Astro-nn.ru

Стройка и ремонт
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Почему пусковой ток больше номинального

Почему пусковой ток больше номинального

Пуск асинхронного привода прямым включением в сеть связан с бросками тока в статорной цепи. Это общеизвестный факт. Но не все задумывались о том, в чем причина этого явления. Мы привыкли, что ток любого электродвигателя прямо пропорционален вращающему моменту на валу. А здесь, казалось бы, парадоксальная ситуация: момент двигателя при пуске ограничен, а ток может превышать номинальное значение в семь раз. Как же так получается?

Все дело в физике работы асинхронной машины. Переменное электромагнитное поле статора наводит ЭДС в обмотке ротора двигателя. Величина этой ЭДС, в соответствии с законами электромагнитной индукции, зависит от скорости изменения электромагнитного поля статора, то есть от частоты вращения этого поля относительно ротора (от скольжения).

Но если поле статора начинает вращаться сразу после подачи напряжения, то ротору необходимо какое-то время, для того, чтобы разогнаться. И чем мощнее и больше двигатель, тем больше времени требуется ротору для разгона – увеличенная масса способствует инерции.

Величина скольжения, в свою очередь, имеет самое большое значение именно в первый момент пуска. В этот момент скольжение равно единице, ротор еще неподвижен, а поле уже вращается с максимальной скоростью. ЭДС в роторной цепи достигает максимального значения, так же как и ток ротора.

Ток ротора тоже является переменным, поэтому он тоже создает свое переменное электромагнитное поле. Это поле опять же наводит ЭДС уже в статорной цепи двигателя. А под воздействием упомянутой ЭДС в статоре начинает протекать дополнительная составляющая тока, компенсирующая МДС ротора.

Таким образом, ток в статоре всегда складывается из двух сонаправленных составляющих. Величина одной составляющей обусловлена собственным сопротивлением статорной обмотки. Эта составляющая имеет постоянное значение и на идеальном холостом ходу двигателя весь статорный ток сводится только к ней.

А вторая составляющая статорного тока зависит от тока в роторной цепи и своего максимума достигает в первый момент пуска двигателя, уменьшаясь до нуля по мере приближения к точке идеального холостого хода. За счет второй составляющей статорный ток двигателя и достигает таких огромных значений при пуске.

Остается невыясненным только один нюанс: почему большой пусковой ток асинхронного двигателя не обеспечивает столь же большого пускового момента, как это бывает у двигателей постоянного тока? Причина состоит в том, что момент двигателя создается только активной составляющей тока ротора, то есть той составляющей, которая совпадает по фазе с роторной ЭДС.

А соотношение активного и реактивного тока ротора зависит, прежде всего, от частоты ЭДС, наводимой в роторной обмотке. Чем выше частота, тем более «переменным» становится ток и тем большее значение приобретает индуктивное сопротивление обмоток ротора. А чем больше индуктивное сопротивление роторных обмоток, тем более реактивным становится роторный ток.

Максимальной частоты ЭДС ротора достигает именно в момент пуска, когда ротор неподвижен. В этот момент роторная ЭДС изменяется с частотой питающей сети – 50 герц. Впоследствии, когда двигатель выходит на рабочий участок характеристики, эта частота падает до нескольких герц, и индуктивное сопротивление обмоток перестает иметь значение, а ток ротора становится практически полностью активным.

Да, пусковой ток в роторной цепи асинхронного двигателя велик, но это преимущественно реактивный ток, он не может обеспечить большой электромеханический момент. Активный ток достигает необходимой величины только после снижения частоты ЭДС и выхода двигателя на рабочую характеристику. С этим и связаны две проблемы пуска асинхронных двигателей: ограниченный пусковой момент и, напротив, повышенный в несколько раз пусковой статорный ток.

Максимальной частоты ЭДС ротора достигает именно в момент пуска, когда ротор неподвижен. В этот момент роторная ЭДС изменяется с частотой питающей сети – 50 герц. Впоследствии, когда двигатель выходит на рабочий участок характеристики, эта частота падает до нескольких герц, и индуктивное сопротивление обмоток перестает иметь значение, а ток ротора становится практически полностью активным.

Почему пусковой ток больше номинального

Вы хотите, чтобы стабилизатор напряжения, источник бесперебойного питания или генератор служили безотказно? Тогда эта статья будет для вас полезна.

Одна из основных характеристик бытовых приборов — электрическая мощность на выходе. Она отражает возможность питания подключённой нагрузки. Для правильного выбора стабилизатора напряжения переменного тока, ИБП или генератора нужно знать мощность устройства. Для ее расчета следует подсчитать сумму электрической мощности всех приборов, которые могут быть единовременно подключены.

Одно из основных условий долгой и стабильной работы стабилизатора, генератора и ИБП: мощность техники не должна превышать их возможности по выходной мощности. Лучше, чтобы суммарная электрическая мощность электроприборов, которые функционируют одновременно, была на 20 % меньше выходной мощности питающего прибора. Чем меньше стабилизатор или ИБП работает с перегрузкой, тем дольше он служит.

В расчете суммарной мощности и состоит основная трудность. В паспорте любого устройства указана мощность в кВт. Вроде бы всё просто: нужно сложить мощность приборов. Но в этом кроется основная ошибка. Приборы, в конструкции которых есть электродвигатели, насосы или компрессоры, в момент запуска дают нагрузку на сеть, превышающую номинал в Такое явление обусловлено наличием пусковых токов. Это же правило относится к приборам, в состав которых входят инерционные компоненты или элементы, физические свойства которых в момент запуска отличаются от их обычных значений при эксплуатации. Классический пример — изменение сопротивления у обыкновенной лампы накаливания. В конструкции таких ламп есть вольфрамовая нить, при включении электрическое сопротивление вольфрама меньше (нить холодная), чем при работе. Сопротивление увеличивается с ростом температуры, следовательно, при включении лампы её мощность намного больше, чем во время работы. При включении лампы накаливания присутствуют пусковые токи.

Мощность любого прибора рассчитается как произведение напряжения (в вольтах) и силы тока (в амперах). По мере увеличения силы тока растет мощность, а значит, возрастает нагрузка на стабилизатор, генератор и источник питания. Определение пусковых токов можно сформулировать так: электроприборы или их элементы, имеющие инерционные свойства, в момент запуска дают большую нагрузку на электрическую сеть или питающий прибор, чем в процессе работы.

Значение пусковых токов зависит не только от усилия по раскрутке ротора двигателя или насоса до номинальных оборотов, но и от изменения сопротивления проводника. Чем меньше сопротивление, тем больше величина силы тока, который может протекать по нему. При нагреве уменьшается сопротивление и снижается возможность проводника пропускать большие токи.

Помимо вращающего момента и электросопротивления дополнительную электрическую мощность в момент старта прибору придаёт индуктивная мощность. В момент включения люминесцентной лампы у индуктивной катушки сопротивление мало. Также действует мощность для поджига разряда, что увеличивает силу тока.

Влияние пусковых токов особенно важно для стабилизаторов напряжения и источников бесперебойного питания on-line типа. Стабилизаторы работают в одном из двух режимов работы: номинальном или предельном.

В номинальном режиме работы сохраняется мощность, но при ухудшении качества электроснабжения в сети наблюдается очень низкое или, напротив, очень высокое напряжение. В таком случае стабилизатор переходит в предельный режим работы, его выходная мощность снижается примерно на 30 %. Если при этом происходит перегрузка по пусковым токам, то он выключится, сработает система защиты. Если это будет повторяться часто, срок службы качественного стабилизатора будет небольшим (что уж говорить о китайской технике).

С ИБП типа on-line дела обстоят сложнее. Если на такой прибор дается нагрузка, превышающая номинальную (а у пусковых токов очень большая скорость, и они проходят любую защиту), предохранители не успевают сработать, и источник питания может сгореть. Это негарантийный случай и ремонт будет стоить значительных средств.

Единственный вид ИБП, который может выдерживать пусковые токи, в раза превышающие номинал, — системы резервного электропитания линейно-интерактивного типа. Максимальные пусковые токи дают компрессоры холодильников (однокамерные — до 1 кВт, двухкамерные — до 1,8 кВт), а также глубинные насосы. Их мощность во время запуска превышает номинал в Самый маленький коэффициент запуска (равный 2) отмечается у насосов Grundfos с системой плавного пуска.

При выборе источников электроснабжения или стабилизатора напряжения нужно учитывать временной фактор влияния пусковых токов. При первом включении стабилизатора или генератора все электроприборы начнут работу одновременно и суммарная нагрузка будет большая. При дальнейшей работе потребитель должен оценить вероятность одновременного запуска приборов с большими пусковыми токами (к примеру, холодильника, насоса и стиральной машины). Если стабилизатор или ИБП имеет небольшую мощность, то следует самостоятельно контролировать включение техники с пусковыми токами.

Выводы:

  • При подсчёте суммарной мощности электротехники мощность приборов с пусковыми токами нужно рассчитывать не по номиналу, а с учётом пусковых токов (в Вт либо в А).
  • Пусковые токи даёт техника, в конструкции которой есть электродвигатель, насос, компрессор, нить накаливания или катушка индуктивности.
  • Чем хуже напряжение в магистральном проводе (ниже 150 В или выше 250 В), тем более высокий номинал должен быть у стабилизатора или ИБП (примерно на 30 % больше суммарной мощности работающей техники).

Пусковые токи можно ассоциировать с началом движения велосипеда: в момент начала движения нужно большое усилие, чтобы раскрутить колёса, но когда велосипед приходит в движение, требуется меньше сил для поддержания скорости.

Примеры номинальной мощности и мощности при запуске бытовой техники

Тип техникиНоминальная мощность, ВтПродолжительность пусковых токов, сКоэффициент во время начала работыПример модели стабилизатора, ВАПример модели ИБП
Холодильник43«Штиль» R1200 / Progress 1500TN-Power Pro-Vision Black M 3000 LT
Стиральная машина2500Progress 3000T
Микроволновая печь16002«Штиль» R2000
КондиционерProgress 5000L
Пылесос15002Progress 3000T
Кухонный комбайн7Progress 2000T
Посудомоечная машина22003Progress 3000L
Погружные скважинные насосы, глубинные насосы2Progress 3000LДПК-1/1-3-220-М
Циркуляционные насосы«Штиль» R 600 STInelt Intelligent 500LT2
Лампа накаливания1000,15высокоточная серия L

В таблице не отражены точные значения электрических приборов, предоставлены лишь ориентировочные цифры для понимания алгоритма выбора стабилизатора напряжения и ИБП.

Bazingeorg › Блог › Тест электронных «пускачей»: сравнение пускового тока и энергоемкости

Всем привет, коллеги!
Хочу поделиться довольно любопытными результатами сравнительных испытаний, в ходе которых я с коллегами проверил реальные показатели нескольких автономных пуско-зарядных устройств (ПЗУ) или, как их еще иногда называют, внешних аккумуляторов или jump-стартеров. В автомобилях их чаще всего используют в аварийных ситуациях, когда штатная батарея «умерла» и уже не «крутит». Кратковременный пусковой ток, выдаваемый устройством, может достигать нескольких сот Ампер, что позволяет запустить двигатель даже при сильно разряженной автомобильной батарее (АКБ).

Между тем, как показывает мой личный опыт тестирования различных Jump-стартеров, их реальные показатели часто не соответствуют заявленным. Более того, иногда такие аппараты, у большинства которых батарея состоит из 3-х элементов с суммарным напряжением в 11,7-12,3 В, и вовсе оказываются бессильными в случае их применения на некоторых современных иномарках. У таких машин при сильном разряде АКБ и понижении напряжения бортовой компьютер сразу отключает электронный блок управления двигателем (ЭБУД). И запустить его даже с ПЗУ в принципе невозможно, так как в бортсети попросту не хватает напряжения для активации ЭБУД.

Возможно, эта проблема способствовала тому, что в последнее время на рынке появились пуско-зарядники новой формации, уже с четырьмя элементами, суммарным напряжением в 15,6-16,4 В и заметно более высокими значениями пикового тока. Это нас заинтересовало, и мы решили сопоставить возможности ПЗУ различных модификаций, для чего и организовали нынешний тест. Его задачей стала проверка максимальных пусковых токов, выдаваемых тем или иным устройством, а также оценка их энергоемкости.

Всего в тесте было задействовано шесть автономных «пускачей»: Carku Pro-30, Atom 18 Evolution, RoyPow J18, Berkut JSL-20000, Revolter Quasar и Hummer H1. Энергоемкость большинства устройств превышает отметку 60 Вт*ч, исключение – изделия Hummer H1 и Revolter Quasar, у которых данный параметр составляет 55,5 Вт*ч и 50 Вт*ч соответственно. Два устройства из этой шестерки участников – это ПЗУ нового поколения с начальным рабочим напряжением 16 В. Подробнее о них расскажем ниже, а пока несколько слов о сути проводимых испытаний.

Читать еще:  Нюансы изготовления изголовья кровати, как можно сделать своими руками

Как проходил тест

Для исследования пусковых свойств jump-стартеров мы с коллегами проработали свою методику, суть которой сводилась к тому, чтобы обеспечивалось прямое подключение каждого образца к мощному разрядному тестеру, способному пропускать ток в сотни Ампер. Испытуемое ПЗУ должно было выдержать несколько условных пусков с максимально возможным (для данной нагрузки) током. При этом длительность каждого пуска ограничивалась лишь системой защиты конкретного аппарата (например, от перегрева). Чем больше была длительность таких пусков и их количество, тем лучше. Проверку каждого образца проводили до того момента, когда его емкость снижалась до половины от начальной.

Что касается оценки энергоемкости ПЗУ, то она определялась продолжительностью работы автомобильного компрессора SPEC-2M с током потребления 6-7A, подключаемого к «розеточным» выходам под прикуриватель, которые имеются у всех образцов. Испытания проводились фактически до полного разряда каждого устройства, что визуально фиксировалось по светодиодным индикаторам. После завершения данного эксперимента все пускачи дополнительно были протестированы на скорость заряда, который осуществлялся с помощью своих же штатных сетевых «зарядок». Результаты всех этих испытаний с описанием возможностей проверенных «пускачей» приводятся ниже.

Пуско-зарядное устройство RoyPow J18

Энергоемкость при 12 В, Втч – 66,6
Номинальный/пиковый ток, А – 300/800
Число элементов в батарее – 3
Макс. достигнутый ток разряда, А – 400
Число проведенных тестовых пусков – 2
Длительность условных пусков, с – 2-10
Время полного разряда (с компрессором), мин – 31
Время полного заряда, час – 5,5
Тип зарядного устройства AC-220V – 2xUSB: 5.0V 2.4A + 1.0A
Вход для зарядки – 2x MicroUSB
Цена в интернете: 7790 — 8990 руб.

Плюсы: Пуско-зарядное устройство RoyPow J18 успешно выполнило два уверенных и достаточно длительных (от 7-ми до 10-ти секунд) условных пуска с током 360-400 А, и даже попыталось сделать третий, но не получилось – на второй секунде эта попытка была блокирована модулем защиты. Тем не менее, по итогам пусков аппарату удалось превысить номинальный ток почти на треть. Что касается энергоемкости, то в тесте с компрессором данное ПЗУ показало лучший результат, правда батарея была высажена в ноль (светодиодная индикация отсутствует).

Минусы: малое число попыток пуска, обусловленное длительными мощными разрядами при первых двух попытках. Если бы схема защиты этого устройства срабатывала бы на 2-3 секунды раньше, то, скорее всего, число эффективных условных пусков выросло в два раза. Но это лишь предположение… В качестве минуса отметим и относительно низкую скорость заряда от штатной «зэушки», даже двойной разъем Micro-USB не помог.

Пуско-зарядное устройство Revolter Quasar

Энергоемкость при 15 В, Втч – 50
Номинальный/пиковый ток, А – 750/1500
Число элементов в батарее – 4
Макс. достигнутый ток разряда, А – 381
Число проведенных тестовых пусков – 5
Длительность условных пусков, с – 1,5-4
Время полного разряда (с компрессором), мин – 31
Время полного заряда, час – 4,4
Тип зарядного устройства AC-220V – USB 5.0V 3.0A
Вход для зарядки – Type-C
Цена в интернете: 10790 — 11990 руб.

Плюсы: Revolter Quasar – одно из устройств, имеющих 4-элементную батарею с рабочим напряжением более 16 В, что повышает шансы при подключении к бортсетям некоторых современных иномарок. Аппарат в ходе теста выполнил три условных коротких пуска длительностью 3-4 с и два сверхкоротких пуска длительностью менее 2 с. Максимальный ток в ходе испытаний варьировал от 315 до 381 А (в последнем случае – менее секунды). В числе плюсов – лучший результат по скорости заряда от штатного ЗУ через мощный вход Type-C, но тут и самая маленькая ёмкость встроенной АКБ. Также порадовал встроенный терминал для бесконтактной подзарядки смартфонов.

Минусы: Заявленный номинальный ток в 750A далеко не был достигнут. На наш взгляд, схему и алгоритм срабатывания защиты Revolter Quasar следовало бы доработать, поскольку, даже при относительно невысоких (в сравнении с другими участниками) токах, длительность мощных разрядов в ряде случаев оказывается очень короткой, и этого может оказаться недостаточно при аварийных пусках двигателя, особенно зимой. Относительно энергоемкости с компрессором: на фоне прочих участников аппарат показал худший результат.

Пуско-зарядное устройство Hummer H1

Энергоемкость при 12 В, Втч – 55,5
Номинальный/пиковый ток, А – 400/800
Число элементов в батарее – 3
Макс. достигнутый ток разряда, А – 392
Число проведенных тестовых пусков – 3
Длительность условных пусков, с – 5-9
Время полного разряда (с компрессором), мин – 52
Время полного заряда, час – 6,5
Тип зарядного устройства AC-220V – 14.0V 1.0A
Вход для зарядки – DC 15V
Цена в интернете: 11390 — 12500 руб.

Плюсы: Hummer H1 в процессе испытаний уверенно смог выполнить три условных пуска: два 5-секундных с током под 392 А, и еще один, 9-секундный, с током не более 316 А. В целом вроде как неплохо, но хотелось бы побольше!

Минусы: В ходе тестирования «хаммера» не удалось добиться заявленного значения номинального тока силой в 400 А. По все видимости, это связано с высоким переходным сопротивлением, создаваемым при контакте «крокодилов» с нагрузкой. Еще одно уточнение: после второго пуска «пускач» отключился, зафиксировав ошибку. Чтобы «убрать» ее и реанимировать устройство, от него пришлось отстыковывать и вновь подсоединять внешний модуль защиты.
По энергоемкости: при разряде компрессором аппарат показал далеко не лучшее время, как и по восполнению емкости – здесь у «хаммера» худший результат.

Пуско-зарядное устройство Berkut JSL-20000

Энергоемкость при 12 В, Втч – 66,6
Номинальный/пиковый ток, А – 400/800
Число элементов в батарее – 3
Макс. достигнутый ток разряда, А – 395
Число проведенных тестовых пусков – 6
Длительность условных пусков, с – 6-7
Время полного разряда (с компрессором), мин – 67
Время полного заряда, час – 4,8
Тип зарядного устройства AC-220V – Type-C PD 3.0 или USB 5V 2.4A
Вход для зарядки – Type-C
Цена в интернете: 7490 — 8990 руб.

Плюсы: В рамках испытательной методики Berkut JSL-20000 оказался самым выносливым и обеспечил шесть условных пусков длительностью 5-7 секунд и с током 350-395 А. При этом он всего один раз (после третьего пуска) временно отключился из-за срабатывания защиты от перегрева. В числе других достоинств «беркута» — развитая система выходов, включая мощный USB, а также вход Type C для быстрой зарядки самого ПЗУ (с током до 3 А). Неплохо показал себя аппарат и в ходе теста на энергоемкость (третий результат), кстати в ноль пускач не разрядился, — сработала защита от глубокого переразряда. Ну а в «соревнованиях» по скорости заряда он занял первое место среди устройств с энергоемкостью более 60 Втч.

Минусы: Максимальный ток, достигнутый устройством во время тестирования, не превысил номинальное заявленное значение. Впрочем, не исключено, что это изначально связано с повышенным переходным сопротивлением «крокодилов» при их соединении с используемым разрядным тестером. Вполне допускаем, что на другой нагрузке «беркут» продемонстрировал бы значительно более мощный ток.

Пуско-зарядное устройство Carku Pro-30

Энергоемкость при 16,0 В, Втч – 62,6
Номинальный/пиковый ток, А – 500/1200
Число элементов в батарее – 4
Макс. достигнутый ток разряда, А – 401
Число проведенных тестовых пусков – 5
Длительность условных пусков, с – не более 3-х
Время полного разряда (с компрессором), мин – 38
Время полного заряда, час – 4,9
Тип зарядного устройства AC-220V – USB QC3.0 3.6-6V 3.0A; 6-9V 2.0A
Вход для зарядки – Type-C
Цена в интернете: 9390 руб.

Плюсы: «Пуско-зарядник» Carku Pro-30 – еще одна любопытная новинка сезона, батарея которой составлена не из трех, а четырех литий-полимерных элементов. В итоге напряжение на выходе ПЗУ может достигать более 16 Вольт (в режиме холостого хода). Такой запас по напряжению, безусловно, повышает шансы «аварийного» подключения аппарата при работе с иномарками, напичканными электроникой. Аппарат сделал пять условных пусков током от 365 до 401 А, правда, лишь по три секунды каждый. В числе плюсов – довольно неплохая скорость заряда (третий результат), что обусловлено применением мощного входа Type-C.

Минусы: До заявленных номинальных 500A пускач сильно не дотянул. К тому же повышенное рабочее напряжение от 16-вольтовой батареи имеет и обратную сторону, так как оно ужесточает требования к электронной защите, в первую очередь, от перегрева. А это, в свою очередь, сильно ограничивает длительность мощного разряда, особенно в условиях аварийного пуска. Например, сможет ли этот гаджет при «севшей» штатной батарее запустить двигатель на 20-градусном морозе за две-три секунды? Ответ на этот вопрос весьма неоднозначен, тут нужны дополнительные исследования. Как минус стоит отметить и едва ли не самый низкий результат в тесте на энергоемкость с компрессором.

Пуско-зарядное устройство Atom18 Evolution

Энергоемкость при 12 В, Втч – 66,6
Номинальный/пиковый ток, А – 300/600
Число элементов в батарее – 3
Макс. достигнутый ток разряда, А – 368
Число проведенных тестовых пусков – 5
Длительность условных пусков, с – 3-7
Время полного разряда (с компрессором), мин – 73
Время полного заряда, час – 6,1
Тип зарядного устройства AC-220V – 15V 1.0A
Вход для зарядки – DC 15V
Цена в интернете: 6900-7900 руб.

Плюсы: В ходе проверки «атомный» образец смог сделать один 3-секундный условный пуск током почти до 370 А, а затем еще четыре длительностью 6-7 секунд каждый с током 290-330 А. Это можно в целом расценивать как неплохой показатель, учитывая еще и тот факт, что максимальный ток оказался на 30% выше относительно заявленного «номинала». Еще один плюс – неплохая энергоемкость в тесте с компрессором, где устройство показало второй результат.

Минусы: определенным недостатком данного ПЗУ является тот факт, что каждый раз после выполнения условного пуска с током, близким к «номиналу» (или выше его) оно отключалось полностью, фиксируя ошибку, удалить которую можно было лишь путем подключения штатной сетевой «зарядки». Можно предположить, что при более высоких токах, например, в 350-450 А, длительность пуска будет существенно сокращена, из-за чего этот аппарат едва ли сможет помочь завести двигатель. Еще один минус – низкая скорость заряда. По этому показателю Atom18 Evolution уступает почти всем участникам теста.

Краткие выводы

Как видим, ни одно из проверенных пуско-зарядных устройств не смогло обеспечить максимальный пусковой ток, который бы превысил «номинал» хотя бы в полтора раза. С другой стороны, если брать за основу полученные результаты, то при высоких (450-500 А) токах у большинства ПЗУ наверняка бы гораздо раньше срабатывала защита, и они на практике вряд ли смогли прокрутить стартер. С учетом изложенного, заявленные сверхвысокие значения номинальных и пиковых токов, прописанные у Carku и Revolter, смотрятся как-то уже очень сомнительно на фоне итогов тестирования. Кстати, ролик с отдельными этапами испытаний можно посмотреть ниже.

Безусловно, полученные результаты не являются истиной в последней инстанции, поскольку они получены по собственной испытательной методике, которая использовалась при тестировании. Тем не менее, будем надеяться, что представленные данные окажутся для кого-то полезными и помогут лучше сориентироваться в выборе автономных пуско-зарядных устройств.

Правда и вымысел о пусковых токах светильников

Светодиодные светильники за последние пять лет превратились из экзотических устройств для сторонников экологического стиля жизни в предметы повседневного обихода. Поэтому не удивительно, что установка таких светильников все чаще осуществляется не инженерами экстра-класса в рамках проектов государственной важности, а в самых обычных офисах рядовыми электриками или вообще людьми, имеющими об электричестве только самые элементарные представления. И каким же бывает разочарование, когда при включении вроде бы «экономичных» светодиодных светильников срабатывает защитный автомат, выбранный, вроде бы, с соблюдением всех правил. Или возникает парадоксальная ситуация, когда при замене люминесцентных светильников на светодиодные срабатывает предохранитель, который ранее без проблем «держал» очень «прожорливые» приборы еще советского производства. Самое время разувериться в экономичности светодиодных светильников. Проблемы возникают потому, что не учитывается важнейший параметр любого светильника — значение пускового тока. Причем такой подход навязывают сами производители светильников, зачастую утверждающие, что у их продукции пусковых токов просто нет.

Читать еще:  Достоинства и недостатки каменных кухонных моек

При включении электрического устройства, как правило, наблюдаются переходные процессы. Кроме этого, для запуска устройства может потребоваться большая мощность, чем в установившемся режиме. Из-за этого наблюдается такое явление как пусковой ток. Значение пускового тока равно максимальному значению входного тока при включении устройства. Пусковой ток выражается либо в абсолютных значениях, либо как кратность максимального значения входного тока к потребляемому току в установившемся режиме. Другим важным значением является длительность пускового тока — время при запуске, в течение которого входной ток устройства превышает потребляемый ток в установившемся режиме.

Наличие пускового тока характерно даже для такого «древнего» и простого источника света как лампа накаливания. Вольфрамовая нить в охлажденном состоянии имеет сопротивление в 10-15 раз меньше, чем в нагретом до температуры, когда она светится. Соответственно, пусковой ток лампы накаливания в 10-15 раз больше потребляемоготокавустановившемся режиме.

Вот, кстати, почему лампы накаливания (и похожи по принципу работы галогенные лампы) выходят из строя чаще всего при включении.

В разрядных источниках света при запуске энергия затрачивается на создание плазмы между электродами, то есть электрического разряда, дающего свечение. К таким источникам света относятся, например, натриевые, металлогалогенные и люминесцентные лампы. Данные по кратности пусковых токов и их продолжительности можно найти в таблице 1.

Таблица 1. Параметры запуска для традиционных источников света

Все о пусковых токах

Одной из ключевых технических характеристик бытовых электроприборов является мощность вырабатываемого электротока (т. н. выходная мощность). Чем она больше – тем больше пользователей одновременно может получать питание от такого агрегата. Поэтому при выборе оборудования резервного энергоснабжения необходимо подсчитать суммарную мощность всех электроприборов, которые вы планируете подключать при прекращении подачи тока в центральной сети. В идеале мощность ГУ должна соответствовать суммарной мощности предполагаемых пользователей + 20 % (стратегический запас на случай возможного увеличения нагрузки).

Грамотный расчет этого показателя – важное условие безотказной работы оборудования автономного энергообеспечения. Чем меньше двигатель функционирует в режиме перегрузки, тем больше он в итоге прослужит.

Итак, вроде все просто: сложить номинальную мощность подключаемых приборов и сделать 20-процентный запас. Зная эти цифры, можно отправляться в магазин и выбирать понравившуюся модель с соответствующими техническими характеристиками. Но, оказывается, эта формула не учитывает еще один важный момент – пусковые токи.

Пусковые токи: определение понятия

Дело в том, что бытовые приборы с электрическими двигателями (стиральные машинки, глубинные насосы, кондиционеры и т.д.) во время пуска двигателя дают краткосрочную нагрузку, многократно превышающую номинал. Это явление и называется пусковыми токами.

Их сравнить с ездой на велосипеде: вначале приклаывается максимум усилий для раскрутки колес, а после набора скорости остается лишь ее поддерживать.

Так, пусковые токи 1-камерных холодильников составляют до 1 кВт, 2-камерных – до 1, 8 кВт, электронасосов – до 5-6 раз от номинала. Отметим, что последние модели насосов известных производителей снабжаются функцией плавного пуска, не допускающей более чем двукратного увеличения напряжения.

К числу электроприборов, дающих высокие пусковые токи, относятся также самые обычные лампы накаливания: в них есть нить из вольфрама, сопротивление которого при включении (в холодном состоянии) в несколько раз меньше, чем в ходе работы.

Резкое увеличение величины электротока связано не столько с определенными усилиями, которые прилагаются в ходе раскрутки ротора до нужного количества оборотов, сколько с изменением показателей сопротивления проводника (с уменьшением силы сопротивления увеличивается сила электротока). В процессе нагрева сопротивление падает, а вместе с ним снижается способность проводника к пропусканию высоких токов.

Кроме вращающего момента и показателя сопротивления, на повышение напряжения при старте влияет также индуктивная мощность. Так, при включении лампочки накаливания сопротивление индуктивной катушки небольшое. На увеличение пусковой силы влияет мощность розжига разряда.

О важности правильного расчета пусковых токов для UPS-online и стабилизаторов.

Стабилизаторы могут функционировать в 2-х режимах: номинальном либо предельном. При номинальном режиме мощность прибора сохраняется, а с ухудшением качества электротока (значительных перепадах напряжения) происходит переход на предельный режим. При этом его мощность уменьшается в среднем на 30 %. При выходе показателей напряжения за предельные значения срабатывает автоматическая система защиты и стабилизатор отключается. В случае частого повторения такой ситуации срок эксплуатации даже самого качественного стабилизатора может оказаться весьма недолгим.

Что касается ИБП, то с ними все еще сложнее: при превышении предельно допустимых норм нагрузки предохранители зачастую не успевают срабатывать и оборудование просто выходит из строя. Связано это с большой скоростью пусковых токов, которые легко преодолевают защиту ИБП. Случаи таких поломок оборудования не относятся к числу гарантийных и стоят немалых денег.

Есть только один вид ИБП, выдерживающий пусковую нагрузку до 3-х раз превышающую номинал – линейно-интерактивные.

В ходе первого включения нового оборудования все подключенные пользователи начнут работать в одно время и нагрузка может оказаться чрезмерной. Возможно, вам придется следить за использованием техники с высокими пусковыми токами и чередовать включение таких бытовых приборов, как насос, холодильник, компрессор, стиральная машинка и т. д.

Подытоживая вышесказанное, отметим:

  • при расчете мощности ГУ, стабилизатора или ИБП следует учитывать не только номинал, но и величину пусковых токов ваших электрических приборов;
  • высокие пусковые токи дает оборудование, снабженное электрическим двигателем, имеющее в своей конструкции вольфраовую нить или индуктивную катушку;
  • чем больше отклонения от номинального напряжения в сети (- 150 В, +250 В), тем большим номиналом должен обладать агрегат резервного энергообеспечения (приблизительно + 30 % общей мощности подключенных потребителей).

Таблица номинальной мощности и мощности пусковых токов некоторых бытовых электроприборов:
Вид техникиНоминальная мощность, кВтВремя действия пусковых токов, сек.Коэффициент в начале работы
Стиральная машинка2,51-33-5
Холодильник2,5-3,543
Микроволновая печка1,612
Пылесос1,521,2-1,5
Кондиционер2,5-3,01-33-5
Посудомоечная машина2,21-33
Кухонный комбайн1,5-2,02-47
Насосы погружные для колодцев, скважин0,5-1,023-7
Циркуляционные насосы0,08-0,11-72-4
Лампы накаливания0,010,155-13

В данной таблице нет точных значений мощности электроприборов, представлены лишь приблизительные цифры, дающие возможность понять принцип выбора источника бесперебойного питания либо стабилизатора.

ПУСКОВОЙ ТОК СТАРТЕРА: как измерить и зачем это нужно?

Пусковым током стартера автомобиля называется максимальное значение силы тока, который потребляется им во время запуска двигателя. Измеряется в амперах и, в зависимости от рассмотренных в статье факторов, может варьироваться в диапазоне 100-500 А. От чего зависит этот показатель, на что он влияет, как его правильно измерить и уменьшить – простыми и понятными словами рассказано в данном материале.

Базовые понятия

Для начала рассмотрим несколько базовых понятий, чтобы лучше понимать, что такое пусковой ток автомобильного стартера, и не путать эту величину с другими характеристиками.

Автомобильный стартер является ничем иным, как электродвигателем постоянного тока. Это означает, что он выполняет свою работу (крутит коленвал двигателя), потребляя электрическую энергию, накопленную в аккумуляторной батарее. Эта энергия характеризуется несколькими величинами – напряжением, силой тока и мощностью.

Напряжение, при котором работает нагруженный стартер легкового автомобиля, находится в диапазоне примерно 11-13 В. Что значит нагруженный? Если стартер снять с двигателя и подключить к источнику тока без какой-либо нагрузки, то он будет работать и при гораздо меньшем напряжении. Однако будучи установленным на автомобиле, при напряжении менее 11 В он, как правило, не работает. Это хорошо знакомо тем автолюбителям, у которых была изношенная или полностью разряженная АКБ.

Сила тока, который потребляется нагруженным стартером легкового автомобиля, варьируется в диапазоне 100-500 А. Здесь, как и в случае с напряжением, большую роль играет нагрузка. Если стартер подключить к источнику питания отдельно от двигателя, то тока он потреблять будет гораздо меньше. Из этого следует, что чем большая нагрузка на стартер, тем больше тока он будет потреблять.

Мощностью стартера называется величина, которая зависит от напряжения, при котором он работает, и силы тока, который им потребляется в конкретный момент времени. Так, например, если стартер вашего автомобиля при напряжении 12 В потребляет ток силой 150 А, то его мощность в данный момент составляет 12 × 150 = 1800 Вт.

Из этого всего можно вывести следующее, важное для автомобилистов, понятие. Что происходит, когда АКБ изношена или слабо заряжена? А происходит то, что при работе стартера напряжение на ней просаживается, например, до 10,5 В. Это означает, что, если стартер потребляет все те же 150 А, то его мощность при таких условиях уже не 1,8 кВт, а всего лишь 1,5 кВт. Соответственно, он крутит коленвал вяло, либо ему вообще не хватает мощности, чтобы сдвинуть его с места.

Кроме того, чем большая просадка напряжения происходит на клеммах АКБ, тем меньший пусковой ток она способна выдавать. Отсюда следует, что на наш стартер идет уже не 150 А, а вдвое-втрое меньше. Это приводит к резкому уменьшению мощности, которой оказывается недостаточно, чтобы провернуть коленчатый вал двигателя.

Для некоторых автолюбителей будет интересной еще одна характеристика стартера. Она показывает количество энергии, которое он израсходовал, пока запускал двигатель. Измерить ее можно в А*ч (ампер-часах), а как мы помним, именно в этих единицах указывается емкость АКБ. Это означает, что по пусковому току и времени работы стартера мы можем узнать, на сколько сильно он разрядил нашу батарею.

Рассмотрим все тот же стартер. Допустим, во время всей своей работы он, потребляя ток силой 150 А, запустил двигатель с первой попытки, вращая его в течение 5 секунд. Теперь секунды надо перевести в часы, так как нас интересуют именно ампер-часы. 5 секунд – это примерно 0,0014 часов. Соответственно, наш стартер «взял» из батареи 150 × 0,0014 А*ч, то есть примерно 0,21 А*ч. И это при емкости в 50-60 А*ч.

Но здесь следует понимать, что мы рассмотрели упрощенные условия. Так, при больших токах потребления АКБ садится немного больше, чем это можно рассчитать на бумаге. Кроме того, не всегда двигатель запускается с первого раза, и так далее. Из всего этого важно усвоить следующее. Если стартер не смог прокрутиться из-за ослабленной АКБ, то ему, скорее всего, хвалило не А*ч, как думают многие. Ему не хватило пускового тока, так как разряженная или испорченная батарея не в состоянии выдавать такие большие токи.

От чего зависит пусковой ток стартера?

На разных моделях легковых автомобилей пусковой ток стартера может значительно отличаться по своей величине. Разберем, от чего это зависит.

  1. Во-первых, от типа двигателя. Так, чтобы прокрутить на старте дизельный двигатель, требуется на порядок больше мощности, чем для бензинового мотора с таким же объемом. А как мы уже выяснили, чем большей мощности стартер, тем больше тока он потребляет для выполнения своей работы.
  2. Во-вторых, от объема двигателя. Чем он больше, тем тяжелее стартеру его запускать. Соответственно, для этого требуется больше мощности, а значит и пускового тока.
  3. В-третьих, пусковой ток на разных автомобилях зависит и от самого стартера – его модели, мощности и так далее. Все это подбирается производителем, исходя из первых двух факторов, а также ряда других нюансов.

Однако пусковые токи стартера могут отличаться не только на разных автомобилях, но и на абсолютно одинаковых. Более того, на одной и той же машине, например, вашей, при разных условиях пусковой ток может сильно разниться. От чего зависит его сила в этом случае?

В первую очередь, от технического состояния двигателя. Если в нем что-либо подклинивает, тяжело вращается и так далее – стартеру труднее все это сдвигать с места, а потому он будет потреблять больший пусковой ток.

Следующий фактор, влияющий на пусковые токи, это температура окружающей среды. Чем она ниже, тем гуще становится моторное масло, и тем тяжелее стартеру такой двигатель запустить.

Далее идет состояние самого стартера. Например, если в нем изношены или загрязнены втулки, выступающие в роли подшипников трения, вращаться ему тяжелее, и он будет потреблять больший ток.

Читать еще:  Пошаговые инструкции по каждому из видов отделки проема двери

Еще хуже обстоит ситуация, когда есть короткие замыкания в обмотках стартера. Здесь уже прекрасно показывает себя всем известный закон Ома. При локальных замыканиях электрическое сопротивление обмоток уменьшается, а по закону Ома (при одном и том же напряжении) это приводит к увеличению силы тока. При этом следует понимать, что мощность будет не увеличиваться, а наоборот, уменьшаться, так как используется не весь потенциал электродвигателя.

К аналогичному исходу приводят плохие контакты на клеммах, проводящих тот самый пусковой ток от АКБ к стартеру. Здесь работает все тот же закон. Чем хуже контакт, тем меньше сечение проводника на этом участке. А чем меньше сечение, тем больше электрическое сопротивление. А это значит, что и мощность стартера будет меньшей.

Итого, пусковой ток стартера зависит и от характеристик, и от технического состояния, и от сопротивлений, которые препятствуют его работе. Причем сопротивление может быть как механического характера, так и электрическим.

Зачем надо знать пусковой ток стартера?

В первую очередь для того, чтобы правильно подобрать аккумуляторную батарею, если старую пришло время заменить. Если на этот параметр не обратить внимание, погнавшись за привлекательной ценой или ампер-часами емкости, можно столкнуться с тем, что новая батарея не сможет нормально прокрутить ваш стартер, либо вообще не сдвинет его с места.

Как правило, на всех современных автомобильных аккумуляторных батареях эта характеристика указывается под видом максимального пускового тока. То есть, на первый взгляд, сложностей с выбором возникать не должно. Однако здесь есть несколько нюансов. Рассмотрим их.

  1. Во-первых, надо учитывать, что указанный на корпусе АКБ максимальный пусковой ток она сможет выдавать только в полностью заряженном состоянии. То есть, когда новый аккумулятор однажды окажется по тем или иным причинам разряженным, например, наполовину, то пусковой ток, который она будет способна выдать, уменьшится.
  2. Во-вторых, максимальный пусковой ток, указанный на корпусе, будет неуклонно уменьшаться с каждым днем эксплуатации батареи. Так, если новая и полностью заряженная она будет способна выдавать 400 А (как написано), то через полгода эта характеристика может уменьшиться уже до 300 А, и так далее.
  3. В-третьих, не лишним будет помнить о том, что некоторые производители не стыдятся «немножко» преувеличивать характеристики выпускаемой продукции. Это значит, что при указанных на корпусе 500 А максимальный пусковой ток на самом деле не дотянет до этого показателя. В некоторых случаях измерения показывали, что производитель «преувеличил» этот параметр аж в два раза. К счастью, встречаются такие случаи сегодня редко. Но помнить о них надо. Для проверки истинного максимального пускового тока АКБ есть специальные электронные приборы.

Далее необходимо учитывать, что автомобиль не всегда эксплуатируется при одинаковых условиях и в идеальном техническом состоянии. Это означает, что батарею по пусковому току надо выбирать с запасом – чем больше, тем лучше.

У некоторых автолюбителей присутствует ошибочный страх, что чрезмерно высокий пусковой ток, указанный на батарее, сможет сжечь стартер. Это не так. Стартер никогда не возьмет тока больше, чем ему нужно. Так что, если на АКБ написано, что максимальный ток 600 А, то это не значит, что на стартер пойдет именно такой ток. Нет. Он возьмет только «свои» положенные 150-200 А.

Это что касается выбора батареи. Однако знать пусковой ток вашего стартера полезно и для других целей. В том числе, по повысившемуся энергопотреблению возможно своевременно выявить кое-какие проблемы с машиной. Если ток потребления стартера увеличился, то это может указывать на его износ, засорение, короткие замыкания в обмотках, плохой контакт и другие поломки. Устранив своевременно эти недостатки, вы уменьшите нагрузку и износ аккумуляторной батареи. Соответственно, прослужит она дольше, а двигатель будет запускаться легче даже несмотря на крепкие морозы.

Как измерить пусковой ток стартера?

В первую очередь, не повторяйте ошибку некоторых автолюбителей, которые однажды попытались измерить пусковой ток стартера при помощи мультиметра. Как они поступали. Мультиметр в режиме амперметра подключался в разрыв одной из клемм на АКБ. То есть, клемма снималась, один щуп прикладывался на батарею, второй – на отсоединенный провод. Далее запускался двигатель, но ток стартера таким способом никто не узнал.

А все потому, что мультиметры, которые есть у многих автолюбителей, не рассчитаны на измерение силы тока более 10-20 А. А стартер даже малолитражного автомобиля потребляет не менее 100 А. Соответственно, такой способ измерения всегда будет приводить к одному и тому же исходу – сгоранию мультиметра. Особенно опасны такие эксперименты с дешевыми приборами, у которых амперметр включен в систему без предохранителя.

Эта методика подходит только для измерения тока утечки АКБ, и должна выполняться исключительно при выключенном двигателе.

Для правильного измерения пускового тока стартера потребуется другой измерительный прибор, который называется токовые клещи. На таких девайсах имеются клещи, которые необходимо замкнуть вокруг провода, по которому течет ток, который мы хотим измерить. Когда работает стартер, то одинаковый ток течет что по минусовому, что по плюсовому проводах, отходящих от АКБ.

Измерения проводятся следующим образом. Аккумулятор необходимо предварительно полностью зарядить. Только так стартер сработает на полную мощность, и только так можно будет оценить потребляемый им ток. Далее на один из силовых проводов АКБ устанавливаются токовые клещи, а помощник включает стартер, поворачивая ключ зажигания. Пока стартер работает, по прибору фиксируются максимальные показатели.

Чтобы измерения были более обширными и информативными, их желательно повторить несколько раз, и при разных условиях. При этом, следует помнить, что после каждого запуска двигателя необходимо давать аккумулятору «отдохнуть», иначе показания будут недостоверными. Как правило, таким способом проводится три измерения, а затем выводится среднее арифметическое.

Проводя замеры пусковых токов, помните, что чем больше разряжен АКБ, тем показатели будут меньшими. Также следует учитывать, что прогретый двигатель завести легче, а потому потребляемый стартером ток может сильно отличаться от того, который им потребляется при «холодной прокрутке».

Как уменьшить пусковой ток стартера?

Делать это очень полезно, в первую очередь, для АКБ. Ведь чем меньший ток будет потреблять стартер, тем она прослужит дольше. Также это значительно повысит шансы успешного запуска двигателя в морозы, да еще и при частично разряженной батарее.

Уменьшить пусковой ток стартера можно несколькими способами. Применять их желательно комплексно, и регулярно. Рассмотрим основные.

Для начала необходимо обеспечить нормальный контакт в местах соединения силовых проводов с АКБ и стартером. С контактных площадок и клемм надо удалить окислы и ржавчину, после чего надежно все закрепить на своих местах (если только стартер не будет сниматься для выполнения следующих шагов).

Далее, чтобы уменьшить пусковой ток, надо демонтировать стартер с автомобиля, и разобрать его. Чаще всего здесь «виноваты» бронзовые втулки, которые выполняют роль подшипников скольжения. Если они изношены (есть заметный поперечный люфт ротора), замените их на новые. Если износа нет, то втулки надо тщательно очистить и смазать перед сборкой.

На пусковой ток также оказывают влияние токоведущие щетки и коллектор, к которому они прижимаются. Если на них имеется износ, сколы, царапины, трещины и другие дефекты – это замена. Коллектор необходимо очищать от графитового налета и пыли, которая забивается между его лепестками. Не используйте для этого острые металлические предметы и наждачную бумагу. Коллектор без проблем можно очистить до идеального состояния при помощи спирта и мягкой ветоши.

Для пущей уверенности можно проверить обмотки стартера на предмет коротких замыканий. Чтобы сделать это, понадобится мультиметр, включенный в режим измерения сопротивления. Эту величину можно измерить как на обмотках статора, так и на роторе. В обоих узлах сопротивление одинаковых обмоток должно быть примерно одинаковым. Если есть существенные отклонения или вообще обрыв, то такой стартер эксплуатировать нельзя. Его можно либо заменить, либо попробовать отдать на перемотку.

В завершение напомним, что состояние двигателя тоже влияет на пусковой ток стартера. Потому, если все его узлы поддерживаются в исправности и используется правильное моторное масло, максимальный пусковой ток стартера будет минимальным.

Пусковые токи двигателей скважинных насосов

Пусковой ток скважинного насоса

Расчет системы питания любого погружного насоса должен включать в себя поправку на его пусковой ток. По разной документации, встречающейся в сети, пусковой ток принимают равным рабочему току насоса, увеличенному в 3-7 раз . Встречается упоминание даже 9-кратного множителя.

Давайте разберемся, от чего зависит величина пускового тока. В первую очередь, конечно — от модели двигателя. Чем больше и мощнее двигатель, тем более сильный инерционный момент его ротора , тем больше энергии нужно для его раскрутки. Поэтому расчетный множитель тока при пуске растет с 3 при полукиловатных двигателях до 4 для двигателей мощностью два киловатта.

Нагрузка на двигатель в момент его запуска тоже играет далеко не последнюю роль — свободно вращающийся ротор в насосе обеспечит при пуске меньший ток, чем нагруженный многометровым столбом воды в водопроводной магистрали.

Таблица множителей для пусковых токов насосов Grundfos SP

В таблице дана зависимость рабочего In тока в амперах и множителя для пускового тока Ist/In от мощности P2 для однофазных и трехфазных двигателей Grundfos линейки SP. Действующее время разгона — 0.1 секунды.

P2 kWtIn, A (1×230)Ist/In (1×230)In, A (3×400)Ist/In (3×400)
0.373.953.41.403.7
0.555.803.52.203.5
0.757.453.62.304.7
1.17.304.33.404.6
1.510.23.94.205.0
2.214.04.45.504,7

Пусть Вас не удивляет несоответствие потребляемого двигателем тока в таблице и мощности в киловаттах — производители двигателей для насосов дают в характеристиках мощность на валу двигателя, а она зависит от КПД и меньше потребляемой им электрической мощности. А сила тока приводится для двигателя при полной нагрузке.

Ограничение по количеству включений насоса в час связано с большим выделением тепла на обмотках двигателя пусковым током. При слишком частых включениях обмотки перегреются.

Слишком сильный перегрев обмоток приводит к потере изоляционных свойств лака, которым покрыты витки, межвитковому замыканию и выходу двигателя насоса из строя.

Побочные эффекты

При тяжелом режиме работы двигателя (большая высота напора, забит впускной фильтр, отложения в водопроводе, износ узлов насоса) величина и продолжительность пускового тока могут быть значительно больше расчетных.

Во время действия пускового тока увеличивается падение напряжения на кабеле питания насоса. Правила IES 3-64 допускают падение не более 4% от входящего напряжения.

Борьба с пусковым током

Прямой пуск от сети является самым простым и дешевым решением, но большой пусковой ток накладывает ограничения на его использование. Чтобы избавиться от этого недостатка, применяют другие способы:

1. Устройство плавного пуска — это наиболее эффективный метод уменьшения величины пускового тока. Один из его главных недостатков — большая стоимость преобразователя.

Для насосов Grundfos SQ и SQE нет ограничений по количеству запусков в час, потому что преобразователь частоты и устройство плавного пуска уже встроены в корпус двигателя.

Упрощенно работа УПП заключается в плавном наращивании напряжения на двигателе в течении 2-х секунд. За это время ротор успевает раскрутиться до необходимых оборотов, не увеличивая нагрузку на сеть.

2. Последовательное включение через трансформатор с несколькими обмотками. Для насосов обычно применяется 1 — 2 секции, которые ограничивают ток при включении, а по мере набора насосом оборотов по очереди выводятся из цепи. Первоначальное снижение напряжения происходит максимум до 50% от напряжения питания.

3. Для трехфазных двигателей насосов мощностью более 3 киловатт можно применить схему пуска с переключением со звезды на треугольник . В момент пуска двигатель включается по схеме «звезда», дающая снижение пускового тока в 3 раза, и лишь после разгона двигателя соединение переключается по схеме «треугольник».

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector