировать материальный ущерб.

ИБП для фазозависимых котлов отопления

Как выбрать ИБП для фазозависимых котлов отопления. Принцип работы датчика пламени котла отопления

Необходимость фазировки для работы котла отопления

В современных газовых котлах отопления управление подачей топливной смеси и параметрами составления смеси газа и воздуха управляет электронный контроллер. Информацию о наличии пламени, интенсивности горения и о качестве сжигания газа контроллер получает от датчика пламени. В основе принципа работы датчика пламени лежит процесс образования свободных ионов в воздушной среде между электродами и горелкой под воздействием пламени. Корректная работа такого датчика возможна только при правильном фазном подключении котла отопления к электрической сети. Направление движения свободных электронов определяется наличием фазы на электроде.

Для чего нужен контроль наличия пламени в газовых котлах отопления?

Прежде всего для безопасности эксплуатации отопительного прибора. Для повышения эффективности сжигания топлива в современных котлах и увеличения КПД котлов используется приготовление насыщенной воздушно-газовой смеси. Чем больше воздуха направить в такую смесь, тем более эффективным будет процесс сжигания. Однако при большой мощности воздушного потока в сочетании с сильной тягой может произойти отрыв пламени. Этот процесс очень опасен, если не прекратить подачу топлива, то может произойти объемный взрыв большой мощности.

Второй важной функцией автоматики, работающей на анализе интенсивности образования свободных ионов в пламени, является управление процессом составления горючей смеси. Получая данные от датчика пламени, процессор принимает решение об изменении скорости подачи топлива в горелку и об изменении соотношения долей газа и воздуха в смеси. Добиваясь оптимального уровня горения, удаётся существенно повысить эффективность котла и улучшить экологичность работы прибора.

Принцип работы датчика пламени котла отопления

Чтобы эффективно и быстро контролировать наличие пламени в горелке газового котла отопления используются датчик пламени, построенный на принципе изменения электрической ёмкости воздуха при ионизации его пламенем. Основной принцип функционирования датчиков пламени ионизационного типа состоит в том, что в процессе горения смеси газов образуется большое количество свободных ионов. Эти свободные заряженные частицы устремляются к ионизационному электроду, образуется электрический ток ионизации. Электрический сигнал с ионизационного электрода приходит в электронный модуль управления котла отопления. Если в процессе горения топлива появляется необходимое число свободных ионов, то процессор модуля управления подтверждает подачу топлива в главную горелку котла. Если уровень свободных ионов снижается, то блок управления даёт команду на прекращение подачи топлива в горелку.

В отличие от контроля пламени с помощью теплового клапана, ионный датчик пламени даёт команду на отключение раньше. Котел будет отключен в начале процесса аварии, до того как элементы котла остынут.

Выбор ИБП для фазозависимых котлов отопления

Для работы современных фазозависимых котлов отопления необходимо использовать специализированный источник бесперебойного питания, имеющий явную фазу и нейтраль.

По этой причине нельзя применять обычные компьютерные ИБП, они не имеют выделенной фазировки. По этой же причине нельзя использовать без специального ИБП электрогенераторы, не имеющие выраженной фазировки электрического тока.

Компания БАСТИОН производит линейку специальных источников бесперебойного питания для котлов отопления. ИБП TEPLOCOM и SKAT разработаны специально для питания современных газовых котлов отопления и циркуляционных насосов.

Источники бесперебойного питания БАСТИОН имеют:

  • правильную фазировку выходного сигнала;
  • синусоидальный график напряжения;
  • стабилизированную частоту тока.

ИБП TEPLOCOM и SKAT способны обеспечивать длительный резерв питания в случае отключения сетевого напряжения. Специализированные источники питания для оборудования систем отопления были протестированы специалистами международных электротехнических лабораторий и были рекомендованы для организации питания газового оборудования известных брендов.

Все источники бесперебойного питания TEPLOCOM и SKAT производятся в соответствии с требованиями российских и международных стандартов качества и безопасности продукции. Подробнее об ИБП для котлов отопления БАСТИОН смотрите в разделе «Источники бесперебойного питания».

Физический процесс ионизации воздуха пламенем

В физике хорошо известен эффект влияния пламени на ионизацию воздуха. Простой физический эксперимент доказывает изменение электрических свойств воздушной среды при воздействии на него открытым пламенем. Ниже приводим видеоролик такого физического эксперимента.

Ионизация газа пламени

В природе ионизация воздуха возникает при разрядах молнии. Мощные потоки ионов возникают при термоядерных взрывах на звездах. Процесс появления ионов различных веществ демонстрируется в ходе физических экспериментов. Ниже представлены красивые изображения потоков ионов.

Где купить специализированный ИБП для котла отопления

Купить качественные и проверенные временем российские источники бесперебойного питания компании БАСТИОН для газовых котлов отопления и другого оборудования можно в магазинах фирменной сети СКАТ в городах: Москва, Санкт-Петербург, Ростов-на-Дону, Новосибирск, а также в фирменном интернет-магазине «СКАТ».

Датчики контроля пламени — один из важнейших факторов безопасной работы котельной

О.В. Полтавцев, коммерческий директор,
ООО Конструкторское бюро «АГАВА», г. Екатеринбург

Введение

В котлоагрегатах, при сжигании газа или жидкого топлива, пламя в зоне горения не всегда отличается устойчивостью: в некоторых ситуациях может произойти его отрыв, что создает угрозу взрыва в топке. Поэтому котельное оборудование в обязательном порядке оснащается системой контроля пламени.

Однако, присутствующие на рынке современные системы обнаружения пламени обладают рядом недостатков, в частности, такими, как: конечная надежность и достоверность обнаружения пламени или его отсутствия, низкая селективность, чувствительность к посторонним засветкам. Существенным фактором также является высокая стоимость некоторых приборов, что особенно актуально для объектов ЖКХ. Поэтому так важно в этой сфере появление недорогих, но отвечающих всем современным требованиям, приборов.

ООО КБ «АГАВА», опираясь на двадцатилетний практический опыт работы по автоматизации тепловых агрегатов (котлов, топок, печей) и разработке КИПиА для этой отрасли, предлагает именно такое решение: качественную, надежную систему контроля пламени по разумной цене. При создании этого прибора были учтены все требования безопасности, предъявляемые к теплогенерирующему оборудованию.

Датчики-реле контроля пламени АДП-01

Назначение датчика-реле контроля пламени АДП-01 (рисунок) — фиксировать наличие пламени в топке котла, а в случае его исчезновения — формировать сигнал для автоматики защиты.

Рисунок. Датчик-реле контроля пламени АДП-01.

В корпусе небольшого прибора (габаритные размеры датчика составляют 98×56 мм, вес — 125 г) находится печатная плата, на которой смонтированы электронные компоненты. На задней крышке корпуса расположены три светодиода, выходной разъем и переменный резистор, предназначенный для регулировки чувствительности прибора. На передней части корпуса находится чувствительный элемент.

Принцип действия основан на преобразовании излучения и пульсации пламени в электрический сигнал с помощью чувствительного элемента, который после обработки сравнивается с заданным пороговым уровнем. При превышении порога формируется выходной сигнал. Если сигнал больше порогового уровня, на датчике горит зеленый светодиод, если меньше — зажигается красный светодиод: это знак, что пламя отсутствует, а газ подается. Остальные светодиоды служат индикаторами интенсивности пламени.

Для подключения к системе автоматизации каждый датчик снабжен выходом одного из двух типов: это может быть открытый коллектор или контакты реле. Для предотвращения перегрева прибора и, соответственно, выхода его из строя, при установке дополнительно предлагается специальный фланец.

Датчики серии АДП-01 выпускаются уже несколько лет. К настоящему моменту в линейку входят 9 приборов, различающихся, в первую очередь, чувствительными элементами. Это оптические сенсоры (фотодиоды и фоторезисторы), ионизационный сенсор и последняя разработка — ультрафиолетовый сенсор.

Датчики пламени АДП-01.9 и АДП-01.10

Новые модификации датчиков пламени с чувствительным элементом, реагирующим на ультрафиолетовое излучение, были разработаны специально по просьбам проектировщиков и наладчиков, часто сталкивающихся с проблемами настройки режимов горения теплогенерирующего оборудования.

Дело в том, что оптические сигнализаторы пламени, которые имеют в качестве сенсора фотодиоды и фоторезисторы, оказались очень чувствительны к пульсации факела. В 90% случаев такой принцип действия себя оправдывает, однако иногда бывает, что факел гаснет, а оптический датчик все равно показывает наличие пламени, потому что он регистрирует ложные пульсации, оставшиеся из-за колебаний горячего воздуха или дымовых газов на фоне раскаленной стенки топки. При этом ультрафиолетовое излучение характерно только для процесса горения газа и полностью отсутствует у раскаленных элементов конструкции топки.

Кроме того, для котлов с тремя и более горелками одним из главных требований, предъявляемых к системе контроля пламени, является селективный (индивидуальный) контроль факела. Это означает, что датчик, смонтированный на одной горелке, не должен реагировать на возникновение, погасание или отрыв пламени на остальных горелках, поскольку может привести, как минимум, к хлопку газа в топке, а как максимум — к масштабной аварии котла или всей котельной.

Читать еще:  У вас отключен JavaScript

Поскольку ультрафиолетовые приборы практически не реагируют на посторонние засветки в видимой части спектра, при использовании датчиков пламени АДП-01.9 и АДП-01.10 вероятность «срабатывания» прибора от работы «чужой» горелки снижается, что повышает надежность и безопасность работы котельного агрегата.

Приборы линейки АДП-01 с ультрафиолетовым датчиком являются универсальными и могут применяться для любых газовых горелок и запальников, в т.ч. для котлов и печей с эффектом «светлой топки» и повышенными требованиями к селективности.

Следует добавить, что стоимость этих приборов из линейки АДП-01 сегодня составляет немногим более 7 тыс. руб.

чувствительного

Может использоваться для газовых и жидкотопливных горелок, цвет пламени которых находится в диапазоне от голубого до красного.

Может использоваться для газовых и жидкотопливных горелок, цвет пламени которых находится в диапазоне от голубого до инфракрасного.

Предназначен для газовых горелок, центр спектра пламени которых лежит в области голубого цвета.

Реагирует на поток ультрафиолетового излучения, характерного только для процесса горения газа.

Не реагирует на внешние засветки и излучения раскаленных поверхностей топки.

В таблице приведены рекомендации по применению всех датчиков пламени серии АДП-01, на основании которой можно подобрать оптимальное оборудование. ■

ГК «Теплоприбор» – разработка, производство и комплексная поставка контрольно-измерительных приборов и автоматики — КИПиА.

Аналоги данного товара

  • Продукция
    • 1. Теплоучет
    • 2. Температура
    • 3. Давление
    • 4. Расход
    • 5. Уровень
    • 6. Автоматика и вторичные приборы
      • 6.1. Измерители-регуляторы
      • 6.2. Регистраторы
      • 6.3. Пневматические приборы и устройства
      • 6.4. Блоки питания и преобразования
      • 6.5. Котельное оборудование и автоматика
        • 6.5.1. Устройства для автоматизации тепловых систем
        • 6.5.2. Устройства розжига и приборы контроля пламени
          • 6.5.2.1. Запально-защитные устройства ЗЗУ
          • 6.5.2.2. Источники высокого напряжения ИВН трансформаторные
          • 6.5.2.3. Датчики пламени и сигнализаторы горения
          • 6.5.2.4. Приборы и блоки контроля, управления и защиты
        • 6.5.3. Пускорегулирующие устройства
        • 6.5.4. Горелки газовые и жидкотопливные
        • 6.5.5. Шкафы, щиты и комплекты автоматики
    • 7. Аналитика

Группа компаний (ГК) «Теплоприбор» (Теплоприборы, Промприбор, Теплоконтроль и др.) — это приборы и автоматика для измерения, контроля и регулирования параметров технологических процессов (расходометрия, теплоконтроль, теплоучёт, контроль давления, уровня, свойств и концентрации и пр.).

По цене производителя отгружается продукция как собственного производства, так и наших партнёров — ведущих заводов — производителей КИПиА, аппаратуры регулирования, систем и оборудования для управления технологическими процессами — АСУ ТП (многое имеется в наличии на складе или может быть изготовлено и отгружено в кратчайшие сроки).

Теплоприбор.рф — официальный сайт ГК «Теплоприбор» — это гарантия качества, сроков, справедливой стоимости и прайс-листа с актуальными ценами* (любое предложение на сайте не является публичной офертой).

География ГК «Теплоприбор»:
Москва, Рязань, Челябинск, Казань, Екатеринбург, Санкт-Петербург, Новосибирск, Нижний Новгород, Самара, Ростов-на-Дону, Уфа, Красноярск, Пермь, Воронеж, Белгород, Волгоград, Краснодар, Саратов, Тюмень, Томск, Омск, Иркутск, Улан-Удэ, Саранск, Чебоксары, Ярославль и другие города РФ, также мы работаем с Белоруссией, Украиной и Казахстаном.

Рекомендации как правильно выбрать, заказать и купить контрольно-измерительные приборы и автоматику (КИПиА), дополнительное/вспомогательное оборудование и защитно-монтажную арматуру, а также другую полезную и интересную информацию см. наши официальные сайты.

Работа и вакансии: в Московский офис (СЗАО, ст. метро Планерная, р-н Куркино (рядом МКАД и г. Химки) требуется менеджер по сбыту КИПиА, ЗП достойная, возможна удаленная работа оклад + %.
teplokip@yandex.ru

Новые публикации: Статья «Датчики давления. Сравнительный обзор видов, характеристик и цен.»

Датчики-реле контроля пламени ДПЗ-01А, ДПЗ-71DIN ионизационные

Ионизационные сигнализаторы горения — датчики-реле контроля пламени ДПЗ-01А, ДПЗ-71DIN с выходным дискретным (релейным) сигналом предназначены для индикации наличия или отсутствия пламени горелок и выдачи сигнала для систем автоматики промышленного энергетического оборудования (котельной автоматики и др.).

Принцип работы ионизационных датчиков пламени ДПЗ-01А, -71DIN

Действие ионизационных датчиков контроля пламени (ДПЗ и аналогов) основано на эффекте электрической проводимости пламени под действием разности потенциалов, приложенной к корпусу горелки и электроду. В пламени, как в низкотемпературной плазме, всегда присутствуют свободные электроны и ионы. Под действием электрического потенциала начинается движение этих частиц, т. е. возникает ток. Этот ток фиксируется вторичным прибором, и наличие тока свидетельствует о наличии пламени. При желании установки в горелке датчиков ионизационного контроля пламени следует иметь в виду, что факел не любого топлива генерирует достаточное количество ионов, способных формировать ток ионизации (узнать больше об особенностях ионизационных датчиков пламени).

Стоимость датчиков-реле ДПЗ-01 и ДПЗ-71DIN

Цена* датчиков-реле контроля пламени ДПЗ-01А/24, ДПЗ-01А/24К, ДПЗ-01А/220, ДПЗ-01А/220К — 10 940 руб.

Цена* датчика-реле контроля пламени ДПЗ-71DIN — 9 020 руб.

*- Все цены указаны на базовое исполнение, без учета налога НДС, стоимости доп. опций, тары/упаковки и расходов на отгрузку/доставку. При крупных оптовых партиях и на проектные заказы цена формируется индивидуально, исходя из объема партии, достигнутых договоренностей и адреса объекта.

Технические характеристики датчиков-реле контроля пламени ДПЗ-01А, ДПЗ-71DIN ионизационных

Модификации в зависимости от вида присоединения:

— Датчик-реле пламени ДПЗ-01А/24, -01А/220 — вид присоединения — разъем типа 2РМ22;
— Датчик-реле пламени ДПЗ-01А/24К, -01А/220К -вид присоединения — клеммная колодка;
— Датчик-реле пламени ДПЗ-71DIN — предназначен для установки в щиты управления на 35 мм DIN-рейку, выпускается в корпусе из ударопрочной термопластмассы, подключение проводов осуществляется с помощью винтовых клеммников, установленных внутри корпуса;

Габаритные и монтажно-присоединительные размеры датчиков-реле контроля пламени ДПЗ-01А, ДПЗ-71DIN ионизационных

Габаритные размеры датчиков ДПЗ-01А

Форма заказа датчиков-реле контроля пламени ДПЗ-01А, ДПЗ-71DIN ионизационных

При заказе ионизационного датчика-реле контроля пламени (факела) ДПЗ (-01А, -71DIN) следует указать напряжение питания, а также вид разъема (см.подробнее о возможных модификациях сигнализаторов горения ДП3).

Сигнализатор горения — ионизационный датчик-реле контроля пламени ДПЗ-01А/220 — датчик пламени с напряжением питания 220В, разъем типа 2РМ22.
Сигнализатор горения — ионизационный датчик-реле контроля пламени ДПЗ-71DIN — датчик пламени с напряжением 220В, монтаж на DIN-рейку (ДИН-реечный).

Возможные ошибки при оформлении заказа на ионизационные датчики-реле контроля пламени ДПЗ-01А, ДПЗ-71DIN

При заказе ионизационных датчиков-реле контроля пламени ДПЗ-01А, ДПЗ-71DIN рекомендуем быть внимательными при оформлении заказа, в т.ч. учитывать возможные варианты записи обозначения и встречающиеся ошибки при заказе. Например, нам доводилось сталкиваться с такими ошибками в заявках:
— неправильное или некорректное название прибора: ионный сигнализатор пламени, горения, прибор контроля пламени факела и т.п.
— неправильные обозначения модели и орфографические ошибки: рэле ДПЗ-01 УХЛ2, -01Щ, -01Н, , ДПЗ-71НР, -71НК, -71Щ, ДПЗ01А, ДЗП-01-А, ДП3-01А, ДП3-71-ДИН, ДП3-71Дин (цифра 3 вместо буквы «З») и т.п.
— ошибки написания связанные с переводом, транслитераций или раскладкой клавиатуры, например: ionization sensors-flame monitoring relays, datchiki-rele kontrolya plameni DPZ-01A, -71DIN lfnxbrb-htkt rjynhjkz gkfvtyb LGP-01F (в En-раскладке) и т.д. и т.п.

Поэтому убедительная просьба, будьте внимательны при оформлении заказа на сигнализаторы горения (факела) — датчики-реле контроля пламени ДПЗ (01А, 71-DIN), не путайте обозначения, а если не знаете или не уверены, то просто напишите основные технические характеристики (конструктивное исполнение, вид присоединения, напряжение питания условия окружающей среды и т.п.) в простой форме изложения, а инженеры нашего предприятия подберут необходимый Вам прибор и доп. оборудование по наилучшему соотношению Цена — Качество — Срок изготовления (наличие на складе).

Это нужно знать

Экспериментально обнаружено, что неудачно близкое расположение электроискрового разрядного запальника и ионизационного датчика контроля пламени может приводить к ложной информации о наличии факела, в то время, как воспламенение топлива еще не произошло. При близком расположении этих элементов между ними протекают процессы, аналогичные процессам термоэлектронной эмиссии в электронных лампах. В этом случае электрод контроля выполняет функцию анода триодной лампы, запальный электрод имитирует решетку лампы, а электропроводящая зона – катод. Поэтому эти элементы необходимо располагать на значительном удалении друг относительно друга, но с учетом того, что они оба должны быть в зоне воспламенения.

Copyright © ТЕПЛОПРИБОР.рф 2015-2018 все права защищены,
текст зашифрован, копирование отслеживается и преследуется;
авт.-ПОМ.
ГК Теплоприбор — производство и продажа КИПиА: Автоматика и вторичные приборы / Котельное оборудование и автоматика / Датчики пламени и сигнализаторы горения / Датчики контроля пламени (факела) ДПЗ-01А, -71DIN, Парус, СЛ-90, ФЭП-Р, Луч, ФДС-Ч, ФД-1, ФДС-03-С-Ex и др.
См. тех. описание/характеристики, прайс-лист (оптовая цена), рекомендации по выбору, аналоги и замены, форму заказа (как правильно выбрать, заказать и купить) датчик-реле контроля пламени ДПЗ-01А, ДП3-71DIN по цене производителя; проверить наличие на складе в Москве (или уточнить срок изготовления).
Также см. способы доставки и отгрузка ТК (Деловые Линии и другими) по всей территории РФ. Прочую информацию по заказу — см. официальный сайт ГК Теплоприбор раздел Автоматика и вторичные приборы.

Мы будем рады, если вышеизложенная информация оказалась полезна Вам, а также заранее благодарим за обращение в любое из представительств группы компаний «Теплоприбор» (три Теплоприбора, Теплоконтроль, Промприбор и другие предприятия) и обещаем приложить все усилия для оправдания Вашего доверия.

Цена: от 9020 руб.

Наличие на складе: В наличии*

* На складе в Москве имеются в наличии сигнализаторы горения, фотодатчики и датчики-реле контроля факела пламени ходовых марок и диапазонов в стандартном (базовом) исполнении; при отсутствии в наличии, плановый срок производства составит от 10-15 рабочих дней или могут быть предложены недорогие аналоги, имеющиеся в наличии.

Форму «Заказать онлайн» см. ниже
Краткие технические характеристики ионизационных датчиков-реле контроля пламени ДПЗ-01А, ДПЗ-71DIN: c регулировкой чувствительности (ДПЗ-01А), выход — сухие контакты реле 220В/1А, СД-индикация, присоединение — разъем 2РМ22/клеммная колодка/DIN-рейка, IP65/IP20, температура окружающей среды Тос от -40°С до +60°С, питание 24/220В.
.
Все цены на ионизационные, оптические ультрафиолетовые и инфракрасные фотодатчики, датчики пламени (ДПЗ-01А, ДПЗ-71DIN, Парус-003Ц-УФ, ФДС-03, ПАРУС-002-УФ-1Е, СЛ-90, ФЭП-Р, Луч, ФДС-Ч, ФД-1, ФДС-03-С-Ex и другие) указаны на базовое исполнение в рублях (см. общий прайс-лист) без учета налога НДС, стоимости доп. опций и оборудования, тары-упаковки, расходов на отгрузку и/или доставку, в расчете на оптовый заказ (при крупных оптовых партиях и на проектные заказы цена формируется индивидуально, исходя из объема партии, достигнутых договоренностей и адреса объекта).

ВНИМАНИЕ! Будьте осторожны при выборе поставщика — на российском рынке аналитических приборов, систем и оборудования имеются дешевые некачественные копии сигнализаторов горения — датчиков пламени (ДП3-01А, ДП3-71DIN, Парус-003Ц-УФ, Парус-002УФ-1Е, СЛ-90, ФЭП-Р, Луч, ФДС-Ч, ФД-1, ФДС-03-С-Ex и других): аналоги, упрощенные подделки и неликвиды, лишенные должного сервиса, гарантии, с меньшими или истекающими сроками поверки, без дополнительных опций, в неполной комплектации; поэтому, возможно даже имеющие более низкую цену, чем у оригинальных изделий

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector