Astro-nn.ru

Стройка и ремонт
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет мощности асинхронного электродвигателя

Онлайн расчет характеристик трехфазных электродвигателей

1. Расчет мощности электродвигателя

Расчет мощности электродвигателя по току можно произвести с помощью нашего онлайн калькулятора:

Полученный результат можно округлить до ближайшего стандартного значения мощности.

Стандартные значения мощностей электродвигателей: 0,25; 0,37; 0,55; 0,75; 1,1; 1,5; 2,2; 3,0; 4,0; 5,5; 7,5; 11; 15; 18,5; 22; 30; 37; 45; 55; 75 кВт и т.д.

Расчет мощности двигателя производится по следующей формуле:

P=√3UIcosφη

  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
  • cosφ Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

2. Расчет тока электродвигателя

Расчет номинального и пускового тока электродвигателя по мощности можно произвести с помощью нашего онлайн калькулятора:

Расчет номинального тока двигателя производится по следующей формуле:

Iном=P/√3Ucosφη

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • cosφ Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

Расчет пускового тока электродвигателя производится по формуле:

Iпуск=Iном*K

  • К — Кратность пускового тока, данная величина берется из паспорта электродвигателя, либо из каталожных данных (в приведенном выше онлайн калькуляторе кратность пускового тока определяется приблизительно исходя из прочих указанных характеристик электродвигателя).

3. Расчет коэффициента мощности электродвигателя

Онлайн расчет коэффициента мощности (cosφ) электродвигателя

Расчет cosφ (косинуса фи) двигателя производится по следующей формуле:

cosφ=P/√3UIη

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

4. Расчет КПД электродвигателя

Онлайн расчет КПД (коэффициента полезного действия) электродвигателя

Расчет коэффициента полезного действия электродвигателя производится по следующей формуле:

η=P/√3UIcosφ

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
  • cosφ Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);

Оказались ли полезны для Вас данные онлайн калькуляторы? Или может быть у Вас остались вопросы? Напишите нам в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Механические и электрические характеристики асинхронных электродвигателей

В данной статье осветим тему механических и электрических характеристик электродвигателей. На примере асинхронного двигателя рассмотрим такие параметры как мощность, работа, КПД, косинус фи, вращающий момент, угловая скорость, линейная скорость и частота. Все эти характеристики оказываются важными при проектировании оборудования, в котором электродвигатели служат в качестве приводных.

Механические характеристики электродвигателя представляют собой зависимость угловой скорости ω от развиваемого им момента на валу, т.е. ω = f (M). Различают естественные и искусственные механические характеристики электродвигателя.

Естественная механическая характеристика соответствует работе электродвигателя с номинальными параметрами при нормальной схеме включения. Искусственная механическая характеристика соответствует работе электродвигателя с параметрами, отличающимися от номинальных, например, при введении сопротивления, изменении питающего напряжения, частоты и др.

Механические характеристики электродвигателей: 1 — абсолютно жесткая характеристика, 2 — жесткая характеристика, 3 — мягкая механическая характеристика

Сегодня особенно широко распространены в промышленности именно асинхронные электродвигатели, поэтому на их характеристиках и остановимся.

Естественная механическая характеристика асинхронного двигателя

Для примера рассмотрим АИР80В2У3.

Номинальная механическая мощность асинхронного электродвигателя

На шильдике (на паспортной табличке) электродвигателя указывается всегда номинальная механическая мощность на валу данного двигателя. Это не та электрическая мощность, которую данный электродвигатель потребляет из сети.

Так, например, для двигателя АИР80В2У3, номинал в 2200 ватт соответствует именно механической мощности на валу. То есть в оптимальном рабочем режиме данный двигатель способен выполнять механическую работу 2200 джоулей каждую секунду. Обозначим эту мощность как P1 = 2200 Вт.

Номинальная активная электрическая мощность асинхронного электродвигателя

Чтобы определить номинальную активную электрическую мощность асинхронного электродвигателя, опираясь на данные с шильдика, необходимо принять в расчет КПД. Так, для данного электродвигателя КПД составляет 83%.

Что это значит? Это значит, что только часть активной мощности, подаваемой из сети на обмотки статора двигателя, и безвозвратно потребляемой двигателем, преобразуется в механическую мощность на валу. Активная мощность равна P = P1/КПД. Для нашего примера, по представленному шильдику видим, что P1 = 2200, КПД = 83%. Значит P = 2200/0,83 = 2650 Вт.

Номинальная полная электрическая мощность асинхронного электродвигателя

Полная электрическая мощность, подаваемая на статор электродвигателя от сети всегда больше механической мощности на валу и больше активной мощности, безвозвратно потребляемой электродвигателем.

Для нахождения полной мощности достаточно активную мощность разделить на косинус фи. Таким образом, полная мощность S = P/Cosφ. Для нашего примера P = 2650 Вт, Cosφ = 0,87. Следовательно полная мощность S = 2650/0,87 = 3046 ВА.

Номинальная реактивная электрическая мощность асинхронного электродвигателя

Часть полной мощности, подаваемой на обмотки статора асинхронного электродвигателя, возвращается в сеть. Это реактивная мощность Q.

Реактивная мощность связана с полной мощностью через sinφ, и связана с активной и с полной мощностью через квадратный корень. Для нашего примера:

Q = √( 3046 2 — 2650 2 ) = 1502 ВАР

Реактивная мощность Q измеряется в ВАР — в вольт-амперах реактивных.

Теперь давайте рассмотрим механические характеристики нашего асинхронного двигателя: номинальный рабочий момент на валу, угловую скорость, линейную скорость, частоту вращения ротора и ее связь с частотой питания электродвигателя.

Частота вращения ротора асинхронного электродвигателя

Скорость вращательного движения на практике часто оценивается частотой вращения, то есть числом оборотов вала двигателя в минуту. Угловая скорость выражается в радианах в секунду (рад/с). Угловой скоростью удобнее пользоваться при выводе формул и проведении расчетов, частотой вращения — при практической оценке скоростных свойств двигателей.

На шильдике мы видим, что при питании переменным током частотой в 50 Гц, ротор двигателя совершает при номинальной нагрузке 2870 оборотов в минуту, обозначим эту частоту как n1.

Что это значит? Поскольку магнитное поле в обмотках статора создается переменным током частотой 50 Гц, то для двигателя с одной парой полюсов (коим является АИР80В2У3) частота «вращения» магнитного поля, синхронная частота n, оказывается равной 3000 оборотов в минуту, что тождественно 50 оборотам в секунду.

Но поскольку двигатель асинхронный, то п оявление в обмотке ротора ЭДС и вращающего момента возможно только при наличии разности между скоростями магнитного поля и ротора. Это различие называют скольжением (s). Ротор вращается с отставанием на величину скольжения .

Значение s можно определить, разделив разность синхронной и асинхронной частот на синхронную частоту, и выразив это значение в процентах:

s = ( ( n – n1 )/ n) *100%

Для нашего примера s = ( (3000 – 2870)/3000 ) *100% = 4,3%.

Угловая скорость асинхронного двигателя

Угловая скорость ω выражается в радианах в секунду. Для определения угловой скорости достаточно частоту вращения ротора n1 перевести в обороты в секунду (f), и умножить на 2 Пи, поскольку один полный оборот составляет 2 Пи или 2*3,14159 радиан. Для двигателя АИР80В2У3 асинхронная частота n1 составляет 2870 оборотов в минуту, что соответствует 2870/60 = 47,833 оборотам в секунду.

Умножая на 2 Пи, имеем: 47,833*2*3,14159 = 300,543 рад/с. Можно перевести в градусы, для этого вместо 2 Пи подставить 360 градусов, тогда для нашего примера получится 360*47,833 = 17220 градусов в секунду. Однако подобные расчеты обычно ведут именно в радианах в секунду. Поэтому угловая скорость ω = 2*Пи*f, где f = n1/60.

Линейная скорость асинхронного электродвигателя

Линейная скорость v относится к оборудованию, на котором асинхронный двигатель установлен в качестве привода. Так, если на вал двигателя установлен шкив или, скажем, наждачный диск, известного радиуса R, то линейная скорость точки на краю шкива или диска может быть найдена по формуле:

Номинальный вращающий момент асинхронного двигателя

Каждый асинхронный электродвигатель характеризуется номинальным вращающим моментом Мн. Вращающий момент М связан с механической мощностью P1 через угловую скорость следующим образом:

Вращающий момент или момент силы, действующей на определенном расстоянии от центра вращения, для двигателя сохраняется, причем с ростом радиуса уменьшается сила, а чем радиус меньше, тем больше сила, поскольку:

Читать еще:  Большая Энциклопедия Нефти и Газа

Так, чем больше радиус шкива, тем меньшая сила действует на его краю, а наибольшая сила действует непосредственно на валу электродвигателя.

Для приведенного в качестве примера двигателя АИР80В2У3 мощность P1 равна 2200 Вт, а частота n1 равна 2870 оборотов в минуту или f = 47,833 оборота в секунду. Следовательно угловая скорость составляет 2*Пи*f, то есть 300,543 рад/с, и номинальный вращающий момент Мн равен P1/(2*Пи*f). Мн = 2200/(2*3,14159*47,833) = 7,32 Н*м.

Таким образом, исходя из данных, указанных на шильдике асинхронного электродвигателя, можно найти все основные электрические и механические его параметры.

Надеемся, что данная статья помогла вам разобраться в том, как связаны между собой угловая скорость, частота, вращающий момент, активная, полезная и полная мощность, а также КПД электродвигателя.

Определение мощности электродвигателя без бирки

При отсутствии техпаспорта или бирки на двигателе возникает вопрос: как узнать мощность электродвигателя без таблички или технической документации? Самые распространенные и быстрые способы, о которых мы расскажем в статье:

  • По диаметру и длине вала
  • По габаритам и крепежным размерам
  • По сопротивлению обмоток
  • По току холостого хода
  • По току в клеммной коробке
  • С помощью индукционного счетчика (для бытовых электродвигателей)

Определение мощности двигателя по диаметру вала и длине

Простейшие способы определения мощности и марки двигателя – габаритные размеры – вал или крепежные отверстия. В таблице указаны длины и диаметры валов (D1) и длина (L1) для каждой модели асинхронного промышленного трехфазного мотора. Перейти к подробным габаритным размерам электродвигателей АИР

Р, кВт3000 об. мин1500 об. мин1000 об. мин750 об. мин
D1, ммL1, ммD1, ммL1, мм>D1, ммL1, ммD1, ммL1, мм
1,52250225024502860
2,22428603280
3243280
42860286038
5,5328038
7,532803848110
113848110
15421104811055
18,55560140
22485560>140
3065
3755>601406575
457575
556580170
75651407580170
9090
110708017090
132100210
1607590100210
200
25085170100210
315

Проверить мощность по габаритам и крепежным размерам

Таблица подбора мощности двигателя по крепежным отверстиям на лапах (L10 и B10):

Расчет основных параметров двигателя с шильдика

Электродвигатели встречаются в промышленности и быту повсеместно. Если Вы не обращали внимание, то я приведу парочку фото примеров:

Порой возникает необходимость, рожденная будничным любопытством, либо производственной необходимостью в определении мощности электродвигателя по внешнему виду, или значения допустимой температуры в эксплуатации, не говоря уже о значениях тока и напряжения.

Тут возможен вариант, что с него содрана табличка, на которой написаны номинальные параметры, либо же шильдик в таком состоянии, что различить ничего невозможно. Как же быть в такой ситуации…

Одно дело, если Вы всю жизнь работали на производстве движков, и можете определить мощность на глаз. В иных случаях, определить поможет линейка (рулетка) и таблицы с габаритами механизмов.

Если Ваша деятельность больше лежит в теоретических изысканиях, нежели практических, то пригодится формула определения мощности ЭД или таблицы с номинальным данными, именно про это и не только в этой статье.

Бирка (шильдик) электродвигателя

Осмотрев любой, за редким исключением, электродвигатель можно обнаружить табличку, привинченную на болты, саморезы или же заклепки. Что же написано на данном куске металла? Возьмем шильдик, заменив на нем заводской номер на название сайта.

Кстати, редко бывает, что табличка на электрооборудование находится в таком, почти идеальном состоянии. Часто данные выцветают или замазаны краской, ведь задача стоит для обслуживающего персонала покрасить двигатель, а не покрасить двигатель, оставив табличку нетронутой. Но, нам повезло. Пойдем по-порядку.

Первая строчка — число фаз и тип тока (3

), заводской номер, частота сети, форма исполнения и монтажа, класс изоляции

Вторая строчка — тип электродвигателя, косинус фи, возможные схемы соединения, номинальная частота вращения

Третья строчка — возможные номинальные напряжения, номинальная мощность, IP — степень защиты электродвигателя, масса, режим работы электродвигателя (S1).

Четвертая строчка — номинальные токи в зависимости от схемы включения обмоток, далее какому госту соответствует эд.

Рассмотрим отдельные параметры более подробно.

Мощность электродвигателя: полная, активная и на валу

Формула для расчета мощности трехфазного асинхронного двигателя:

S1 — полная мощность, потребляемая двигателем из сети

P1 — активная мощность, потребляемая электродвигателем из сети (указана на шильдике)

P — активная мощность на валу ЭД.

cosf — косинус фи, коэффициент мощности — угол сдвига фаз между активной (P) и полной мощностью (S).

В формулах выше, значение мощности получится в Вт, значение полной мощности в ВА. Чтобы перевести в киловатты необходимо получившееся значение разделить на тысячу. Значение тока и напряжения соответственно в формуле выше в амперах и вольтах.

I1 и U1 — линейные значения тока и напряжения, их еще называют междуфазными. Не стоит путать с фазными. Линейные — это АВ, ВС, СА (380); фазные — АО, ВО, СО (220). Если выразить формулы мощностей через фазные значения тока и напряжения, то вместо корня из трех вначале будет коэффициент 3. Этот коэффициент определяется наглядно через векторную диаграмму трехфазного напряжения.

Для двигателей постоянного тока формула будет просто произведение напряжения на зажимах двигателя умножить на ток, потребляемые двигателем из сети.

Потребляемая мощность p1 больше мощности на валу ЭД из-за потерь, которые возникают при преобразовании электрической энергии в механическую.

Звезда/Треугольник и 220/380, 380/660

Смотреть все значения по порядку как они идут через дробь. То есть написано на шильде Y/D ( треугольник/звезда), значит и токи, напряжения соответственно будут сначала для Y, а после дроби для звезды. Единственно, нюанс, что при 220/380 — треугольник будет 220, А при 380/660 — треугольник будет 380. То есть говорить, что 380 — это всегда звезда — неверно.

Всегда изучайте табличку на движке перед подключением.

Достоинства при подключении звездой и треугольником абстрактны, так как каждая схема имеет свои области применения:

  • Y — меньше рабочий и пусковой ток, больше напряжение, меньше пусковой момент, меньше греется
  • D — больше пусковой момент, пусковой ток, но и больше греется.

Бывают двухскоростные двигатели, где сначала запускаются на звезде, А потом переходят на треугольник. В таком случае механизм легче запускается, А потом работает с большей мощностью.

При подключении трехфазного двигателя на 220В, где есть лишь фаза и ноль, можно прибегнуть к схеме с конденсаторами.

Форма исполнения и способ монтажа

IM 1081 — форма исполнения и способ монтажа согласно ГОСТ 2479 и МЭК60034-5. В нашем примере это обозначает “на лапах с двумя подшипниковыми щитами, с одним циллиндрическим концом вала”.

Это название состоит из латинских букв IM и четырех чисел.

Первая цифра от 1 до 9 — конструктивный способ исполнения

Вторая и третья (00. 99) — способ монтажа

Четвертая (0..9) — условное обозначение конца вала.

Коэффициент полезного действия электродвигателя

КПД показывает эффективность преобразования электродвигателем электрической энергии, которую он берет из сети, в механическую энергию вращения механизма.

Если бы не было потерь при передаче энергии, то КПД равнялся бы 100%. Однако, такого не существует. Однако, существуют виды потерь, которые уменьшают величину коэффициента:

  • потери от нагрева проводников с током при увеличении нагрузки — электрические потери
  • потери на вихревые токи, гистерезис в шихтованных статорах — магнитные потери
  • потери на трение подшипников, вентиляцию — механические потери
  • плюс различные дополнительные менее важные виды потерь.

Часто, но не всегда, чем выше скорость вращения электродвигателя, тем больше его КПД. Это связано с зависимостью КПД и скольжения ЭД. Существуют классы согласно величины КПД по ГОСТ IEC/TS 60034-31—2015: IE1, IE2, IE3, IE4.

Классы изоляции двигателей по нагревостойкости

Здесь нам на помощь придет ГОСТ 8865-93. Класс изоляции электрических машин характеризует максимальную температуру при номинальных параметрах. То есть в нашем примере при номинальных данных с таблички, температура изоляции не должна превышать 155 градусов.

Приведу данные допустимых температур электродвигателей для разных классов изоляции. Следует учитывать, что материалы могут иметь различные классы.

  • Y — 90
  • A — 105
  • E — 120
  • B — 130
  • F — 155
  • H — 180

Далее идут цифровые классы: 200, 220, 250 — а после них плюс 25 градусов с обозначением класса согласно допустимого значения температуры.

Данные температуры определены опытным путем при работе на номинальных параметрах на протяжении срока эксплуатации до величин, при которых увеличивается тангенс дельта и уменьшается напряжение пробоя.

Сохраните в закладки или поделитесь с друзьями

Как определить мощность и обороты электродвигателя без бирки?

При замене сломанного советского электродвигателя на новый, часто оказывается, что на нем нет шильдика. Нам часто задают вопросы: как узнать мощность электродвигателя? Как определить обороты двигателя? В этой статье мы рассмотрим, как определить параметры электродвигателя без бирки — по диаметру вала, размерам, току.
Заказать новый электродвигатель по телефону

Как определить мощность?

Существует несколько способов определения мощности электродвигателя: диаметру вала, по габариту и длине, по току и сопротивлению, замеру счетчиком электроэнергии.

По габаритным размерам

Все электродвигатели отличаются по габаритным размерам. Определить мощность двигателя можно сравнив габаритные размеры с таблицей определения мощности электродвигателя, перейдя по ссылке габаритно-присоединительные размеры электродвигателей АИР.

Какие размеры необходимо замерить:

  • Длина, ширина, высота корпуса
  • Расстояние от центра вала до пола
  • Длина и диаметр вала
  • Крепежные размеры по лапам (фланцу)

По диаметру вала

Определение мощности электродвигателя по диаметру вала — частый запрос для поисковых систем. Но для точного определения этого параметра недостаточно – два двигателя в одном габарите, с одинаковыми валами и частотой вращения могут иметь различную мощность.

Таблица с привязкой диаметров валов к мощности и оборотам для двигателей АИР и 4АМ.

Мощность
электродвигателя Р, кВт
Диаметр вала, ммПереход к модели
3000 об/мин1500 об/мин1000 об/мин750 об/мин
0,18111114АИР56А2, АИР56В4, АИР63А6
0,251419АИР56В2, АИР63А4, АИР63В6, АИР71В8
0,37141922АИР63А2, АИР63В4, АИР71А6, АИР80А8
0,5519АИР63В2, АИР71А4, АИР71В6, АИР80В8
0,75192224АИР71А2, АИР71В4, АИР80А6, АИР90LA8
1,122АИР71В2, АИР80А4, АИР80В6, АИР90LB8
1,5222428АИР80А2, АИР80В4, АИР90L6, АИР100L8
2,2242832АИР80В2, АИР90L4, АИР100L6, АИР112МА8
32432АИР90L2, АИР100S4, АИР112МА6, АИР112МВ8
4282838АИР100S2, АИР100L4, АИР112МВ6, АИР132S8
5,53238АИР100L2, АИР112М4, АИР132S6, АИР132М8
7,5323848АИР112M2, АИР132S4, АИР132М6, АИР160S8
113848АИР132M2, АИР132М4, АИР160S6, АИР160М8
15424855АИР160S2, АИР160S4, АИР160М6, АИР180М8
18,55560АИР160M2, АИР160M4, АИР180М6, АИР200М8
22485560АИР180S2, АИР180S4, АИР200М6, АИР200L8
3065АИР180M2, АИР180M4, АИР200L6, АИР225М8
3755606575АИР200M2, АИР200M4, АИР225М6, АИР250S8
457575АИР200L2, АИР200L4, АИР250S6, АИР250M8
556580АИР225M2, АИР225M4, АИР250M6, АИР280S8
75657580АИР250S2, АИР250S4, АИР280S6, АИР280M8
9090АИР250М2, АИР250M4, АИР280M6, АИР315S8
110708090АИР280S2, АИР280S4, АИР315S6, АИР315M8
132100АИР280M2, АИР280M4, АИР315M6, АИР355S8
1607590100АИР315S2, АИР315S4, АИР355S6
200АИР315M2, АИР315M4, АИР355M6
25085100АИР355S2, АИР355S4
315АИР355M2, АИР355M4

По показанию счетчика

Как правило измерение счетчика отображаются в киловаттах (далее кВт). Для точности измерения стоит отключить все электроприборы или воспользоваться портативным счетчиком. Мощность электродвигателя 2,2 кВт, подразумевает что он потребляет 2,2 кВт электроэнергии в час.

Для измерения мощности по показанию счетчика нужно:

  1. Подключить мотор и дать ему поработать в течении 6 минут.
  2. Замеры счетчика умножить на 10 – получаем точную мощность электромотора.

Расчет мощности по току

Для начала нужно подключить двигатель к сети и замерить показатели напряжения. Замеряем потребляемый ток на каждой из обмоток фаз с помощью амперметра или мультиметра. Далее, находим сумму токов трех фаз и умножаем на ранее замеренные показатели напряжения, наглядно в формуле расчета мощности электродвигателя по току.

  • P – мощность электродвигателя;
  • U – напряжение;
  • Ia – ток 1 фазы;
  • Ib – 2 фазы;
  • Ic – 3 фазы.

Определение оборотов вала

Асинхронные трехфазные двигатели по частоте вращения ротора делятся 4 типа: 3000, 1500, 1000 и 750 об. мин. Приводим пример маркировки на основании АИР 180:

  1. АИР 180 М2 – где 2 это 3000 оборотов.
  2. АИР 180 М4 – 4 это 1500 об. мин.
  3. АИР 180 М6 – 6 обозначает частоту вращения 1000 об/мин.
  4. АИР 180 М8 – 8 означает, что частота вращения выходного вала 750 оборотов.

Самый простой способ определить количество оборотов трехфазного асинхронного электродвигателя – снять задний кожух и посмотреть обмотку статора.

У двигателя на 3000 об/мин катушка обмотки статора занимает половину окружности — 180 °, то есть начало и конец секции параллельны друг другу и перпендикулярны центру. У электромоторов 1500 оборотов угол равен 120 °, у 1000 – 90 °. Схематический вид катушек изображен на чертеже. Все обмоточные данные двигателей смотрите в таблице.

Узнать частоту вращения с помощью амперметра

Узнать обороты вала двигателя, можно посчитав количество полюсов. Для этого нам понадобится миллиамперметр — подключаем измерительный прибор к обмотке статора. При вращении вала двигателя стрелка амперметра будет отклонятся. Число отклонений стрелки за один оборот – равно количеству полюсов.

  • 2 полюса – 3000 об/мин
  • 4 полюса – 1500 об/мин
  • 6 полюса – 1000 об/мин
  • 8 полюса – 750 об/мин

Если не получилось узнать мощность и обороты

Если не получилось узнать мощность и обороты электродвигатели или вы не уверены в измерениях – обращайтесь к специалистам «Систем Качества». Наши специалисты помогут подобрать нужный мотор или провести ремонт сломанного электродвигателя АИР.

КПД электродвигателя

КПД и мощность электродвигателя

КПД и мощность — это то, на что в первую очередь стоит обратить внимание при выборе асинхронного электродвигателя АИР. Суть работы любого эл двигателя заключается в том, что электрическая энергия, с сопутствующими преобразованию потерями, превращается в механическую. Чем меньше потери при протекании данного процесса, тем выше его КПД и тем эффективнее эл двигатель.
Но, при всей важности коэффициента полезного действия, не стоит забывать о мощности мотора. Ведь даже при чрезвычайно высоком КПД и выдаваемой им мощности может быть недостаточно для решения необходимых вам задач. Поэтому при покупке очень важно знать не только, чему равен КПД электродвигателя, но и какую полезную мощность он сможет выдать на своем валу. Оба эти значения должны быть указаны производителем. Порой бывает и такое, что нет доступа к паспорту мотора (например, если вы покупаете его “с рук”, что крайне не рекомендуется делать) и приходится самостоятельно вычислять столь важные параметры.
Для начала стоит определить: что такое коэффициент полезного действия, или попросту КПД. И так, это отношение полезной работы к затраченной энергии.

Определение КПД электродвигателя

Получается, для того чтобы определить этот параметр необходимо сравнить выдаваемую им энергию с энергией, необходимой ему чтобы функционировать. Вычисляется КПД с помощью выражения:

η=P2/P1
где η — КПД

P2- полезная механическая мощность электромотора, Вт
P1- потребляемая двигателем электрическая мощность, Вт;

Коэффициент полезного действия это величина, находящаяся в диапазоне от 0 до 1, чем ближе ее значение к единице, тем лучше. Соответственно, если КПД имеет значение 0,95 — это показывает, что 95 процентов электрической энергии будут преобразованы им в механическую и лишь 5 процентов составят потери. Стоит отметить, что КПД не является постоянной величиной, он может меняться в зависимости от нагрузки, а своего максимума он достигает при нагрузках в районе 80 процентов от номинальной мощности, то есть от той, которую заявил производитель мотора. Современные асинхронные электродвигатели имеют номинальный КПД (заявленные производителем) 0,75 — 0,95.
Потери при работе двигателя в основном обусловлены нагревом мотора (часть потребляемой энергии выделяется в виде тепловой энергии), реактивными токами, трением подшипников и другими негативными факторами.
Под мощностью мотора понимают механическую мощь, которую он выдает на своем валу. В целом же мощность — это параметр, который показывает, какую работу совершает механизм за определенную единицу времени.

КПД электродвигателя это очень важный параметр определяющий, прежде всего эффективность использования энергоресурсов предприятия . Как известно КПД электродвигателя значительно снижается после его ремонта, об этом мы писали в этой статье. При уменьшении коэффициента полезного действия будут соответственно увеличены потери электроэнергии. В последнее время набирают популярность энергоэффективные электродвигатели разных производителей, в России популярны моторы производства ОАО «Владимирский электромоторный завод». Любые асинхронные электродвигатели представлены в каталоге продукции. Дополнительную полезную информацию Вы можете посмотреть в каталоге статей.

Как правильно подобрать электродвигатель по типу, мощности и другим параметрам

Электродвигатель — механизм, преобразующий энергию электрического тока в кинетическую энергию. Современное производство и быт сложно представить без машин с электроприводом. Они используются в насосном оборудовании, системах вентиляции и кондиционирования, в электротранспорте, промышленных станках различных типов и т.д.

При выборе электродвигателя необходимо руководствоваться несколькими основными критериями:

  • вид электрического тока, питающего оборудование;
  • мощность электродвигателя;
  • режим работы;
  • климатические условия и другие внешние факторы.

Типы двигателей

Электродвигатели постоянного и переменного тока

В зависимости от используемого электрического тока двигатели делятся на две группы:

  • приводы постоянного тока;
  • приводы переменного тока.

Электродвигатели постоянного тока сегодня применяются не так часто, как раньше. Их практически вытеснили асинхронные двигатели с короткозамкнутым ротором.

Главный недостаток электродвигателей постоянного тока — возможность эксплуатации исключительно при наличии источника постоянного тока или преобразователя переменного напряжения в постоянный ток. В современном промышленном производстве обеспечение данного условия требует дополнительных финансовых затрат.

Тем не менее, при существенных недостатках этот тип двигателей отличается высоким пусковым моментом и стабильной работой в условиях больших перегрузок. Приводы данного типа чаще всего применяются в металлургии и станкостроении, устанавливаются на электротранспорт.

Принцип работы электродвигателей переменного тока построен на электромагнитной индукции, возникающей в процессе движения проводящей среды в магнитном поле. Для создания магнитного поля используются обмотки, обтекаемые токами, либо постоянные магниты.

Электродвигатели переменного тока подразделяются на синхронные и асинхронные. У каждой подгруппы есть свои конструктивные и эксплуатационные особенности.

Синхронные электродвигатели

Синхронные двигатели — оптимальное решение для оборудования с постоянной скоростью работы: генераторов постоянного тока, компрессоров, насосов и др.

Технические характеристики синхронных электродвигателей разных моделей отличаются. Скорость вращения колеблется в диапазоне от 125 до 1000 оборотов/мин, мощность может достигать 10 тысяч кВт.

В конструкции приводов предусмотрена короткозамкнутая обмотка на роторе. Ее наличие позволяет осуществлять асинхронный пуск двигателя. К преимуществам оборудования данного типа относятся высокий КПД и небольшие габариты. Эксплуатация синхронных электродвигателей позволяет сократить потери электричества в сети до минимума.

Асинхронные электродвигатели

Асинхронные электродвигатели переменного тока получили наибольшее распространение в промышленном производстве. Особенностью данных приводов является более высокая частота вращения магнитного поля по сравнению со скоростью вращения ротора.

В современных двигателях для изготовления ротора используется алюминий. Легкий вес этого материала позволяет уменьшить массу электродвигателя, сократить себестоимость его производства.

КПД асинхронного двигателя падает почти вдвое при эксплуатации в режиме низких нагрузок — до 30-50 процентов от номинального показателя. Еще один недостаток таких электроприводов состоит в том, что параметры пускового тока почти втрое превышают рабочие показатели. Для уменьшения пускового тока асинхронного двигателя используются частотные преобразователи или устройства плавного пуска.

Асинхронные электродвигатели удовлетворяют требованиям разных промышленных применений:

  • Для лифтов и другого оборудования, требующего ступенчатого изменения скорости, выпускаются многоскоростные асинхронные приводы.
  • При эксплуатации лебедок и металлообрабатывающих станков используются электродвигатели с электромагнитной тормозной системой. Это обусловлено необходимостью остановки привода и фиксации вала при перебоях напряжения или его исчезновения.
  • В процессах с пульсирующей нагрузкой или при повторно-кратковременных режимах могут использоваться асинхронные электродвигатели с повышенными параметрами скольжения.

Вентильные электродвигатели

Группа вентильных электродвигателей включает в себя приводы, в которых регулирование режима эксплуатации осуществляется посредством вентильных преобразователей.

К преимуществам данного оборудования относятся:

  • Высокий эксплуатационный ресурс.
  • Простота обслуживания за счет бесконтактного управления.
  • Высокая перегрузочная способность, которая в пять раз превышает пусковой момент.
  • Широкий диапазон регулирования частоты вращения, который почти вдвое выше диапазона асинхронных электродвигателей.
  • Высокий КПД при любой нагрузке – более 90 процентов.
  • Небольшие габариты.
  • Быстрая окупаемость.

Мощность электродвигателя

В режиме постоянной или незначительно изменяющейся нагрузки работает большое количество механизмов: вентиляторы, компрессоры, насосы, другая техника. При выборе электродвигателя необходимо ориентироваться на потребляемую оборудованием мощность.

Определить мощность можно расчетным путем, используя формулы и коэффициенты, приведенные ниже.

Мощность на валу электродвигателя определяется по следующей формуле:

где:
Рм — потребляемая механизмом мощность;
ηп — КПД передачи.

Номинальную мощность электродвигателя желательно выбирать больше расчетного значения.

Формула расчета мощности электродвигателя для насоса

где:
K3 — коэффициента запаса, он равен 1,1-1,3;
g — ускорение свободного падения;
Q — производительность насоса;
H — высота подъема (расчетная);
Y — плотность перекачиваемой насосом жидкости;
ηнас — КПД насоса;
ηп — КПД передачи.

Давление насоса рассчитывается по формуле:

Формула расчета мощности электродвигателя для компрессора

Мощность поршневого компрессора легко рассчитать по следующей формуле:

где:
Q — производительность компрессора;
ηk — индикаторный КПД поршневого компрессора (0,6-0,8);
ηп — КПД передачи (0,9-0,95);
K3 — коэффициент запаса (1,05 -1,15).

Значение A можно рассчитать по формуле:

или взять из таблицы

Формула расчета мощности электродвигателя для вентиляторов

где:
K3 — коэффициент запаса.
Его значения зависят от мощности двигателя:

  • до 1 кВт — коэффициент 2;
  • от 1 до 2 кВт — коэффициент 1,5;
  • 5 и более кВт — коэффициент 1,1-1,2.

Q — производительность вентилятора;
H — давление на выходе;
ηв — КПД вентилятора;
ηп — КПД передачи.

Приведенная формула используется для расчета мощности осевых и центробежных вентиляторов. КПД центробежных моделей равен 0,4-0,7, а осевых вентиляторов — 0,5-0,85.

Остальные технические характеристики, необходимые для расчета мощности двигателя, можно найти в каталогах для каждого типа механизмов.

Важно! При выборе электродвигателя запас мощности должен быть, но небольшой. При значительном запасе мощности снижается КПД привода. В электродвигателях переменного тока это приводит еще и к снижению коэффициента мощности.

Пусковой ток электродвигателя

Зная тип и номинальную мощность электродвигателя, можно рассчитать номинальный ток.

Номинальный ток электродвигателей постоянного тока

Номинальный ток трехфазных электродвигателей переменного тока

где:
PH — номинальная мощность электродвигателя;
UH — номинальное напряжение электродвигателя,
ηH — КПД электродвигателя;
cos φ H — коэффициент мощности электродвигателя.

Номинальные значения мощности, напряжения и КПД можно найти в технической документации на конкретную модель электродвигателя.

Зная значение номинального тока, можно рассчитать пусковой ток.

Формула расчета пускового тока электродвигателей

где:
IH — номинальное значение тока;
Кп — кратность постоянного тока к номинальному значению.

Пусковой ток необходимо рассчитывать для каждого двигателя в цепи. Зная эту величину, легче подобрать тип автоматического выключателя для защиты всей цепи.

Режимы работы электродвигателей

Режим работы определяет нагрузку на электродвигатель. В некоторых случаях она остается практически неизменной, в других может изменяться. Характер предполагаемой нагрузки обязательно учитывается при выборе двигателя. Действующими стандартами предусмотрены следующие режимы эксплуатации:

Режим S1 (продолжительный). При таком режиме эксплуатации нагрузка остается постоянной в течение всего времени, пока температура электродвигателя не достигнет необходимого значения. Мощность привода рассчитывается по формулам, приведенным выше.

Режим S2 (кратковременный). При эксплуатации в этом режиме температура двигателя в период его включения не достигает установившегося значения. За время отключения электродвигатель охлаждается до температуры окружающей среды. При кратковременном режиме эксплуатации необходимо проверять перегрузочную способность электропривода.

Режим S3 (периодически-кратковременный). Электродвигатель работает с периодическими отключениями. В периоды включения и отключения его температура не успевает достигнуть заданного значения или охладиться до температуры окружающей среды. При расчете мощности двигателя обязательно учитывается продолжительность пауз и потерь в переходные периоды. При выборе электродвигателя важным параметром является допустимое количество включений за единицу времени.

Режимы S4 (периодически-кратковременный, с частыми пусками) и S5 (периодически-кратковременный с электрическим торможением). В обоих случаях работа двигателя рассматривается по тем же параметрам, что и в режиме эксплуатации S3.

Режим S6 (периодически-непрерывный с кратковременной нагрузкой). Работа электродвигателя в данном режиме предусматривает эксплуатацию под нагрузкой, чередующуюся с холостым ходом.

Режим S7 (периодически-непрерывный с электрическим торможением)

Режим S8 (периодически-непрерывный с одновременным изменением нагрузки и частоты вращения)

Режим S9 (режим с непериодическим изменением нагрузки и частоты вращения)

Большинство моделей современных электроприводов, эксплуатируемых продолжительное время, адаптированы к изменяющемуся уровню нагрузки.

Климатические исполнения электродвигателей

При выборе электродвигателя учитываются не только его технические характеристики, но и условия окружающей среды, в которых он будет эксплуатироваться.

Современные электроприводы выпускаются в разных климатических исполнениях. Категории маркируются соответствующими буквами и цифрами:

  • У — модели для эксплуатации в умеренном климате;
  • ХЛ — электродвигатели, адаптированные к холодному климату;
  • ТС — исполнения для сухого тропического климата;
  • ТВ — исполнения для влажного тропического климата;
  • Т — универсальные исполнения для тропического климата;
  • О — электродвигатели для эксплуатации на суше;
  • М — двигатели для работы в морском климате (холодном и умеренном);
  • В — модели, которые могут использоваться в любых зонах на суше и на море.

Цифры в номенклатуре модели указывают на тип ее размещения:

  • 1 — возможность эксплуатации на открытых площадках;
  • 2 — установка в помещениях со свободным доступом воздуха;
  • 3 — эксплуатация в закрытых цехах и помещениях;
  • 4 — использование в производственных и других помещениях с возможностью регулирования климатических условий (наличие вентиляции, отопления);
  • 5 — исполнения, разработанные для эксплуатации в зонах повышенной влажности, с высоким образованием конденсата.

Энергоэффективность

Рациональное потребление энергии при сохраняющейся высокой мощности сокращает текущие производственные затраты при одновременном увеличении производительности электродвигателя. Поэтому при выборе привода обязательно учитывается класс энергоэффективности.

В технической документации и каталогах обязательно указывается класс энергоэффективности двигателя. Он зависит от показателя КПД.

Проводимые в тестовом и рабочем режимах экспериментальные исследования показывают, что электродвигатель мощностью 55 кВт высокого класса энергоэффективности сокращает потребление электроэнергии на 8-10 тысяч кВт ежегодно.

Источник: Компания «Техпривод»

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector