Astro-nn.ru

Стройка и ремонт
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Пьезоэлементы большой мощности

Пьезогенераторы. Устройство и работа. Особенности и применение

С развитием технологий человечество начинает расходовать все меньше энергии понапрасну. Появились солнечные панели, ветровые электростанции, солнечные концентраторы, пьезогенераторы, суперконденсаторы и иные устройства, которые помогают людям получать альтернативную энергию и сохранять ее. Большинство из этих устройств уже используются в повседневной жизни.

Но наука не стоит на месте, в скором времени можно будет получать энергию с помощью повседневных и малозначительных движений. Это можно будет сделать при помощи пьезогенераторов. Ее вполне хватит, чтобы быстро зарядить телефон или плеер. Могут появиться и такие пьезогенераторы, которые будут подзаряжать, к примеру, наручные часы при помощи возбуждения, которое передается сердцебиением.

Устройство

В последние годы было создано несколько опытных образцов пьезогенераторов для различного применения. Они могут быть объединены в два различных класса, которые отличаются по типу колебаний, продольных и поперечных .

Пьезогенератор, работающий по продольной схеме колебаний. В данном устройстве одиночный пьезоэлемент монтируется в подкладку обуви, он позволяет генерировать определенную мощность энергии при быстром передвижении, к примеру, при беге человека. Данное устройство изобретено в техническом университете Луизианы и был выполнен в виде специального спирального пластинчатого пьезоэлемента.

На данный момент обеспечить надежность и долговечность подобного устройства затруднительно в виду хрупкости пьезокерамического материала. Однако данная идея может оказаться продуктивной при использовании гибких пьезополимерных пластин. Но подобные материалы на данный момент находятся на стадии исследований.

Не менее перспективны пьезогенераторы, работающие на изгибных колебаниях. Они также могут отличаться своей конфигурацией и конструктивным исполнением.

Для источников питания сравнительно большой мощности созданы опытные образцы макропьезогенераторов самых разных конструкций. К самым продвинутым разработкам подобного класса устройств можно отнести экспериментальную систему накопителей энергии, созданную на основе пьезогенераторов, которые вмонтированы в настил пола у билетных терминалов на входе в станции метро Marunouchi (Токио).

Известно устройство взрывного пьезогенератора, который включает:
  • Устройство инициирования:
  • Генератор ударной волны:
  • Пьезоэлектрический преобразователь, выполненный из набора пьезопластин, соединенных параллельно:
  • Электроды, которые нанесены на противоположные грани пьезопластин, расположены перпендикулярно выходной поверхности генератора ударной волны:
  • Блок пьезопластин размещен в цилиндрический объем, у которого торцевая часть совпадает с поверхностью генератора ударной волны:
  • Генератор ударной волны выглядит как аксиально симметричная конструкция, она выполнена из слоя взрывчатого вещества, конического алюминиевого лайнера и конической алюминиевой крышки.
Принцип действия

Пьезоэффект, который применяется в пьезогенераторах, заключается в том, что в устройстве имеется специальный диэлектрик, к которому прикладываются механические напряжения. В результате диэлектрик на двух разных концах создает разницу потенциалов. В итоге, создавая давление на подобный пьезоэлемент, можно на выходе получить электрическое напряжение определенной величины.

Пьезоэффект также может вызывать и обратное преобразование, то есть обеспечить превращение электрической энергии в механическую, к примеру, для создания звуковых излучателей. По типу применяемого соотношения между вектором поляризации пьезоэлемента и направлением механических колебаний пьезогенераторы можно разделить на классы с поперечным и продольным направлением механического воздействия.

Если рассматривать физику процессов, которые происходят в пьезоэлектрике, подробней, то все выглядит довольно просто. Для этого нужно только понимать принципы генерации энергии пьезоэлектрическими материалами:
  • При механическом воздействии на пьезоэлемент наблюдается смещение атомов в его материале, то есть в несимметричной кристаллической решетке.
  • Данное смещение приводит к появлению электрического поля, которое приводит к индукции зарядов на электродах пьезоэлемента.

В отличие от стандартного конденсатора, обкладки которого способны сохранять заряды весьма долго, индуцированные заряды пьезогенератора сохраняются до момента, пока не перестает действовать механическая нагрузка. Именно в течение данного периода от элемента можно получать энергию. Как только нагрузка снимается, индуцированные заряды исчезают.

Явление пьезоэлектричества открыто братьями Пьером и Джексоном Кюри в 1880 году, с того времени оно широкое распространение в измерительной технике и радиотехнике. Термин «пьезогенераторы» характеризует лишь направление преобразования энергии, а не эффективность превращения. Именно с явлением, связанным с генерацией электричества в случае механического воздействия, заинтересовались инженера и изобретатели в последние годы.

Начали появляться сообщения о возможностях получения электрической энергии при помощи воздействия разной механической энергии:
  • Движение волн и ветра.
  • Воздействие уличного шума.
  • Нагрузки от перемещения машин и людей.
  • Сердцебиение и так далее.

На основе всех этих вариантов стали придумываться различные изобретения. Многие из них уже нашли применение, а некоторые на данный момент находятся в планах, так как технологии не достигли требуемого уровня.

Применения и особенности
На текущий момент известно несколько вариантов практического применения пьезогенераторов в:
  • Пьезозажигалках с целью высокого напряжения на специальном разряднике от движения пальца. Сегодня любой курильщик может носить в кармане собственную «электростанцию».
  • Качестве чувствительного элемента в приемных элементах сонаров, микрофонах, головках звукоснимателя электрофонов, гидрофонах.
  • Контактном пьезоэлектрическом взрывателе, к примеру, к выстрелам гранатомета РПГ-7.
  • Датчиках в виде чувствительного к силе элемента, к примеру, датчиках давления газов и жидкостей, силоизмерительных датчиках и так далее.
Обратный пьезоэлектрический эффект может применяться в:
  • Пьезокерамических излучателях звука, к примеру, музыкальные открытки, всевозможные оповещатели, которые используются в самых разных бытовых устройствах от стандартных наручных часов до техники на кухне.
  • Системах сверхточного позиционирования, к примеру, позиционер перемещения головки винчестера, в сканирующем туннельном микроскопе в системе позиционирования иглы.
  • Излучателях гидролокаторов (сонарах).
  • Ультразвуковых излучателях для ультразвуковой гидроочистки (промышленные ультразвуковые ванны, ультразвуковые стиральные машины).
  • Пьезоэлектрических двигателях.
  • Струйных принтерах для подачи чернил.
  • Адаптивной оптике с целью изгиба отражающей поверхности деформируемого зеркала.
Обратный и прямой эффект пьезогенераторов одновременно используются в:
  • Датчиках на специальных поверхностных акустических волнах.
  • Ультразвуковых линиях задержки специальных электронной аппаратуры.
  • Приборах на эффекте специальных поверхностных акустических волн.
  • Пьезотрансформаторах с целью изменения напряжения высокой частоты.
  • Кварцевых резонаторах, применяемых в качестве эталона частоты.

Большинство из применяемых пьезогенераторов вырабатывают небольшой ток. Отдельные пьезоэлементы могут генерировать высокое напряжение, которое пробивает разрядный промежуток, затем ток поступает на выпрямитель, после чего в накопительное устройство, к примеру, ионистор.

Пьезоэлементы большой мощности

в т.ч. гостей: 85
пользователей: 0

Используя физический принцип радиационного охлаждения неба, команда смогла собрать небольшое, но полезное количество энергии из холодного ночного неба, используя простое, недорогое и некритичное устройство.

Как влияет на характеристики Li-Ion аккумулятора его глубоких разряд (вплоть до нуля)? Насколько он вреден, или, наоборот, относительно безопасен? В статье попытка разобраться с этим. Не на профессиональном, конечно, уровне, но как информация к размышлению.

Продолжение описания сборки самодельного модульного накопителя на LiFePo4 аккумуляторах.


Весьма неплохая платка повышающего преобразователя, поддерживающая протоколы быстрой зарядки.

На Алиэкспрессе достаточно часто продают китайские подделки под известные бренды аккумуляторов, в частности, на фото, под Panasonic 3400мАч. Стоит ли брать такие аккумуляторы? Насколько они плохи, или, наоборот, вполне даже качественные?

Идея универсального «блока питания на батарейках» периодически возникает в головах различных разработчиков электроники. Для примера, вот еще один вариант исполнения.


Описание простой по конструкции и пониманию, но неплохой по возможностям «Гаусс-пушки», которую легко может собрать даже начинающий самодельщик.

Пьезоэлементы большой мощности

Пьезодвигатели Physik Instrumente

В связи с развитием нанотехнологий, возникла необходимость перемещать микро- и наноструктуры с точностью порядка нескольких нанометров и менее. В современном технологическом и исследовательском оборудовании широкое распространение получили пьезодвигатели. Пьезодвигателями называют устройства, в которых механическое перемещение достигается за счёт обратного пьезоэлектрического эффекта. Материалы, составляющие основу таких приводов, называют пьезоэлектриками. Обратный пьезоэлектрический эффект заключается в изменении линейных размеров пьезоэлектрика при приложении электрического поля.

В настоящий момент сфера применения пьезодвигателей охватывает многие отрасли: микроскопия, робототехника, фототехника, нанометрология, нанолитография, нанопечать, микродозирование и др. Пьезоприводы могут использоваться для вакуумного и криогенного оборудования.

Шаговые пьезодвигатели

Принцип работы и особенности пьезоэлектрических двигателей серии NEXLINE

Пьезоприводы NEXLINE обладают следующими техническими особенностями:

    Высокое разрешение, которое ограничивается используемой электроникой для управления пьезодвигателем. В режиме работы без обратной связи величина минимального шага достигает значений PICMAWalk

Пьезодвигатель PICMAWalk состоит из 8 пьезоактуаторов, которые образуют 4 пары элементов V -образной формы. Четыре элемента перемещают подвижную направляющую благодаря последовательному алгоритму линейных и сдвиговых деформаций (см. видео). Данный пьезодвигатель позволяет развивать толкающее/тянущее усилие до 50 Н, удерживающее усилие – до 60 Н, скорость – до 15 мм/сек. Рабочее напряжение пьезоактуаторов серии PICMA , входящих в состав пьезодвигателя PICMAWalk , соответствует диапазону от -20 В до 120 В.


Рис.1 Принципиальная схема пьезодвигателя PICMAWalk . 1 — пьезоактуатор, 2 — контактная площадка, 3 – подвижная направляющая

Пьезодвигатель PICMAWalk расширил линейку уже широко использующихся пьезодвигателей – Nexact и Nexline. Сравнительная информация по трём типам пьезодвигателей в отношении скорости (ось абсцисс) и развиваемого усилия (ось ординат) приведена на схеме ниже.


Рис.2 Сравнительная схема трёх типов пьезодвигателей, разработанных компанией Physik Instrumente – PICMAWalk , Nexact и Nexline .

Пьезодвигатель PICMAWalk обладает следующими отличительными особенностями:

  • Диапазон перемещения зависит от длины направляющей
  • Высокое разрешение (порядка 0.03 нм в режиме без обратной связи)
  • Самоблокировка при отключении питания, отсутствие тепловыделения
  • Немагнитный и вакуумносовместимый принцип работы
  • Уровни интеграции от OEM двигателя до многоосевых систем позиционирования

Пьезодвигатель PICMAWalk обладает отличными динамическими и точностными характеристиками. Ниже приведены графики перемещения привода N-331 на основе данного двигателя в зависимости от времени. Измерения проведены с помощью интерферометра. На рис.3 видно, что привод переместился на 100 нм за 100 мс. На рис.4 показан график движения актуатора с шагом 10 нм.

Читать еще:  Хотите знать чем красить винтовую сваю


Рис.3 График перемещения актуатора N-331 на базе пьезодвигателя PICMAWalk на 100 нм, аналоговый режим

Рис.4 График перемещения актуатора N-331 на базе пьезодвигателя PICMAWalk c шагом 10 нм, аналоговый режим.

В ходе тестовых экспериментов были проведены исследования износостойкости пьезодвигателя PICMAWalk при атмосферных условиях. Для этого на актуатор N-331 закрепили нагрузку в 2 кг и проводили перемещения с определённым шагом вдоль и против направления действия силы тяжести, создаваемой нагрузкой (рис.5).


Рис.5 Схема воздействия нагрузки на актуатор. Черной стрелкой указано напраление действия силы тяжести, создаваемой нагрузкой. Цветными стрелками показаны направления движения пьезоактуатора N-331.

Ниже приведены результаты исследований в режиме полного шага и наношагового режима при общем перемещении более 100 км. Нижняя кривая соответствует ситуации, когда направление движения пьезоактуатора противоположно направлению действия силы тяжести нагрузки. Верхняя кривая – направление силы тяжести совпадает с направлением движения пьезоактуатора. Из графиков видно, что колебания величины шага незначительны на протяжении всего эксперимента, что позволяет достичь высокой плавности перемещения. Разница в величине шага для верхней и нижней кривых обусловлена изменением направления перемещения пьезоактуатора.

Рис.6 Зависимость величины шага (мкм) от пройденной дистанции (км) для режима полного шага.


Рис.7 Зависимость величины шага (мкм) от пройденной дистанции (км) для наношагового режима.

В силу конструкции для двигателя PICMAWalk характерно изменение величины шага с ростом усилия, приложенного вдоль подвижной направляющей. На рис.8 и 9 показаны соответствующие зависимости. Видно, что для случая, когда направление перемещения пьезоактуатора противоположно направлению силы тяжести нагрузки, при усилиях более 60 Н величина шага резко уменьшается. Когда направление силы тяжести и перемещения совпадают, наблюдается небольшой рост величины шага.


Рис.8 Зависимость величины шага от прикладываемого усилия для наношагового режима. Направления движения пьезоактуатора и силы тяжести противоположны друг другу


Рис.9 Зависимость величины шага от прикладываемого усилия для наношагового режима. Направления движения пьезоактуатора и силы тяжести совпадают

Ультразвуковые пьезоэлектрические двигатели

Принцип работы и особенности пьезоэлектрических двигателей серии PILine

Пьезоприводы PILine обладают следующими техническими особенностями:

  • Высокая скорость перемещения – до 500 мм/сек
  • Компактность
  • Самоблокировка при отключении питания, отсутствие выделения тепла в режиме ожидания
  • Отсутствие передаточных механизмов и необходимости в обслуживании
  • Немагнитный и вакуумно-совместимый принцип работы
  • Отсутствие принципиального ограничения по диапазону перемещения
  • Удерживающее усилие до 15 Н, момент до 0.3 Н*м
  • Минимальный шаг в режиме без обратной связи до 50 нм

Принципиальная схема пьезодвигателей линейного и углового типа показана на рис. 12

Основной частью линейного ультразвукового двигателя является пьезокерамическая пластина, поляризованная вдоль направления W (рис.12). На одну сторону пластины нанесены два положительных электрода, другая сторона заземлена. При движении влево или вправо на соответствующий электрод подается управляющий синусоидальный сигнал высокой частоты (в диапазоне от 100 до 200 кГц). Под действием приложенного напряжения, пьезокерамическая пластина деформируется (рис.13), заставляя перемещаться прикрепленный к ней толкатель, изготовленный из оксида алюминия. Вблизи толкателя размещена направляющая. Соприкосновение толкателя с направляющей приводит в движение платформу.

Рис. 13 Схема деформации пьезопластины при приложении синусоидального напряжения. Показан один цикл колебания пьезопластины.

На рис.12 справа изображена принципиальная схема вращающегося механизма, основанного на двух линейных пьезоприводах.

В более компактных вращающихся пьезоплатформах основной частью двигателя является полый пьезоцилиндр. Направление поляризации пьезоцилиндра перпендикулярно его боковой поверхности. На его внешнюю боковую поверхность нанесены активные электроды, разделённые небольшим зазором. Между электродами сверху на основании приклеены толкатели. Внутренняя сторона заземлена. При подаче синусоидального напряжения на активные электроды (через один) происходит деформация пьезоцилиндра, вследствие чего толкатели перемещают ротор (рис.14).

Пьезодвигатели PILine являются достаточно надёжными приводами. В зависимости от условий эксплуатации, среднее время работы на отказ составляет примерно 20000 часов или 2000 км. На рис. 15 показана зависимость максимального времени бесперебойной работы, выраженное в процентах, от температуры, при максимальной величине управляющего сигнала. Из графика видно, что при температурах выше 20 °С возникает повышенный износ в связи с увеличением трения толкателя о направляющую.

На рис.16 изображён график зависимости скорости пьезодвигателя от величины развиваемого усилия в направлении перемещения при различных величинах управляющего сигнала.

Пьезодвигатели PiLine идеально подходят для приложений, где требуется высокая динамика перемещения. Они способны развивать ускорение в несколько g, а время установки в заданную координату составляет порядка 10 мксек (рис.17).

Пьзоэлектрические инерционные двигатели серии PIShift

Приводы PiShift имеют следующий ряд особенностей:

  • Отсутствие принципиального ограничения по диапазону перемещения
  • Самоблокировка при отключении питания, отсутствие выделения тепла в режиме ожидания
  • Минимум шума при перемещении
  • Удерживающее усилие до 10 Н, максимальная скорость более 5 мм/сек
  • Простота системы управления
  • Низкая стоимость

Пьезодвигатели серии PIShift основаны на эффекте прерывистого движения (stick-slip effect). Основа привода – пьезоактуатор, к одной стороне которого прикреплён преднагруженный фрикционный элемент. На пьезоактуатор подаётся пилообразный сигнал с контроллера. В процессе нарастания напряжения импульса пьезоэлемент медленно «растягивается» и перемещает направляющую, т.к. толкающее усилие не превышает статической силы трения между направляющей и фрикционным элементом. При резком спаде напряжения происходит быстрое «укорачивание» пьезоактуатора, при этом направляющая остаётся на своём месте, т.к. усилие, развиваемое пьезоэлементом, превышает кинетическое трение, что приводит к проскальзыванию (рис.18). Сравнение толкающей силы с силой кинетического трения обусловлено тем, что в момент начала спада напряжения направляющая продолжает движение по инерции.

Сравнительная таблица технических характеристик пьезодвигателей

Шаговый пьезодвигатель (Nexline, Nexact)

© Все использованные рисунки являются собственностью компаний: Physik Instrumente (PI) GmbH, Moxtek Inc. Все торговые марки являются собственностью соответствующих компаний-владельцев. Цитирование материалов сайта без ссылки на первоисточник запрещено.

Простая схема увеличения акустического выхода пьезоэлектрического преобразователя

Knowles SPW2430HR5H-B

Для увеличения акустической мощности пьезодинамика или ультразвукового преобразователя было предложено много разных идей. Большинство из них основано на довольно сложных схемах, увеличивающих общую стоимость решения; например, повышение низкого напряжения питания логики до более высокого напряжения или использование H-моста.

Напротив, в этой статье показано, как можно увеличить акустическую мощность пьезоэлектрического преобразователя, минимизировав количество деталей и стоимость. Прежде чем мы приступим к обсуждению нового подхода, давайте рассмотрим некоторые из наиболее часто используемых пьезоакустических схем и их недостатки.

Простейшая схема драйвера пьезоэлемента состоит из преобразователя и ключевого транзистора (Рисунок 1). Напряжение на преобразователе не может быть больше напряжения источника питания, которое и определяет верхний предел акустической мощности. Резистор R2 служит для разряда емкости преобразователя. Постоянная времени RC должна быть короткой относительно периода резонансной частоты преобразователя. Низкие сопротивления резисторов снижают электрический КПД при гашении механического (акустического) резонанса преобразователя, что, конечно, снижает акустическую эффективность.

Рисунок 1.Хотя такая схема управления пьезоизлучателем проста,
она очень неэффективна.

Самым распространенным способом усовершенствования является замена R2 дросселем, как показано на Рисунке 2.

Рисунок 2.Замена резистора R2 дросселем увеличивает
акустическую мощность и КПД.

Величину индуктивности часто выбирают такой, чтобы получить электрический резонанс с емкостью преобразователя (излучателя) при акустическом резонансе преобразователя. Этот подход может обеспечить более высокую акустическую мощность, чем параллельный резистор, однако он оставляет еще множество возможностей для улучшения. В лучшем случае пиковое напряжение на преобразователе может достигать 40 В, тогда как более типичное значение при напряжении питания 5 В составляет 20 В.

Это связано с тем, что переход коллектор-база транзистора смещен в прямом направлении во время отрицательной полуволны напряжения на параллельном резонансном контуре, образованном индуктивностью и емкостью преобразователя, что ограничивает размах напряжения, уменьшая акустический выход.

Рисунок 3.Использование диода может устранить
​отрицательные выбросы.

Добавление диода изолирует переход коллектор эмиттер (или, если используется MOSFET, переход паразитного диода) от этой отрицательной полуволны, обеспечивая намного больший размах напряжения на преобразователе и увеличивая акустическую мощность (Рисунок 3). Хотя прямое напряжение диода снижает приложенное напряжение питания, повышенное напряжение при резонансе более чем компенсирует эту небольшую потерю.

Чтобы добиться каких-либо дальнейших улучшений, мы должны учесть, что на самом деле в этой небольшой системе существуют два резонанса:

  1. Акустический резонанс преобразователя, механический и объемный резонансы.
  2. Электрический резонанс индуктивности и емкости преобразователя.

Частота электрического резонанса не обязательно должна совпадать с частотой акустического резонанса. На самом деле, если она примерно в 2 раза больше, чем частота акустического резонанса, пиковое напряжение на преобразователе может быть значительно увеличено.

Рисунок 4.Иллюстрация поведения схемы в реальных условиях.

Это иллюстрируется Рисунком 4, где осциллограммы получены при следующих параметрах схемы:

  1. Напряжение источника питания: 5 В DC;
  2. Индуктивность: L1 – 3.2 мГн;
  3. Емкость пьезопреобразователя: 2 нФ;
  4. Частота источника сигнала (40 кГц) равна резонансной частоте излучателя;
  5. Коэффициент заполнения импульсов источника сигнала подобран так, чтобы исключить большие выбросы тока при включении.

Обратите внимание, что пункт 5 обозначает потенциальную проблему, скрывающуюся в этом новом решении, которую необходимо устранить. Если источник сигнала может включать транзистор после того, как напряжение преобразователя становится положительным, будет происходить мощный короткий выброс тока, который способен снизить электрический КПД и потенциально со временем разрушить транзистор. Увеличение коэффициента заполнения, чтобы транзистор включался, когда резонансное напряжение слегка отрицательное, позволяет устранить этот выброс.

После того, как мы все обсудили, давайте посмотрим, как наша схема ведет себя в реальной жизни, используя для этого удобный четырехканальный интеллектуальный осциллограф:

  • Желтый – управляющее напряжение с пиковым значением 5 В, частотой 40 кГц и коэффициентом заполнения примерно 48%;
  • Фиолетовый – напряжение на преобразователе при электрическом резонансе: 92 В пик-пик, 80 кГц;
  • Зеленый – эмиттерный ток транзистора с пиковым уровнем примерно 80 мА и частотой 40 кГц;
  • Синий – акустическая мощность преобразователя, измеренная МЭМС микрофоном.
Читать еще:  ПБВ трансформатора принцип действия

Высокое пиковое напряжение на преобразователе достигается за счет использования дросселя с индуктивностью меньшей, чем требуется для резонанса на частоте 40 кГц, что позволяет току возрастать примерно в два раза быстрее. В рассматриваемом примере это обеспечивает удвоенный ток для «зарядки» магнитного поля дросселя.

В данной системе это приводит к большему смещению поверхности преобразователя, и, соответственно, увеличивает акустическую мощность.

Эту статью не следует рассматривать как исчерпывающий трактат по резонансным схемам. Она просто демонстрирует процедуру, позволяющую с помощью очень простой и недорогой схемы увеличить акустическую мощность любого резонансного пьезоэлектрического преобразователя или излучателя.

Кратко эту процедуру можно изложить следующим образом:

  1. Определяем частоту акустического резонанса преобразователя;
  2. Формируем последовательность управляющих импульсов такой же частоты, начиная с коэффициента заполнения 50%;
  3. При необходимости регулируем коэффициент заполнения, чтобы убрать выбросы тока при включении;
  4. Определяем значение емкости преобразователя;
  5. Выбираем такое значение индуктивности, с которым частота электрического резонанса будет примерно вдвое выше частоты акустического резонанса.

Смоделировать представленную здесь акустическую/ электрическую схему в симуляторе может быть непросто, поскольку преобразователь содержит два или более потенциально резонансных элемента. К ним относятся механически резонанс преобразовательного элемента, акустический резонанс корпуса преобразователя (называемый резонансом Гельмгольца) и, конечно же, электрический резонанс емкости преобразователя с внешней индуктивностью.

Акустическая нагрузка излучением из порта преобразователя или его диафрагмы добавляет еще одну сложность к моделированию. Простое электрическое моделирование этой схемы дает на преобразователе 240 В пик-пик, что больше удвоенного напряжения, полученного в реальной схеме. Причиной большей части потерь, снижающих пиковое напряжение преобразователя в этой системе по сравнению с моделируемыми результатами, может быть акустическая нагрузка.

С помощью этой простой процедуры можно с минимальными затратами времени и сил легко добиться максимальной акустической мощности преобразователя.

Научный форум dxdy

Вход РегистрацияDonate FAQ Правила Поиск

Пьезоэлементы как генераторы тока

Я собираюсь сделать энергосберегающее устройство основанное на энергии ветра и пьезоэффекте . В связи с этим возникло немало вопросов и технических задач. Мне нужна теоретическая помощь специалистов в электротехнике и очень нужна литература на тему пьезоэлементов.

По сути, я хочу сделать ветряк состоящий из: геликоидной турбины Горлова (высота 0,85м, диаметр 0,5м), установленной на пьезогенератор . Патент на пьезогенератор уже давно зарегестрирован, и даже пример опытного образца на видео я нашел. Ссылки ниже.

Но. где раздобыть подходящие пьезоэлектрики? Или как ее сделать самому? Где, в какой книге найти физические свойства пьезоэлектриков, для проведения расчетов?

Буду благодарен за любой совет , ссылку на книгу или помощь в познании альтернативной энергетики.

З.Ы. Также очень кстати будут советы по шумоизоляции генератора или же его улучшения до «бесшумного режима».

Последний раз редактировалось Comanchero 28.11.2013, 13:21, всего редактировалось 3 раз(а).

Вольтметр ставится на постоянный ток и измеряется заряд. Очень оригинально.

Вообще говоря, это не пьезоэффект, а скорее напоминает электрофорную машину, известную с 19-го века. И тем более, не генератор тока, а напряжения, поэтому мощность, снимаемая с подобного устройства — ничтожная.

Можно и не придираться, измеряется напряжение заряда конденсатора . Так можно сказать.

Непонятно зачем изобретать велосипед (это к автору темы).
Есть огромные ветряки, отработанная конструкция (почему то не 2х и не 20 лопастные)
Есть электрогенераторы с кпд под 90 %, в них ничего сложного — железо, медь и два подшипника.

Так что не устраивает?

1. из трех комментариев я не получил ни одного дельного совета на поставленные вопросы
2. Comanchero не знает что такое пьезоэффект и пьезоэлектрики, что такое турбина Горлова, но при этом много умничает. иди умничай где-нибудь еще, бесполезный
3. КПД пьезоэффекта мал, но это не означает низкого КПД пьезогенератора. обычный генератор тяжелый и дорогой, шумный. пьезокерамика же стоит копейки.
4. турбина Горлова имеет наибольший КПД среди ветряков и гидротурбин

я дождусь с целого форума хоть одного дельного совета? хотя бы одного широкомыслящего, умного единомышленника?

З.Ы. просьба не флудить, а отвечать только если разбираетесь в даных темах лучше меня
З.Ы.Ы. «напоминает электрофорную машину». нет слов, гугл тебе в помощь, заблудший

Последний раз редактировалось Xey 29.11.2013, 15:28, всего редактировалось 1 раз.

Пьезоэлектрические преобразователи

Пьезоэлектрики являются обратимыми электромеханическими преобразователями, т. е. способны преобразовывать механическую энергию в электрическую и, наоборот, электрическую энергию в механическую

Пьезоэффект

Схематичные изображения прямого (а, б) и обратного (в, г) пьезоэффектов. Стрелками Р и Е изображены внешние воздействия — механическая сила и напряженность электрического поля. Штриховыми линиями показаны контуры пьезоэлектрика до внешнего воздействия, сплошными линиями — контуры деформации пьезоэлектрика (для наглядности во много раз увеличены); Р — вектор поляризации.

Пьезоэффект был открыт в 1880 г. французскими учеными, братьями Пьером и Полем Кюри, на кварце. Применить открытое явление впервые предложил Поль Ланжевен, также француз. Было это в годы первой мировой войны. Суть предложения заключалась в использовании ультразвука для обнаружения вражеских подводных лодок, а для получения самого ультразвука предлагалось использовать именно пьезоэффект. Явление, в чем-то схожее с пьезоэффектом, но связанное с переменным магнитным полем и названное магнитострикцией, обнаружил в 1847 г. Джеймс Джоуль. Суть его заключалась в изменении линейных размеров кристалла в переменном магнитном поле.

Пьезоэлектрический эффект (сокращенно пьезоэффект) наблюдается в анизотропных диэлектриках, преимущественно в кристаллах некоторых веществ, обладающих определенной, достаточно низкой симметрией. Пьезоэффектом могут обладать кристаллы, не имеющие центра симметрии, а имеющие так называемые полярные направления (оси). Пьезоэффектом могут обладать также некоторые поликристаллические диэлектрики с упорядоченной структурой (текстурой), например керамические материалы и полимеры. Диэлектрики, обладающие пьезоэффектом, называют пьезоэлектриками.

Внешние механические силы, воздействуя в определенных направлениях на пьезоэлектрический кристалл, вызывают в нем не только механические напряжения и деформации (как во всяком твердом теле), но и электрическую поляризацию и, следовательно, появление на его поверхностях связанных электрических зарядов разных знаков. При изменении направления механических сил на противоположное становятся противоположными направление поляризации и знаки зарядов. Это явление называют прямым пьезоэффектом. Пьезоэффект обратим. При воздействии на пьезоэлектрик, например кристалл, электрического поля соответствующего направления в нем возникают механические напряжения и деформации. При изменении направления электрического поля на противоположное соответственно изменяются на противоположное направления напряжений и деформаций. Это явление получило название обратного пьезоэффекта.

Ещё про пьзоэффект:

7 ссылок

  • На wiki
  • Пьезоэлектрический эффект
  • Суть пьезоэффекта
  • Реферат «Пьезоэлектрический эффект»
  • Пьезоэффект — Энциклопедиа
  • XuMuK.ru — ПЬЕЗОЭЛЕКТРИКИ
  • Обратный пьезоэффект

Пьезоэлектрические преобразователи

Пьезоэлектрики являются обратимыми электромеханическими преобразователями, т. е. способны преобразовывать механическую энергию в электрическую и, наоборот, электрическую энергию в механическую. Преобразователи, основанные на использовании прямого пьезоэффекта, называют преобразователями-генераторами; они имеют механический вход и электрический выход. Преобразователи, основанные на использовании обратного пьезоэффекта, называют преобразователями-двигателями; они имеют электрический вход и механические выходы. Известно множество пьезоэлектрических устройств, основанных на использовании как прямого, так и обратного эффектов. Прямой эффект используется, например, в микрофонах, звукоснимателях, датчиках механических сил, перемещений и ускорений, бытовых зажигалках для газа и др. Обратный эффект послужил основой для создания телефонов, громкоговорителей, ультразвуковых излучателей, реле, двигателей и т. п.

Известны и нашли практическое применение пьезоэлектрические преобразователи — пьезоэлектрические трансформаторы (сокращенно пьезотрансформаторы). Схематически устройство пьезотрансформатора изображено на рисунке, поясняющем, что он представляет собой пьезоэлектрический преобразователь в виде четырехполюсника, имеющего только электрические вход и выход.

Действие пьезотрансформатора основано на использовании как прямого, так и обратного пьезоэффектов. Электрическое напряжение, приложенное к входным электродам пьезотрансформатора, в результате обратного пьезоэффекта вызывает деформацию всего объёма пьезоэлектрика и на выходных электродах возникает электрическое (вторичное) напряжение как следствие прямого пьезоэффекта. В пьезотрансформаторе происходит как бы двойное преобразование энергии — электрической в механическую, а затем механической в электрическую. Как и электромагнитный трансформатор, пьезотрансформатор используют для преобразования электрического напряжения. Подбором размеров электродов и их расположения можно получать различные значения коэффициента трансформации. Пьезотрансформаторы обычно используют в резонансном режиме, при котором достигаются большие значения коэффициента трансформации (порядка нескольких сотен). Пьезотрансформаторы используют в высоковольтных источниках вторичного электропитания.

Пьезоэлемент

Пьезоэлемент:
1 — пластина из пьезоэлектрика;
2 — электроды из проводящего матариала, наложенные на грани пластины

Пьезоэлемент (ПЭ) — тело из пьезоэлектрика определенных размеров, геометрической формы и ориентации относительно основных кристаллографических осей (или направления поляризации в случае пьезокерамики, имеющее проводящие обкладки (электроды).

Таким образом, пьезоэлемент представляет собой электрический конденсатор с твёрдым (кристаллическим или керамическим) диэлектриком. Особенностью такого конденсатора является наличие пьезоэлектрических свойств у диэлектрика, заполняющего пространство между электродами. Ниже будет показано, какое значение имеет наличие пьезоэффекта и каким образом он оказывает влияние на электрические и механические характеристики пьезоэлемента. Если пьезоэлемент используется как электромеханический преобразователь, то его ориентацию выбирают исходя из требований достижения наибольшего эффекта. Внешние силы (как механические, так и электрические), воздействующий на пьезоэлемент, могут быть как распределенными, так и сосредоточенными. Распределенные силы позволяют достичь более эффективного преобразования. Поэтому для более эффективной поляризации объема пьэзоэлектрика используют электроды,. покрывающие всю площадь граней пьезоэлемента, а для создания равномерно распределенного механического напряжения — накладки из упругого материала, хорошо прилегающие к граням пьезоэлемента и преобразующие внешние сосредоточенные силы в распределенные.

Читать еще:  Дачный сезон: 30 ярких и бюджетных идей декора дома и двора

Внешняя сила вызывает деформацию пьезоэлемента, его поляризацию и возникновение на электродах противоположных электрических зарядов. Величина электрического заряда или возникающего при этом напряжения может быть измерена соответствующим измерительным прибором, присоединенным к электродам пьезоэлемента. Внешняя сила сообщает пьезоэлементу энергию в виде упругой деформации, которая может быть рассчитана, если известны величины воздействующей силы и жёсткость пьезоэлемента. Одновременно с деформацией пьезоэлемента на его электродах возникает электрическое напряжение. Следовательно, часть энергии, сообщаемой пьезоэлементу внешней силой, оказывается электрической и её величина может быть рассчитана, если известны электрическое напряжение на электродах и ёмкость пьезоэлемента.

Применение пьезокерамических элементов

Пьезоэлектрические элементы идеальны при использовании в качестве электромеханических преобразователей. Они достаточно широко используются для изготовления пьезокерамических компонентов, узлов и устройств. Некоторые пьезокерамические элементы уже изначально могут выполнять функции компонента или узла (например, пластинчатые биморфы) и не нуждаются в дополнительной доработке. Все изделия, изготовленные на базе пьезокерамики, подразделяют на следующие основные группы: генераторы, датчики (сенсоры), актюаторы (пьезоприводы), преобразователи и комбинированные системы.

а) Пьезокерамические генераторы
Они преобразуют механическое воздействие в электрический потенциал, используя прямой пьезоэффект. Примерами могут служить искровые воспламенители нажимного и ударного типов, применяемые в разного рода зажигалках и поджигающих системах, а также твердотельные батареи на основе многослойной пьезокерамики, применяемые в современных электронных схемах.

Они преобразуют механическое воздействие в электрический потенциал, используя прямой пьезоэффект. Примерами могут служить искровые воспламенители нажимного и ударного типов, применяемые в разного рода зажигалках и поджигающих системах, а также твердотельные батареи на основе многослойной пьезокерамики, применяемые в современных электронных схемах.

б) Пьезокерамические датчики
Пьезокерамические датчики преобразуют механическую силу или движение в пропорциональный электрический сигнал, то есть также основаны на прямом пьезоэффекте.

В условиях активного внедрения компьютерной техники датчики являются незаменимыми устройствами, позволяющими согласовывать механические системы с электронными системами контроля и управления.

Выделяются два основных типа пьезокерамических датчиков: осевые (механическая сила действует вдоль оси поляризации, мода 33) и гибкие (сила действует перпендикулярно оси поляризации (мода 31)).

В осевых датчиках в качестве пьезоэлементов используют диски, кольца, цилиндры и пластины. В качестве примеров можно привести датчики ускорения (акселерометры), датчики давления, датчики детонации, датчики разрушения и т. п.

Гибкие датчики строятся на основе последовательных (слои керамики имеют противоположную направленность поляризации) и параллельных (направленность поляризации слоев совпадает) пьезокерамических биморфов. Наиболее распространены датчики силы и ускорения.

в) Пьезокерамические актюаторы (пьезоприводы)
Актюаторы строятся на принципе обратного пьезоэффекта и поэтому предназначены для преобразования электрических величин (напряжения или заряда) в механическое перемещение (сдвиг) рабочего тела.

Актюаторы подразделяются на три основные группы: осевые (мода d33), поперечные (мода d31) и гибкие (мода d31). Осевые и поперечные актюаторы имеют еще общее название — многослойные пакетные, так как набираются из нескольких пьезоэлементов (дисков, стержней, пластин или брусков) в пакет. Они могут развивать значительное усилие (блокирующую силу) до 10 кН при управляющем напряжении 1 кВ, но при очень малых отклонениях рабочей части (от единиц нанометров до сотен микрон). Такие актюаторы также называют мощными.

Гибкие актюаторы (биморфы) развивают незначительную блокирующую силу при малых (сотни микрон) отклонениях рабочей части. Однако американской компании APC International Inc. удалось создать и выйти на рынок с новым типом пластинчатого биморфа — «ленточным актюатором» (зарегистрированная торговая марка). Ленточный актюатор может обеспечивать блокирующую силу 0,95 Н и величину отклонения 1,2 мм или отклонение до 3 мм и блокирующую силу 0,6 Н.

Гибкие актюаторы относятся к группе маломощных. К этой же группе будут относиться и перспективные осевые актюаторы, представляющие собой моноблок, изготовленный по технологии многослойной пьезокерамики.

Пакетные актюаторы могут производиться предприятиями, не связанными с производством пьезокерамики. Гибкие же и осевые актюаторы из многослойной керамики сами по себе являются пьезокерамическими элементами. Их могут производить только предприятия, владеющие технологиями и оборудованием для производства пьезокерамических элементов.

г) Пьезокерамические преобразователи
Предназначены для преобразования электрической энергии в механическую. Так же как и актюаторы, основываются на принципе обратного пьезоэффекта.
Преобразователи в зависимости от диапазона частот подразделяются на три вида:
звуковые (ниже 20 кГц) — зуммеры, телефонные микрофоны, высокочастотные громкоговорители, сирены и т. п.;
ультразвуковые — высокоинтенсивные излучатели для сварки и резки, мойки и очистки материалов, датчики уровня жидкостей, дисперсионные распылители, генераторы тумана, ингаляторы, увлажнители воздуха. Значительной группой выделяются так называемые ультразвуковые измерители расстояния в воздушной среде (Air Transducers), являющиеся пьезокерамическими компонентами. Они используются в качестве измерителей расстояния для автотракторной техники, сенсоров наличия и движения в охранных системах, в уровнемерах, для дистанционного контроля и управления, в устройствах отпугивания птиц, зверей и сельскохозяйственных вредителей и т. д. Производятся устройства трех типов: передающие, приемные и приемо-передающие;
высокочастотные ультразвуковые — оборудование для испытания материалов и неразрушающего контроля, диагностика в медицине и промышленности, линии задержки и т. д.

д) Комбинированные пьезокерамические системы
Такие системы преобразуют электрические величины в электрические, при последовательном использовании обратного и прямого пьезоэффектов. В качестве примеров таких систем можно привести эхолоты, измерители потоков, пьезотрансформаторы, «искатель ключа».

Типоразмеры изготавливаемых пьезоэлементов

Продольный размер пьезоэлемента (его толщина), определяется свойствами материала и заданной рабочей частотой. При использовании пьезоматериалов типа ЦТС или ПКР, характеризуемых скоростью распространения продольных УЗ колебаний ³ 3500 м/с, полуволновой резонансный преобразователь на частоту 22 кГц будет иметь продольный размер, равный

L = сp /w = 8 смПьезоэлементы такой толщины не изготавливаются и на практике не могут быть использованы.

Поэтому, в УЗ колебательных системах, выполненных на основе пьезокерамических материалов применяются преобразователи типа «сэндвич», предложенные Ланжевеном. Такие преобразователи состоят из двух металлических накладок цилиндрической формы, между которыми закреплен активный элемент из пьезокерамики. Металлические накладки действуют как добавочные массы и определяют резонансную частоту преобразователя. Возбуждение активного элемента осуществляется таким образом, что вся система работает как полуволновой резонансный преобразователь.

Типичная схема полуволнового преобразователя показана на рис. Преобразователь состоит из двух пьезокерамических кольцевых элементов 1, излучающей накладки 2, отражающей накладки 3, прокладок из мягкой проводящей фольги 4 и стягивающего болта 5. Для электрической изоляции внутренней цилиндрической поверхности пьезоэлементов от металлического стягивающего болта применяется изолирующая втулка 6.

Рис. Полуволновой пьезоэлектрический преобразователь

Поверхности соединения пьезоэлементов и накладок при сборке преобразователей тщательно притираются. Стягивающий болт и мягкие (обычно — медные) прокладки обеспечивают прочное механическое соединение. Создание предварительного механического напряжения в пьезоэлементах (более 20 мПа/см 2 ) позволяет повысить эффективность работы преобразователя. Для создания необходимых стягивающих усилий используются стягивающие болты М12. М18 с мелкой резьбой. Необходимость использования болтов указанных диаметров обуславливает необходимость применения в преобразователях кольцевых пьезоэлементов с внутренним диаметром более 14 мм (с учетом необходимости применения изолирующих втулок).

Медь под действием стягивающих давлений растекается, заполняет микронеровности поверхностей пьезоэлементов и накладок и тем самым обеспечивает надежный акустический контакт. Для снижения напряжения возбуждения, питающего УЗ преобразователь, а также для обеспечения возможности заземления верхней и нижней накладок, активный элемент собирается из двух пьезоэлементов одинаковой толщины. Пьезоэлементы установлены таким образом, что их вектора поляризации направлены встречно. При этом необходимое напряжение возбуждения снижается в два раза, а сопротивление преобразователя на резонансной частоте составляет четвертую часть сопротивления преобразователя с одной пластиной.

На эффективность работы преобразователя влияет положение пьезоэлементов в системе (в узловой плоскости, в пучности или при промежуточном положении между узлом и пучностью колебаний), толщина пьезоэлементов, соотношение удельных волновых сопротивлений (произведения плотности материала на скорость распространения УЗ колебаний в нем) пьезоэлементов и накладок.

Наиболее тяжелые условия по прочностным характеристикам создаются при расположении пьезоэлементов в узловой плоскости колебаний, т.е. в плоскости максимальных механических напряжений. Удельная мощность излучения преобразователя в этом случае ограничивается прочностью пьезоматериала. Помещение пьезоэлементов в конце преобразователя (в пучности колебаний) дает возможность получить максимальный КПД. Уменьшаются механические напряжения в рабочем сечении, что позволяет увеличить подводимую к пьезоэлементам мощность электрического сигнала. Однако высокое входное сопротивление преобразователя в этом случае требует значительного повышения питающего напряжения, что для многофункциональных аппаратов, используемых в частности, в бытовых условиях, нежелательно.

Большое значение при использовании преобразователей с пьезокерамическими активными элементами имеет стабильность их работы. Потери в пьезоматериале, накладках, опорах приводят к собственному нагреву преобразователя. Кроме того, в ходе технологического процесса происходит нагрев обрабатываемых материалов, изменение внешней нагрузки за счет изменения свойств обрабатываемых материалов. Эти дестабилизирующие факторы приводят к изменению резонансной частоты преобразователя, его входного сопротивления и излучаемой мощности.

Влияние этих дестабилизирующих факторов оказывается максимальным при расположении пьезоэлементов в узловой плоскости.

Оптимальным вариантом работы составного преобразователя является размещение пьезоэлементов между узловой плоскостью и торцом отражающей накладки. При этом получаются промежуточные усредненные условия по прочности пьезоматериала, КПД и стабильности работы преобразователя.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector