Astro-nn.ru

Стройка и ремонт
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое гальваническая развязка электрических цепей

О питании. Часть вторая.

Цикл статей состоит из трёх частей:

Данный цикл статей является попыткой в очень сжатом виде представить различные темы и вопросы о питании электроники. Статья представляет собой не инструкцию, а , скорее, приблизительное руководство с учётом личного мнения и опыта автора.

Помехи в схемах.

В процессе нормальной работы электронного устройства могут появляться помехи в схеме.

Помеха — это всплеск тока или напряжения в схеме, приводящий к неверной работе устройства.

Помехи могут не только препятствовать нормальной работе устройства, но и привести к его полному выходу из строя.

Увидеть помехи можно на экране осциллографа, включив его в исследуемую часть схемы (Рис. 1). Длительность помех может быть как очень маленькой (единицы наносекунд, так называемые «иголки»), так и очень большой (несколько секунд). Форма и полярность помех тоже бывает разная.
Распространение (прохождение) помех происходит не только по проводным соединениям схемы, но иногда даже и между частями схемы, не соединёнными проводкниами. Кроме того помехи могут накладываясь, суммироваться друг с другом. Так, единичная слабая помеха может не вызвать сбоя в схеме устройства, но одновременное скопление нескольких слабых случайных помех приводит к неверной работе устройства. Этот факт во много раз усложняют поиск и устранение помех, так как они принимают ещё более случайный харрактер.

Источники помех можно грубо разделить:

  • Внешний источник помех. Находящийся рядом с устройством источник сильного электромагнитного или электростатического поля может привести к сбоям в электронном устройстве. Например разряд молнии, релейная коммутация больших токов или работа электросварки.
  • Внутненний источник помех. Например, при включении/выключении нагрузки с реактивным собпротивлением (электромотора или электромагнита) в устройстве, может происходить сбой в работе остальной части схемы. Неверный алгоритм программы тоже может быть источником внутренних помех.

Для защиты от внешних помех конструкцию или отдельные её части помещают в металлический или электромагнитный экран, а так же применяют схемные решения с меньшей чувствительностью к внешним помехам. От внутренних помех помогает применение фильтров, оптимизация алгоритма работы, изменение построения всей схемы и расположения её частей относительно друг друга.
Очень элегантным считается не безразборное подавление всех помех, а сознательное направление их в те места схемы, где они затухнут, не причинив вреда. В ряде случаев такой путь намного проще, компактнее и дешевле.

Оценка вероятности появления помех в схемах и пути их предотвращения — задача не простая, требующая теоретических знаний и практического опыта. Но тем не менее с твёрдостью можно сказать, что вероятность появления помехи возрастает:

  • с увеличением коммутируемого тока или напряжения в цепи,
  • с увеличением чувствительности частей схемы,
  • с увеличением быстродействия применённых деталей.

Что бы не переделывать готовую конструкцию из за частых сбоев, лучше уже на стадии проектирования схемы ознакомиться с возможными источниками и путями распространения помех. Так как около половины всех проялвений помех связаны с «плохим» питанием, то начинать проектировать устройство лучше всего с выбора способа питания его частей.

Помехи по цепям питания.

На рисунке 2 представлена типичная блок-схема некоего электронного устройства, которое состоит из источника питания, схемы управления, драйвера и исполнительного устройства.
По такой схеме построены большинство простейших роботов из серии «Шаг за Шагом» на этом сайте.

В таких схемах можно условно выделить две части: управляющую и силовую. Управляющая часть потребляет относительно мало тока и содержит какие-либо контролирующие или вычислительные схемы. Силовая часть потребляет значительно больше тока и в неё входит улилитель и оконечная нагрузка.
Рассмотрим каждую часть схемы подробнее.

Источник питания (Рис. 2 a.) может представлять собой «батарейки» или сетевой трансформаторный блок питания. В источник питания так же может входить стабилизатор напряжения и небольшой фильтр.

Схема управления — это часть схемы (Рис. 2 б.), где просиходит обработка какой либо информации в соответствии с работой алгоритма. Сюда же могут поступать сигналы с внешних источников, например, с каких либо сенсоров. Сама схема управления может быть собрана с применением микроконтроллеров или других микросхем, или же на дисретных элементах.

Линии связи просто соединяют схему управления с драйвером исполнительным устройством, то есть это просто проводки или дорожки печатной платы.

Исполнительное устройство (Рис. 2 в.) часто представляет собой механизм, который преобразует электрический сигнал в механическую работу, например электромотор или электромагнит. То есть исполнительное устройство преобразовывает электрический ток в другой вид энергии и обычно потребляет относительно большой ток.

Так как сигнал от схемы управления очень слабый, поэтому драйвер или усилитель (Рис. 2 г.) является неотъемлемой частью многих схем. Драйвер может быть выполненн, например, на одном лишь транзисторе или специальной микросхеме, в зависимости от типа исполнительного устройства.

Как правило, основным источником сильных помех является исполнительное устройство. Появившаяся тут помеха, пройдя через драйвер, распространяется и дальше по шине питания (Помеха на Рис. 2 показана схематично оранжевой стрелкой). А так как схема управления запитана от того же источника питания, то велика вероятность воздействия этой помехи и на неё. То есть, например, помеха, появившись в моторе, пройдёт через драйвер и может привести к сбою в схеме управления.
В простых схемах бывает достаточно поставить параллельно с источником питания конденсатор большой ёмкости около 1000 мкФ и керамический 0,1 мкФ. Они будут выполнять роль простейшего фильтра. В схемах с токами потребления около 1 ампера и более для защиты от сильных помех сложной формы придётся ставить громоздкий, сложный фильтр, но и это не всегда помогает.
Во многих схемах наиболее простым способом избавиться от воздействия помех помогает применение отдельных источников питания для управляющей и силовой части схемы, то есть применение так называемого раздельного питания.
Хотя раздельное питание применяют не только для борьбы с помехами.

Раздельное питание.

Питание одной или нескольких частей электросхемы от отдельных источников питания называют раздельными питанием.

На Рис. 3 приведена блок-схема некоего устройства. В этой схеме используется два источника питания. Силовая часть схемы запитана от источника питания 1, а схема управления — от источника питания 2. Оба источника питания соединены одним из полюсов, этот провод является общим для всей схемы и относительно него передаются сигналы по линии связи.

На первый взгляд такая схема с двумя источниками питания выглядит громоздкой и сложной. На самом деле подобные схемы с раздельным питанием используются, например, в 95% всей бытовой аппаратуры. Раздельные источники питания там представляют собой лишь разные обмотки трансформаторов с разным напряжением и током. Это ещё одно достоинство схем с раздельным питанием: в одном устройстве можно использовать несколько блоков с различным напряжением питания. Например, для контроллера использовать 5 вольт, а для мотора — 10-15 вольт.
Если приглядеться к схеме на Рис. 3, то видно, что помеха из силовой части не имеет возможности попасть в управляющую часть по линии питания. Следовательно, полностью отпадает и необходимость её подавлять или фильтровать.

В передвижных конструкциях, например, мобильных роботах, из-за габаритов не всегда удобно использовать два блока батареек. Поэтому раздельное питание можно построить с применением одного блока батареек. Схема управления при этом будет питаться от основного источника питания через стабилизатор с маломощным фильтром, Рис. 4. В этой схеме нужно учесть падение напряжения на стабилизаторе выбранного типа. Обычно применяется блок батарей с более высоким напряжением, чем необходимое для схемы управления напряжение. Работоспособность схемы в таком случае сохраняется и при частичном разряде батарей.

Многие микросхемы-драйверы сразу специально расчитаны на использование в схемах с раздельным питанием. Например, широко известная микросхема драйвера L293 (Рис. 5) имеет вывод Vss — для питания схемы управления (Logic Supply Voltage) и вывод Vs — для питания оконечных каскадов силового драйвера (Supply Voltage или Output Supply Voltage).
Во всех конструкциях роботов с микроконтроллером или логической микросхемой из серии «Шаг за Шагом» можно включить L293 схемой с раздельным питанием. При этом напряжение питания силовой части (напряжение для моторов) может быть в пределах от 4,5 до 36 вольт, а напряжение на Vss можно подать то же, что и для питания микроконтроллера или логической микросхемы (обычно 5 вольт).

Если питание управляющей части (микроконтроллера или логической микросхемы) происходит через стабилизатор, а питание силовой части берётся напрямую от блока батареек, то это позволяет значительно сэкономить потери энергии. Так как стабилизатор будет питать только схему управления, а не всю конструкцию. Это — ещё одно достоинство раздельного питания: экономия энергии.

Если взглянуть ещё раз на схему рисунка 3, то можно заметить, что кроме общего провода (GND) силовую часть со схемой управления соединяют ещё и линии связи. По этим проводам в некоторых случаях тоже могут проходить помехи из силовой части внутрь схемы управления. Кроме того эти линии связи часто сильно подвержены электромагнитным воздействиям («наводкам»). Избавиться раз и на всегда от этих вредных явлений можно, применив так называемую гальваническую развязку.
Хотя гальваническую развязку применяют тоже не только для борьбы с помехами.

Гальваническая развязка.

Передачу сигнала между двумя точками электросхемы без электрического контакта называют гальванической развязкой.

На первый взгляд такое определение может показаться невероятным!
Как можно передать сигнал без электрического контакта?
На самом деле есть даже два способа, которые это позволяют.

Оптический способ передачи сигнала построен на явлении фоточувствительности полупроводников. Для этого применяется пара из светодиода и фоточувствительного прибора (фототранзистор, фотодиод), рис 6.

Пара светодиод-фотоприёмник изолированно рас- положены в одном корпусе напротив друг друга. Такая деталь так и называется оптопара (зарубежное название optocopler), рис 7.
Если через светодиод оптопары пропустить ток, то сопротивление встроенного фотоприёмника будет изменяться. Так происходит безконтактная передача сигнала, так как светодиод полностью изолированн от фотоприёмника.
На каждую линию передачи сигнала требуется отдельная оптопара. Частота передаваемого оптическим способом сигнала может лежать в пределах от нуля до нескольких десятков-сотен килогерц.

Индуктивный способ передачи сигнала основывается на явлении электромагнитной индукции в трансформаторе. При изменении тока в одной из обмоток трансформатора происходит изменение тока в другой его обмотке. Таким образом сигнал передаётся из первой обмотки во вторую (рис. 8). Такую связь между обмотками ещё называют трансформатороной, а трансформатор для гальваноразвязки иногда именуют разделительный трансформатор.

Конструктивно трансформаторы обычно выполненны на кольцевом ферритовом сердечнике, а обмотки содержат несколько десятков витков провода (рис. 9). Не смотря на кажущуюся сложность такого трансформатора, его можно изготовить самостоятельно за несколько минут. Так же продаются и готовые малогабаритные трансформаторы для гальванической развязки.
На каждую линию передачи сигнала требуется отдельный такой трансформатор. Частота передаваемого сигнала может лежать в пределах от нескольких десятков герц до сотен-тысяч мегагерц.

В зависимости от типа передаваемого сигнала и требований к схеме можно выбрать либо трансформаторную, либо оптическую гальваноразвязку. В схемах с гальванической развязкой с обоих сторон для согласования (связывания, сопряжения) с остальной схемой часто ставят специальные преобразователи.

Расмотрим теперь блок-схему с использованием гальванической развязки между управляющей и силовой частью на рисунке 10.

По этой схеме видно, что любые помехи из силовой части не имеют никакой возможности проникнуть в управляющую часть, так как электрического контакта между частями схемы не существует.
Отсутствие электрического контакта между частями схемы в случае с гальваноразвязкой позволяет безопасно управлять исполнительными механизмами с высоковольтным питанием. Например, какой нибудь пульт управления с питанием от нескольких вольт может быть гальванически разделён от фазового напряжения сети в несколько сотен вольт, что повышает безопасность для обслуживающего персонала. Это является важным достоинством схем с гальваноразвязкой.

Схемы управления с гальваноразвязкой практически всегда можно встретить в ответственных устройствах, а так же в испульсных блоках питания. Оссобенно там, где присутствует хоть малейшая вероятность появления помех. Но даже в любительских устройствах гальваническая развязка находит применение. Так как небольшое усложнение схемы гальваноразвязкой приносит полную уверенность в бесперебойной работе устройства.

Напоследок ещё раз приведём достоинства и недостатки схем с раздельным питанием и гальванической развязкой:

Раздельное питание

  • — немного усложняет схему
  • + значительно увеличивает помехозащищённость
  • + позволяет применять части схем с разным напряжением питания
  • + экономит энергию

Гальваническая развязка

  • — немного усложненяет схему
  • + значительно увеличивает помехозащищённость
  • + позволяет применять части схем с разным напряжением питания
  • + повышает безопасность работы

Смелых и Удачных Экспериментов.

Цикл статей состоит из трёх частей:

Дополнения и файлы:

Что такое гальваническая развязка электрических цепей

Гальваническая развязка (гальваноразвязка, гальваническая изоляция) – это название общего принципа электрической изоляции рассматриваемой электрической цепи относительно других цепей, присутствующих в данном устройстве. Это передача энергии или сигнала между электрическими цепями без электрического контакта между ними. Гальванические развязки используются для передачи сигналов, для бесконтактного управления и для защиты оборудования и людей от поражения электрическим током.

В качестве примера гальванической развязки может выступать трансформатор. Первичная обмотка трансформатора полностью изолирована от вторичной, поэтому между ними никаких токов возникнуть не может в принципе (кроме случаев пробоя), хотя разность потенциалов в обмотках может быть очень большой. Таким образом, даже если вторичная обмотка гальванически связана с корпусом и, соответственно, с землей, никаких паразитных токов, опасных для оборудования и персонала, на корпусе не возникнет.

Гальваническая развязка цепей может обеспечиваться разными техническими способами: трансформаторная (индуктивная) гальваноразвязка (трансформаторы, цифровые изоляторы на высокочастотном трансформаторном принципе), оптическая гальваноразвязка (оптроны, оптореле), ёмкостная гальваноразвязка (цифровые изоляторы на ёмкостном принципе), электромеханическая развязка (электромеханические реле). Оптрон, конденсатор, трансформатор — устройства позволяющие передавать электрические сигналы без электрического контакта. Изолированные участки цепи в случае конденсатора взаимодействуют через энектростатическое поле, трансформатора — магнитное поле, а в оптроне через световое излучение.

Противоположное понятие — Гальваническая связь — применяется в случае, если имеется непосредственное соединение двух и более участков электрической цепи, а гальваническая развязка — это, соответственно, такая организация взаимодействия участков электрических цепей, при которой непосредственный контакт отсутствует.

Гальваническая изоляция применяется для решения двух задач:

1. Обеспечение независимости сигнальной цепи (при подключении приборов и устройств) за счёт того, что гальваническая изоляция обеспечивает независимый контур тока сигнальной цепи относительно других контуров токов, возникающих при соединении приборов и устройств. Например, это может быть независимость цепи измерения от силовой исполнительной цепи. Независимость сигнальной цепи решает целый ряд проблем электромагнитной совместимости (ЭМС): улучшает помехозащищённость, соотношение сигнал/шум в сигнальной цепи, точность измерения. Гальванически изолированный вход или выход устройства всегда способствует лучшей его совместимости с другими устройствами в тяжелой электромагнитной обстановке. В многоканальных измерительных системах (системах сбора данных) гальваническая развязка бывает как групповая (одна на несколько каналов измерения), так и поканальная (индивидуальная для каждого канала измерения).

2. Обеспечение электробезопасности при работе с оборудованием согласно ГОСТам на электробезопасность. Для электрического оборудования для измерения, управления и лабораторного применения применяют ГОСТ52319-2005, согласно которому определяют требования к стойкости изоляции (испытательному напряжению). Важно отметить, что гальваническая изоляция – это одна из технических мер обеспечения электробезопасности, поэтому требования к изоляции конкретной цепи всегда следует рассматривать в совокупности с другими мерами электобезопасности (защитное заземление, цепи ограничения тока и напряжения и т.д. по ГОСТ52319-2005), принятыми в данном конкретном случае.

Недостатки гальванической изоляции

Основным недостатком цепей с гальванической развязкой является повышенный уровень помех от DC/DC-преобразователя, который, однако, для низкочастотных схем можно сделать достаточно малым с помощью цифровой и аналоговой фильтрации. На высоких частотах ёмкость подсистемы на землю и ёмкость между обмотками трансформатора являются факторами, ограничивающими достоинства гальванически изолированных систем. Ёмкость на землю можно уменьшить, применяя оптический кабель и уменьшая геометрические размеры гальванически изолированной подсистемы.

Распространённой ошибкой при применении гальванически развязанных цепей является неверная трактовка понятия «напряжение изоляции». В частности, если напряжение изоляции модуля ввода составляет 3 кВ, это не означает, что его входы могут находиться под таким высоким напряжением в рабочих условиях.

В зарубежной литературе для этого используют три стандарта: UL 1577, VDE 0884 и IEC 61010-01, но в описаниях устройств гальванической развязки не всегда даются на них ссылки. Поэтому понятие «напряжение изоляции» трактуется в отечественных описаниях зарубежных приборов неоднозначно.

Главное различие состоит в том, что в одних случаях речь идёт о напряжении, которое может быть приложено к изоляции неограниченно долго (рабочее напряжение изоляции), а в других случаях речь идёт об испытательном напряжении (напряжение изоляции), которое прикладывается к образцу в течение времени от 1 минуты до нескольких микросекунд. Испытательное напряжение может в 10 раз превышать рабочее и предназначено для ускоренных испытаний в процессе производства, поскольку определяемое этим напряжением воздействие на изоляцию зависит также от длительности тестового импульса.

Связь между рабочим и испытательным (тестовым) напряжением изоляции по стандарту IEC 61010-01
Рабочее напряжение. ВВоздушный зазор, ммИспытательное напряжение, В
Пиковое напряжение импульса, 50 мксСреднеквадратическое (действующее) значение, 50/60 Гц, 1 минПостоянное напряжение или пиковое значение напряжения 50/60 Гц, макс., 1 мин
1501,6255014001950
3003,3425023003250
6006,5680037005250
1000U51020055507850

Таблица показывает связь между рабочим и испытательным (тестовым) напряжением изоляции по стандарту IEC 61010-01. Как видно из таблицы, такие понятия, как рабочее напряжение, постоянное, среднеквадратическое или пиковое значение тестового напряжения могут отличаться очень сильно.

Электрическая прочность изоляции отечественных средств автоматизации испытывается по ГОСТ 51350 или ГОСТ Р МЭК 60950-2002, то есть синусоидальным напряжением с частотой 50 Гц в течение 1 минуты при напряжении, указываемом в руководстве по эксплуатации как напряжение изоляции. Например, при испытательном напряжении изоляции 2300 В рабочее напряжение изоляции составляет всего 300 В (табл. 1).

Что такое гальваническая развязка

Гальванической развязкой или гальванической изоляцией называется общий принцип электрической (гальванической) изоляции рассматриваемой электрической цепи по отношению к другим электрическим цепям. Благодаря гальванической развязке осуществима передача энергии или сигнала от одной электрической цепи к другой электрической цепи без непосредственного электрического контакта между ними.

Гальваническая развязка позволяет обеспечить, в частности, независимость сигнальной цепи, поскольку формируется независимый контур тока сигнальной цепи относительно контуров токов других цепей, например силовой цепи, при проведении измерений и в цепях обратной связи. Такое решение полезно для обеспечения электромагнитной совместимости: повышается помехозащищенность и точность измерений. Гальваническая изоляция входа и выхода устройств зачастую улучшает их совместимость с другими устройствами в тяжелой электромагнитной обстановке.

Безусловно, гальваническая развязка обеспечивает и безопасность при работе людей с электрическим оборудованием. Это одна из мер, и изоляцию конкретной цепи необходимо всегда рассматривать в совокупности с другими мерами обеспечения электрической безопасности, такими как: защитное заземление и цепи ограничения напряжения и тока.

Для обеспечения гальванической развязки могут быть использованы различные технические решения:

индуктивная (трансформаторная) гальваническая развязка, которая применяется в трансформаторах и для изоляции цифровых цепей;

оптическая развязка посредством оптрона (оптопара) или оптореле, применение которой является типичным для многих современных импульсных источников питания;

емкостная гальваноразвязка, когда сигнал подается через конденсатор очень маленькой емкости;

электромеханическая развязка посредством, например, электромеханического реле.

В настоящее время очень широкое распространение получили два варианта гальванической развязки в схемах: трансформаторный и оптоэлектронный.

Построение гальванической развязки трансформаторного типа предполагает применение магнитоиндукционного элемента (трансформатора) с сердечником или без сердечника, выходное напряжение, снимаемое со вторичной обмотки которого пропорционально входному напряжению устройства. Однако, при реализации этого способа, важно учесть следующие его недостатки:

на выходной сигнал могут влиять помехи, создаваемые несущим сигналом;

частотная модуляция развязки ограничивает частоту пропускания;

Развитие технологии полупроводниковых устройств в последние годы расширяет возможности построения оптоэлектронных узлов развязки, основанных на оптронах.

Принцип работы оптрона прост: светодиод излучает свет, который воспринимается фототранзистором. Так осуществляется гальваническая развязка цепей, одна из которых связана со светодиодом, а другая — с фототранзистором.

Такое решение имеет ряд достоинств: широкий диапазон напряжений развязки, вплоть до 500 вольт, что немаловажно для построения систем ввода данных, возможность работы развязки с сигналами частотой до десятков мегагерц, малые габариты компонентов.

Если не применять гальваническую развязку, то максимальный ток, протекающий между цепями, ограничивается лишь относительно небольшими электрическими сопротивлениями, что может привести в результате к протеканию выравнивающих токов, способных причинить вред как компонентам цепи, так и людям, прикасающимся к незащищенному оборудованию. Обеспечивающий развязку прибор специально ограничивает передачу энергии от одной цепи к другой.

Гальваническая развязка

Гальваническая развязка – принцип электроизоляции рассматриваемой цепи тока по отношению к другим цепям, которые присутствуют в одном устройстве и улучшающий технические показатели. Гальваническая изоляция используется для решения следующих задач:

  1. Достижение независимости сигнальной цепи. Применяется во время подключения различных приборов и устройств, обеспечивает независимости электрического сигнального контура относительно токов, возникающих во время соединения разнотипных приборов. Независимая гальваническая связь решает проблемы электромагнитной совместимости, уменьшает влияние помех, улучшает показатели соотношения сигнал/шум в сигнальных цепях, повышает фактическую точность измерения протекающих процессов. Гальваническая развязка с изолированным входом и выходом способствует совместимости приборов с различными устройствами при сложных параметрах электромагнитной обстановки. Многоканальные измерительные приборы имеют групповую или канальную развязки. Развязка может быть единой для нескольких каналов измерения или поканальной для каждого канала автономно.
  2. Выполнение требований действующего ГОСТа 52319-2005 по электробезопасности. Стандарт регламентирует устойчивость изоляции в электрическом оборудовании управления и измерения. Гальваническая развязка рассматривается как один из комплекса мер по обеспечению электробезопасности, должна работать параллельно с иными методами защиты (заземление, цепи ограничения напряжения и силы тока, предохранительная арматура и т. д.).

Развязка может обеспечиваться различными методами и техническими средствами: гальванические ванны, индуктивные трансформаторы, цифровые изоляторы, электромеханические реле.

Схемы решений гальванической развязки

Во время построения сложных систем для цифровой обработки поступаемых сигналов, связанных с функционированием в промышленных условиях, гальваническая развязка должна решать следующие задачи:

  1. Защищать компьютерные цепи от воздействия критических токов и напряжений. Это важно, если условия эксплуатации предполагают воздействие на них промышленных электромагнитных волн, существуют сложности с заземлением и т. д. Такие ситуации встречаются также на транспорте, имеющем большой фактор человеческого влияния. Ошибки могут становиться причиной полного выхода из строя дорогостоящего оборудования.
  2. Предохранять пользователей от поражения электрическим током. Наиболее часто проблема актуальна для приборов медицинского назначения.
  3. Минимизации вредного влияния различных помех. Важный фактор в лабораториях, выполняющих точные измерения, при построении прецизионных систем, на метрологических станциях.

В настоящее время широкое использование имеют трансформаторная и оптоэлектронная развязки.

Принцип работы оптрона

Светоизлучающий диод смещается в прямом направлении и принимает только излучение от фототранзистора. По такому методу осуществляется гальваническая связь цепей, имеющих связь с одной стороны со светодиодом и с другой стороны с фототранзистором. К преимуществам оптоэлектронных устройств относится способность передавать связи в широком диапазоне, возможность передачи чистых сигналов на больших частотах и небольшие линейные размеры.

Размножители электрических импульсов

Обеспечивают требуемый уровень электроизоляции, состоят из передатчиков-излучателей, линий связи и приемных устройств.

Линия связи должна обеспечивать требуемый уровень изоляции сигнала, в приемных устройствах происходит усиление импульсов до значений, необходимых для запуска в работу тиристоров.

Применение электрических трансформаторов для развязки повышает надежность установленных систем, построенных на основании последовательных мультикомплексных каналов в случае выхода из строя одного из них.

Параметры мультикомплексных каналов

Сообщения каналов состоят из информационных, командных или ответных сигналов, один из адресов свободен и используется для выполнения системных задач. Применение трансформаторов повышает надежность функционирования систем, собранных на основе последовательных мультикомплексных каналов и обеспечивает работу устройства при выходе из строя нескольких получателей. За счет применения многоступенчатого контроля передач на уровне сигналов обеспечиваются высокие показатели помехозащищенности. В общем режиме функционирования допускается отправка сообщений нескольким потребителям, что облегчает первичную инициализацию системы.

Простейшее электрическое устройство – электромагнитное реле. Но гальваническая развязка на основе этого прибора имеет высокую инертность, относительно большие размеры и может обеспечить только небольшое число потребителей при большом количестве потребляемой энергии. Такие недостатки препятствуют широкому применению реле.

Гальваническая развязка типа push-pull позволяет значительно уменьшить количество используемой электрической энергии в режиме полной нагрузки, за счет этого улучшаются экономические показатели использования устройств.

Развязка типа push-pull

За счет использования гальванических развязок удается создавать современные схемы автоматического управления, диагностики и контроля с высокой безопасностью, надежностью и устойчивостью функционирования.

Гальваническая развязка (Часть 1). Виды и работа

Принцип изоляции электрической цепи от других цепей в одном устройстве называется гальваническая развязка или изоляция. С помощью такой изоляции осуществляется передача сигнала или энергии от одной электрической цепи к другой, без прямого контакта между цепями.

Гальваническая развязка дает возможность обеспечения независимости цепи сигналов, так как образуется независимый токовый контур сигнальной цепи от других контуров, в цепях обратной связи и при измерениях. Для электромагнитной совместимости гальваническая развязка является оптимальным решением, так как увеличивается точность измерений, повышается защита от помех.

Принцип действия

Чтобы понять принцип работы гальванической развязки, рассмотрим, как это реализуется в конструкции трансформатора.

Первичная обмотка электрически изолирована от вторичной обмотки. Между ними нет контакта, и не возникает никакого тока, если, конечно, не считать аварийный режим с пробоем изоляции или виткового замыкания. Однако разность потенциалов в катушках может быть значительной.

В результате, если даже вторичная обмотка будет связана электрически с корпусом устройства, а значит и с землей, то все равно на корпусе не возникнет паразитных токов, которые были бы опасны для работников и оборудования.

Виды

Такая изоляция электрических цепей обеспечивается различными методами с применением всевозможных электронных элементов и деталей. Например, трансформаторы, конденсаторы и оптроны способны осуществлять передачу электрических сигналов без непосредственного контакта. Участки цепи взаимодействуют через световой поток, магнитное или электростатическое поле. Рассмотрим основные виды гальванической изоляции.

Индуктивная развязка

Для построения трансформаторной (индуктивной) развязки необходимо применить магнитоиндукционный элемент, который называется трансформатором. Он может быть как с сердечником, так и без него.

При развязке трансформаторного вида применяют трансформаторы с коэффициентом трансформации, равным единице. Первичная катушка трансформатора соединяется с источником сигнала, вторичная – с приемником. Для развязки цепей по такой схеме можно применять магнитомодуляционные устройства на основе трансформаторов.

При этом напряжение на выходе, которое имеется на вторичной обмотке трансформатора, будет напрямую зависеть от напряжения на входе устройства. При таком методе индуктивной развязки существует ряд серьезных недостатков:
  • Значительные габаритные размеры, не позволяющие изготовить компактное устройство.
  • Частотная модуляция гальванической развязки ограничивает частоту пропускания.
  • На качество выходного сигнала влияют помехи несущего входного сигнала.
  • Действие трансформаторной развязки возможно только при переменном напряжении.
Оптоэлектронная развязка

Развитие электронных и информационных технологий полупроводниковых элементов в настоящее время повышает возможности проектирования развязки с помощью оптоэлектронных узлов. Основу таких узлов развязки составляют оптроны (оптопары), которые выполнены на основе тиристоров, диодов, транзисторов и других компонентов, чувствительных к свету.

В оптической части схемы, которая связывает приемник и источник данных, носителем сигнала выступают фотоны. Нейтральность фотонов дает возможность выполнить электрическую развязку выходной и входной цепи, а также согласовать цепи с различными сопротивлениями на выходе и входе.

В оптоэлектронной развязке приемник не оказывает влияние на источник сигнала, поэтому есть возможность модулирования сигналов широкого диапазона частот. Важным преимуществом оптических пар является их компактность, которая позволяет их применение в микроэлектронике.

Оптическая пара состоит из излучателя света, среды, проводящей световой поток, и приемника света, который преобразует его в сигнал электрического тока. Сопротивление выхода и входа в оптроне очень велико, и может достигать нескольких миллионов Ом.

Принцип действия оптрона довольно простой. От светодиода выходит световой поток и направляется на фототранзистор, который воспринимает его и осуществляет дальнейшую работу в соответствии с этим световым сигналом.

Более подробно работа оптопары выглядит следующим образом. Входной сигнал поступает на светодиод, который излучает свет по световоду. Далее световой поток воспринимается фототранзистором, на выходе которого создается перепад или импульс электрического тока выхода. В результате выполняется гальваническая развязка цепей, которые связаны с одной стороны со светодиодом, а с другой – с фототранзистором.

Диодная оптопара

В этой паре источником светового потока является светодиод. Такая пара может применяться вместо ключа и работать с сигналами частотой в несколько десятков МГц.

При необходимости передачи сигнала источник подает на светодиод питание, в результате чего излучается свет, попадающий на фотодиод. Под действием света фотодиод открывается и пропускает через себя ток.

Приемник воспринимает появление тока как рабочий сигнал. Недостатком диодных оптопар является невозможность управления повышенными токами без вспомогательных элементов. Также к недостаткам можно отнести их малый КПД.

Транзисторная оптопара

Такие оптические пары имеют повышенную чувствительность, в отличие от диодных, а значит, являются более экономичными. Но их скорость реакции и наибольшая частота соединения оказывается меньше. Транзисторные оптические пары обладают незначительным сопротивлением в открытом виде, и большим в закрытом состоянии.

Управляющие токи для транзисторной пары выше выходного тока диодной пары. Транзисторные оптроны можно применять разными способами:
  • Без вывода базы.
  • С выводом базы.

Без вывода базы коллекторный ток будет напрямую зависеть от тока светодиода, но транзистор будет иметь длительное время отклика, так как цепь базы всегда открыта.

В случае с выводом базы есть возможность увеличить скорость реакции подключением вспомогательного сопротивления между эмиттером и базой транзистора. Тогда возникает эффект, при котором транзистор не переходит в состояние проводимости до тех пор, пока диодный ток не достигнет значения, необходимого для падения напряжения на резисторе.

Такая гальваническая развязка обладает некоторыми преимуществами:

  • Широкий интервал напряжений развязки (до 0,5 кВ). Это играет большую роль в проектировании систем ввода информации.
  • Гальваническая развязка может функционировать с высокой частотой, достигающей нескольких десятков МГц.
  • Компоненты схемы такой развязки имеют незначительные габаритные размеры.

При отсутствии гальванической изоляции наибольший ток, который проходит между цепями, может ограничиться только малыми электрическими сопротивлениями. В результате это приводит к возникновению выравнивающих токов, которые причиняют вред элементам электрической цепи и работника, которые случайно прикасаются к незащищенному электрооборудованию.

Зачем нужна гальваническая развязка?

Очень часто в электрических устройствах возникает необходимость исключить электрическую связь между высоким силовым напряжением и низким напряжением цепей управления. Иными словами, необходимо выполнить защиту низковольтных устройств от напряжения силовых цепей в сотни, а то и тысячи вольт. Технически это означает, что в данной системе или электрическом устройстве необходимо исключить протекание тока по общим цепям. Отсутствие тока означает наличие большого омического сопротивления между общими проводами двух устройств, что равнозначно разрыву цепи. Эту задачу решает гальваническая развязка – устройство, исключающее гальваническую связь между электрическими устройствами.

Представим себе обычный промышленный электрический двигатель. В условиях производства большая часть двигателей имеет рабочее питающее напряжение выше 200В, что опасно для персонала. Поэтому подача питающего напряжения на обмотки, т.е. включение двигателя, производится при помощи дополнительных устройств, коммутирующих силовые цепи. С другой стороны, коммутаторы также должны управляться, например, кнопкой, и при этом гальваническая развязка защищает оператора от поражения опасным напряжением.

Сами по себе коммутирующие устройства, например, контакторы и пускатели, являются устройствами, в которых конструкция исключает электрический контакт между входом (контакты катушки электромагнита) и выходом (силовая контактная группа пускателя). Связь между ними осуществляется только через механическое взаимодействие магнитного поля с конструктивными элементами пускателя, благодаря чему высокое напряжение питания двигателя не попадает на пульт управления.

Есть и другие варианты технического решения гальванической развязки. В первую очередь это трансформаторы. С их помощью легко решается гальваническая развязка по питанию. Особенно широкое применение получил этот способ в электрорадиотехнике бытового назначения. Дело в том, что напряжение питания бытовых приборов опасно для человека. Например, при отсутствии гальванической развязки между бытовой электросетью и платой обработки телевизионного сигнала, опасный для жизни потенциал будет находиться на всех металлических элементах конструкции телевизора, а доступ до «телевизионных внутренностей» вполне доступен домашним «самоделкиным». Вопрос защиты от электрического напряжения для таких устройств решается просто: на входе бытового прибора между ним и электросетью ставится трансформатор. Его первичная обмотка включается в сеть, а вторичная подает индуктированный в ней ток для питания телевизора. Вот здесь и проявляется одна из полезных особенностей трансформатора – с его помощью реализуется гальваническая развязка аналогового сигнала, что широко используется в различных устройствах.

С развитием силовых полупроводниковых приборов широкое распространение получили коммутирующие устройства – оптотиристоры — с оптронным (световым) каналом управления. Входная (управляющая) цепь оптрона содержит лампочку или светодиод, которые включаются при подаче сигнала управления. Световой поток попадает на светочувствительный управляющий электрод тиристора, который включает силовую цепь анод-катод. При этом обеспечивается 100% отсутствие гальванической связи вход-выход. Другой вариант оптронных устройств представляют собой оптотранзисторы, которыми легко решается гальваническая развязка аналогового сигнала, например, в датчиках измерительных приборов.

Использование гальванических развязок в технике имеет значительно больший спектр решаемых задач, чем освещено в этой статье. Современные технологии постоянно пополняют список таких устройств для инженерного применения.

Термин: Развязка гальваническая

Гальваническая развязка (гальваноразвязка, гальваническая изоляция) это название общего принципа электрической изоляции рассматриваемой электрической цепи относительно других цепей, присутствующих в данном устройстве. Гальваническая изоляция, как правило, применяется для решения одной из двух (или обеих) задач:

1. Обеспечение независимости сигнальной цепи (при подключении приборов и устройств) за счёт того, что гальваническая изоляция обеспечивает независимый контур тока сигнальной цепи относительно других контуров тока, возникающих при соединении приборов и устройств. Например, это может быть независимость цепи измерения от силовой исполнительной цепи. Независимость сигнальной цепи решает целый ряд проблем электромагнитной совместимости (ЭМС): улучшает помехозащищённость, соотношение сигнал/шум в сигнальной цепи, точность измерения. Гальванически изолированный вход или выход устройства всегда способствует лучшей его совместимости с другими устройствами в тяжелой электромагнитной обстановке. В многоканальных измерительных системах (системах сбора данных) гальваническая развязка бывает как групповая (одна на несколько каналов измерения), так и поканальная (индивидуальная для каждого канала измерения).

2. Обеспечение электробезопасности при работе с оборудованием согласно ГОСТам на электробезопасность. Для электрического оборудования для измерения, управления и лабораторного применения применяют ГОСТ 12.2.091-2012, согласно которому определяют требования к стойкости изоляции (испытательному напряжению). Важно отметить, что гальваническая изоляция это одна из технических мер обеспечения электробезопасности, поэтому требования к изоляции конкретной цепи всегда следует рассматривать в совокупности с другими мерами электобезопасности (защитное заземление, цепи ограничения тока и напряжения и т.д.), принятыми в данном конкретном случае. В любом случае, испытательное напряжение изоляции, указанное в документации на оборудование, должно многократно превышать номинальные напряжения изолируемых цепей.

Следует отметить, что гальваническая развязка цепей может обеспечиваться разными техническими способами: трансформаторная (индуктивная) гальваноразвязка (трансформаторы, цифровые изоляторы на высокочастотном трансформаторном принципе), оптическая гальваноразвязка (оптроны, оптореле), ёмкостная гальваноразвязка (цифровые изоляторы на ёмкостном принципе), электромеханическая развязка (электромеханические реле). Эти способы отличаются не только очевидными эксплуатационными параметрами «по назначению», но и, например, менее очевидными параметрами обеспечения «степени независимости» изолируемых цепей. Например, обычный сетевой трансформатор питания может иметь межобмоточную ёмкость – тысячи пФ, в то время как оптрон – десятые доли пФ. Эта ёмкость гальваноразвязки существенно влияет на сквозные токи высокой частоты через гальваноразвязку и фактически определяет независимость изолируемых цепей для синфазного напряжения с высокой скоростью нарастания.

Перейти к другим терминамCтатья создана:06.07.2014
О разделе «Терминология»Последняя редакция:26.07.2019

Примеры использования термина

Термин используется при описании электрических свойств входов и выходов измерительных приборов, исполнительных и интерфейсных устройств. Ниже приводим примеры измерительных приборов с гальванической изоляцией измерительных цепей.

голоса
Рейтинг статьи
Читать еще:  Парокапельные обогреватели
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector