Astro-nn.ru

Стройка и ремонт
10 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

При каких условиях происходит поражение электрическим током

§ 5. Условия поражения электрическим током

Непосредственно соприкосновение с токоведущими частями установок, находящимися под напряжением, связано с опасностью поражения током. При этом степень опасности и возможность поражения электрическим током зависят от того, каким образом произошло прикосновение человека к проводникам, находящимся под напряжением.

Возможны два случая прикосновений:

1) к двум линейным проводам одновременно;

2) к одному линейному проводу.

Двухфазное прикосновение. Прикосновение к двум линейным проводам (двум фазам) одновременно (рис. 6, а) является чрезвычайно опасным, поскольку к телу человека в этом случае прикладывается наибольшее возможное в данной сети напряжение — линейное. Ток, протекающий через тело человека, равен

где I ч — ток, протекающий через тело человека, в А;

U л — линейное напряжение установки в В;

U ф — фазовое напряжение в В;

R ч — сопротивление человека в Ом.

В сети с линейным напряжением 380 В и при сопротивлении тела человека 1000 Ом через человека будет проходить ток, равный I ч =380/1000= 0,38 А

Такой ток является, безусловно, опасным для жизни человека.

Рис. 6. Схема пути электрического тока:

а— при двухфазном прикосновении; б — при однофазном прикосновении в системе с заземленной нейтралью; в — при однофазном прикосновении в системе с изолированной нейтралью; г — при однофазном прикосновении в системе при наличии емкости

Случаи двухфазного прикосновения человека происходят очень редко. Достаточно сказать, что из всех случаев электропоражений с тяжелым исходом на долю одновременных прикосновений к двум фазам приходится от 3 до 10%.

Однофазное прикосновение. В 90—97% случаев, повлекших тяжелые электропоражения, имело место прикосновение к одной фазе,. Однако прикосновение к одной фазе является значительно менее опасным, чем двухфазное прикосновение. Объясняется это тем, что при однофазном прикосновении напряжение, под которым оказывается человек, не превышает фазного, т. е. меньше линейного в =1,73 раза. Соответственно меньше оказывается и ток, протекающий через тело человека. Кроме того, на величину этого тока влияет также режим нейтрали источника тока, сопротивление пола, на котором стоит человек, сопротивление его обуви и некоторые другие факторы.

Нейтрали генераторов и трансформаторов могут быть выполнены либо глухозаземленными, либо изолированными от земли. Глухозаземленной называется нейтраль генератора или трансформатора, присоединенная к заземляющему устройству непосредственно или через малое сопротивление (например, трансформаторы тока и т. д.). Изолированной называется нейтраль, не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление (например, компенсационные катушки, трансформаторы напряжения и т. д.).

На рис. 6, б и в показаны схемы электрических сетей с заземленной и изолированной нейтралью.

Однофазное прикосновение в сети с глухозаземленной нейтралью. При таком прикосновении (рис. 6, б) ток, протекающий через тело человека, определяется фазовым напряжением сети , сопротивлением тела Rч, сопротивлением Rп пола и почвы на участке от ступней ног до заземляющего устройства, сопротивлением обуви R o б и сопротивлением заземления нейтрали источника тока R 0 :

Рассмотрим наиболее неблагоприятный случай. Предположим, что человек, прикоснувшийся к одной фазе, стоит на сыром грунте или на проводящем (металлическом или земляном) полу; его обувь также проводящая — сырая или имеет металлические гвозди. Следовательно, можно принять Rп = 0 и R об = 0.

Поскольку сопротивление заземления нейтрали R 0 , как правило, равно 4 Ом, им без ущерба для точности подсчета можно пренебречь. В результате формула примет вид .

При линейном напряжении U л = 380 В через тело человека будет протекать ток, равный

Такой ток опасен для жизни.

Если же человек стоит на изолирующем полу (например, из метлахской плитки) в непроводящей обуви (например, резиновой), то, принимая R п = 120 000 Ом и R об = 100 000 Ом, получим

Такой ток безопасен для человека.

В действительности незагрязненные полы из метлахской плитки и резиновая обувь обладают значительно большим сопротивлением по сравнению с принятыми нами, т. е. ток, протекающий через человека, будет еще меньше.

Однофазное прикосновение в сети с изолированной нейтралью. При однофазном прикосновении человека в сети, имеющей изолированную нейтральную точку (рис. 6, б), ток проходит от места контакта через тело человека, затем через обувь, пол, землю и несовершенную изоляцию проводов к двум другим фазам и далее к источнику электроэнергии. Величина тока, проходящего через тело человека, в этом случае равна

где R из — сопротивление изоляции одной фазы сети относительно земли в Ом.

В наиболее неблагоприятном случае, когда человек стоит на проводящем полу и имеет проводящую обувь, т. е. при R п = 0 и R об = 0, формула значительно упростится:

При U л = 380 В и R из = 500 000 Ом получим

Этот ток значительно меньше тока (0,22 А), вычисленного нами для случая однофазного прикосновения при аналогичных условиях, но в сети с заземленной нейтралью. Если же принять R п = 120 000 Ом и R oб = 100 000 Ом, то ток будет еще меньше:

Следовательно, в сети с изолированной нейтралью условия безопасности находятся в прямой зависимости не только от сопротивления пола и обуви, но и от сопротивления изоляции проводов относительно земли: чем лучше изоляция, тем меньше сила тока, протекающего через человека. В сети с заземленной нейтралью положительная роль изоляции проводов практически полностью утрачена.

Таким образом, при прочих равных условиях однофазное прикосновение человека в сети с изолированной нейтралью менее опасно, чем в сети с заземленной нейтралью, и, следовательно, система с изолированной нейтралью при нормальном состоянии изоляции менее опасна для человека, чем система с глухим заземлением нейтрали. Однако в линии такой системы может длительное время существовать незамеченное персоналом замыкание одной из фаз на землю. Если в это время человек прикоснется к проводу одной из двух других фаз, то окажется под полным линейным напряжением сети, что равносильно двухфазному прикосновению.

Общие требования обустройстве электросетей. Согласно Правилам устройства электроустановок в четырехпроводных сетях переменного тока и трехпроводных сетях постоянного тока выполняют глухое заземление нейтрали. Сети с изолированной нейтралью применяют при повышенных требованиях безопасности с обязательным устройством контроля изоляции сети и целости пробивных предохранителей силовых трансформаторов, позволяющих персоналу быстро обнаружить замыкание на землю, либо с устройством автоматического отключения участков, получивших замыкание на землю.

Опасность воздействия емкостного тока. В связи с тем, что каждая электрическая установка имеет емкость, необходимо учитывать также ее опасное влияние и возможное поражение током. Выше было сказано, что наименьшую опасность представляет однофазное прикосновение в системе с изолированной нейтралью при наличии качественной изоляции фаз. Однако даже в случае идеальной изоляции поражение током возможно и зависит от величины емкостного тока.

Емкость тока зависит от конструкции сети (воздушная или кабельная), напряжения и сечения проводов. При равных условиях (одинаково высоком напряжении, например, в 10 кВ) емкость жилы подземного кабеля среднего сечения относительно земли значительно больше емкости одной фазы относительно земли воздушной линии (соответственно, 0,2*10 -6 Ф/км и 0,0045*10 -6 ÷ 0,005 X 10 -6 Ф/км).

Предположим, что изоляция сети находится в таком хорошем состоянии, что токами утечки через изоляцию можно пренебречь, но сеть имеет некоторую емкость по отношению к земле. Для рассматриваемого случая схема прикосновения человека к одной фазе и образования цепи движения токов утечки через емкость показана на рис. 6, г.

Общее выражение для емкостного тока, протекающего через тело человека, будет

где jχ c — емкостное сопротивление одной фазы, выраженное в символической форме (здесь χ c = 1/(ω*C)—реактивное сопротивление емкости, где ω = 2πf— угловая частота переменного тока; f — частота тока в Гц; С—емкость фазы по отношению к земле в Ф).

Если взять модуль полного сопротивления, то ток, протекающий через тело человека:

При значительной емкости сети, которая имеет место в разветвленных и протяженных кабельных сетях, величина тока, протекающего через тело человека, может оказаться опасной для жизни. В таких случаях электрические системы с изолированной нейтралью в отношении безопасности полностью теряют преимущества перед системами с заземленной нейтралью и их следует рассматривать как равноценные. Но для сетей малой и средней протяженности однофазное прикосновение менее опасно для систем с изолированной нейтралью.

Опасность шаговых напряжений. Опасность поражения током может возникнуть вблизи места перехода тока

Рис. 7. Шаговое напряжение

в землю с упавшего фазного провода. В зоне растекания токов (рис. 7) человек подвергается воздействию шаговых напряжений, т. е. напряжений, обусловленных, током замыкания на землю между точками почвы, отстоящими друг от друга в зоне растекания токов на расстоянии шага. Опасность поражения в этом случае увеличивается при сокращении расстояния между человеком и местом замыкания на землю и увеличении ширины шага.

Сила тока однофазного замыкания на землю I з может быть определена по формуле величина шагового напряжения U ш по формуле

где R 0 — сопротивление рабочего заземления нейтрали в Ом;

R p — сопротивление растеканию тока в месте замыкания фазного провода на землю в Ом;

ρ — удельное сопротивление грунта в Ом*см;

а — длина шага в см;

х — расстояние от места замыкания фазного провода до места измерения напряжения в см.

Определим величину шагового напряжения, воздействию которого подвергается стоящий на земле человек, если произошло замыкание на землю в сети напряжением 330/220 В с заземленной нейтралью. Сопротивление рабочего заземления R 0 = 4 Ом. Сопротивление растеканию тока в месте замыкания R р = 12 Ом (это соответствует наименьшему значению сопротивления, за исключением случая замыкания на металлическую конструкцию большой протяженности). Человек находится на расстоянии х = 4 м от точки замыкания. Величина шага а = 0,8 м. Удельное сопротивление, грунта растеканию тока ρ = 3*10 4 Ом*см.

Первоначально определим силу тока замыкания на землю а затем величину шагового напряжения

Параметры тока, проходящего через человека при воздействии шагового напряжения, зависят, кроме того, от сопротивлений опорной поверхности ног и обуви. Защитное действие оказывает обувь, обладающая хорошими изоляционными свойствами, например, резиновая.

Условия поражения электрическим током

Поражение электрическим током происходит в результате прямого или косвенного прикосновения, а также недопустимого приближения человека к металлическим частям, находящимся или оказавшимся под напряжением.

Прямым называется прикосновение к неизолированным токоведущим частям, нормально находящимся под напряжением (оголенные провода, шины, клеммы, контакты и т. п.). Прикосновения к нетоковедущим, но токопроводяшим (металлическим) частям оборудования, инструмента или инженерных сооружений, оказавшихся под напряжением, относятся к косвенным.

Прямые прикосновения случаются, как правило, по вине человека – самого пострадавшего либо должностного лица, не обеспечившего безопасность. Косвенные прикосновения происходят из-за пробоя изоляции по тем или иным причинам, не связанным с действиями пострадавшего,

и могут рассматриваться как отказ техники.

Условия поражения электрическим током при прямом и косвенном прикосновениях определяются видом и параметрами электрической сети, типом прикосновения, применяемыми способом и средствами защиты, классом опасности помещения (условий работ) и степенью изоляции человека от земли (под землёй понимается точка почвы с нулевым потенциалом).

Прямые прикосновения к токоведущим частям могут быть однополюсными и двухполюсными.

При однополюсном прикосновении человек, стоящий на земле, касается рукой или головой неизолированных токоведущих частей (рис. 19, а; 6, а). Ток протекает по пути «рука – нога» или «голова – нога».

При двухполюсном прикосновении человек, изолированный от земли, двумя руками или головой и одной рукой касается неизолированных проводов разных фаз или фазного и нулевого провода (рис. 19б; 6б).

Изоляцию человека от земли может обеспечить сопротивление пола и обуви. При этом ток проходит по пути «рука – рука» или «голова – рука».

Наиболее опасными являются двухполюсные прикосновения во всех видах сетей, при которых человек попадает под линейное напряжение.

Однополюсные прикосновения во всех сетях с глухозаземленной нейтралью также опасны. В сетях с изолированной нейтралью вследствие очень большого сопротивления между фазами и землёй величина тока, проходящего через человека, при однополюсном прикосновении будет малой, равной величине тока утечки, и поражения не произойдёт. В этом отношении сети IT более безопасны, чем сети ТТ и TN.

Косвенные прикосновения являются однополюсными. По опасности поражения они соответствуют прямым однополюсным прикосновениям.

Величина тока, протекающего через человека при косвенном прикосновении, зависит от напряжения прикосновения. Для человека, стоящего на земле и касающегося заземлённого оборудования, тело которого оказалось под напряжением, таким напряжением прикосновения будет являться разность потенциалов руки и ноги.

Рис. 19. Трехфазные электрические сети с изолированной нейтралью:
а) однополюсное прикосновение; б) двухполюсное прикосновение;
rА, rB, rC, CA, СВ, СС – соответственно омические и емкостные сопротивления изоляции фаз С, В, А относительно земли; Iч – ток, протекающий через человека

Потенциал руки Фр равен фазному потенциалу, так как в результате пробоя изоляции фазы появилось напряжение на корпусе. Потенциал ноги Фн определяется потенциалом точки грунта в поле растекания тока в земле, на которой находится человек (рис. 21).

Тогда напряжение прикосновения Unp, В, определится по выражению

где Iз – ток, стекающий через заземлитель, А; r – удельное сопротивление грунта, Ом·м; r – радиус заземлителя, м; c – расстояние от человека, стоящего на грунте, до заземлителя, м.

Рис. 20. Трехфазные электрические сети с изолированной нейтралью:
а) однополюсное прикосновение; б) двухполюсное прикосновение; C, В, A, N – фазы;
Iч – ток, протекающий через человека; R0 – сопротивление заземлителя
в центральной точке трансформатора на подстанции

Напряжение прикосновения по мере удаления от заземлителя увеличивается и на расстоянии более 20 метров становится равным фазному напряжению сети. Поражение человека электрическим током может произойти также вследствие его попадания под шаговое напряжение. В этом случае ток протекает в теле человека по пути «нога – нога». Напряжением шага называется разность потенциалов между двумя точками земли, на которые одновременно опирается человек при перемещении в поле растекания тока в земле.

При пробое изоляции на корпус установки, присоединённой к заземлителю, обрыве и падении находящегося под напряжением фазного провода на землю потенциалы земной поверхности или токопроводящего пола приобретают повышенные значения. Наибольший потенциал, равный потенциалу заземлителя или фазы, имеет точка земли, расположенная непосредственно над заземлителем или в месте касания упавшего провода с землёй. По мере удаления от этой точки в любую сторону потенциалы точек земной поверхности снижаются по закону, близкому к гиперболическому (рис. 22).

Рис. 21. Напряжение прикосновения к заземлённым нетоковедущим частям,
оказавшимся под напряжением: I – потенциал растекания тока в грунте,
II – напряжение прикосновения, R3 – сопротивление заземлителя,
Uпр1, Uпр2, Uпр3 – напряжения прикосновения, U3 – напряжение заземлителя

Читать еще:  Почему энергосберегающая лампочка мигает при выключенном свете и что с этим делать

Рис. 22. Напряжение шага: Uш1, Uш2 – напряжение шага,
U3 – напряжение заземлителя, c – расстояние от заземлителя
до ближайшей точки касания человеком поверхности земли, а – ширина шага

На расстоянии 20 метров от заземлителя зона растекания тока заканчивается – потенциалы земли имеют нулевое значение.

Человек, двигаясь от периметра зоны растекания к центру, одновременно касается двух точек земли с разными потенциалами. Напряжение шага Uш, В, определяется по формуле (9):

Uш = Фза/r (c 2 + аc), (9)

где Фз – потенциал заземлителя (провода); а – ширина шага, м (для взрослого человека – 0,8 м); r – радиус заземлителя (провода), м; c – расстояние от заземлителя до ближней точки касания человеком поверхности земли, м.

Напряжение шага зависит от трёх факторов: потенциала заземлителя; расстояния от человека до заземлителя (при удалении от заземлителя напряжение уменьшается, обращаясь в нуль за пределами зоны растекания) и ширины шага (чем она больше, тем больше напряжение). Опасность воздействия напряжения шага на человека заключается в том, что при протекании тока возникают судороги мышц ног, которые могут привести к падению человека на землю. При этом изменяется путь тока в теле (возникает большая петля) и увеличивается напряжение шага из-за увеличения расстояния между точками контакта человека с землёй. Эти факторы могут вызвать тяжёлое поражение организма электрическим током.

Все помещения, в которых используются электроприборы и производятся работы, в отношении опасности поражения людей электрическим током подразделяются на следующие категории: без повышенной опасности; с повышенной опасностью; особо опасные.

Для помещений с повышенной опасностью характерно наличие одного из следующих признаков:

– сырости, когда относительная влажность воздуха длительное время превышает 75 %;

– длительно высокой (более 30 °С) температуры;

– токопроводящей пыли, когда по условиям производства выделяется технологическая пыль, снижающая сопротивление изоляции проводов, электрических машин и других электроприёмников; токопроводящего пола (земляного, металлического, железобетонного и др.);

– возможности одновременного прикосновения работника к металлическим корпусам оборудования и заземлённым металлоконструкциям.

Особо опасные помещения характеризуются особой сыростью, когда влажность воздуха близка к 100 %, а потолок, стены, пол и поверхности оборудования покрыты влагой; химически активной средой, которая разрушает изоляцию проводов и электрооборудования; наличием двух и более факторов повышенной опасности.

Работы вне помещений (на открытом воздухе, под навесом, за сетчатым ограждением) приравнивают по опасности поражением электрическим током к работам в особо опасных помещениях. К категории особо опасных относят и работы с электрооборудованием (электроинструментом) в металлических замкнутых пространствах с ограниченной возможностью выхода (баки большой ёмкости, канализационные и водопроводные колодцы; смотровые канавы на предприятиях автотранспорта и т. д.).

Степень изоляции человека от земли определяется переходным сопротивлением от тела к земле, включающим сопротивление обуви и пола. Сопротивление обычной рабочей обуви, которая в большинстве случаев загрязнена токопроводящими веществами, имеет металлические крепители подошвы или внедренные в неё частицы металлической стружки, мало и почти не снижает ток замыкания на землю. Электрическое сопротивление пола зависит от материала покрытия и его состояния. Например, сухое деревянное покрытие имеет сопротивление до 15 МОм (15 –106 Ом), а увлажнённое – в 1000 раз меньше; бетонный пол в неотапливаемых помещениях с повышенной влажностью – до 300 Ом; железобетонный пол с выступающей армирующей сеткой или бетонный, загрязнённый охлаждающей жидкостью и металлической стружкой, – всего 8 – 90 Ом.

Условия поражения электрическим током

Классификация электроустановок, помещений по электроопасности

Основные требования к устройству электроустановок изложены в действующих Правилах устройства электроустановок от 08.07.2002 № 204. Под электроустановками понимается совокупность машин, аппаратов, линий и вспомогательного оборудования (вместе с помещениями, в которых они установлены), предназначенных для производства, передачи, распределения и преобразования электрической энергии. Они делятся на электроустановки до 1000 В и свыше 1000 В, причем и те и другие могут эксплуатироваться в сетях с изолированной и заземленной нейтралями.

Изолированной нейтралью называется нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная к нему через приборы сигнализации, защиты, контроля и т. п.

Если нейтраль присоединена к заземляющему устройству непосредственно или через малое сопротивление, то она называется заземленной.

В зависимости от условий, повышающих или понижающих опасность поражения человека электрическим током, все помещения делятся на помещения с повышенной опасностью, особо опасные и без повышенной опасности.

К помещениям с повышенной опасностью относятся помещения с повышенной влажностью (более 75%) или высокой температурой (выше 35 °С). При наличии токопроводящих пыли и полов, а также при наличии возможности одновременного прикосновения к элементам, соединенным с землей, и металлическим корпусам электрооборудования помещение относится к классу повышенной опасности.

Помещения с высокой относительной влажностью (близкой к 100%), химически активной средой или одновременным наличием двух и более условий, соответствующих помещениям с повышенной опасностью, называют особо опасными.

В помещениях без повышенной опасности отсутствуют все вышеуказанные условия.

Однако опасность поражения электрическим током существует всюду, где используются электроустановки, поэтому помещения без повышенной опасности нельзя назвать безопасными.

К особо опасным относятся механические, литейные, кузнечные, сборочные, гальванические, термические и т. п. цехи, компрессорные и водонасосные станции, помещения для зарядки аккумуляторов и т. п. По степени опасности электроустановки вне помещений приравнивают к электроустановкам, эксплуатирующимся в особо опасных помещениях.

Условия и основные причины поражения электрическим током

Поражение человека электротоком или электрической дугой может произойти в следующих случаях:

• при двухфазном прикосновении, т. е. одновременном прикосновении к двум фазам электроустановки, находящейся под напряжением (рис. 11.1);

Рис. 11.1. Двухфазное прикосновение; In = UЛ/Rn;

• при однофазном прикосновении, т. е. прикосновении человека, имеющего гальваническую связь с землей, к одной фазе электроустановки, находящейся под напряжением (рис. 11.2);

Рис. 11.2. Однофазное прикосновение: а – сеть с заземленной нейтралью; Ih = Uф/ Rh; б – сеть с изолированной нейтралью; Ih = Uф/ (Rh + R/3)

• при прикосновении к нетоковедущим частям электроустановок, находящихся под напряжением, в результате повреждения изоляции, например, к аварийному корпусу (рис. 11.3);

Рис. 113. Прикосновение к аварийному корпусу установки;

• включение под напряжение шага, т. е. между двумя точками цепи тока, находящимися друг от друга на расстоянии шага, на которых одновременно стоит человек (рис. 11.4);

Рис. 11.4. Включение под напряжение шага; Ih = Uiu/Rh

  • • при действии атмосферного электричества во время разряда молнии;
  • • в результате действия электрической дуги;
  • • при освобождении другого человека, находящегося под напряжением.

Примечание. In (Ih) – ток, проходящий через тело человека; Rn (Rh) – сопротивление тела человека; Uф, Uл – фазное и линейное напряжения сети; R – сопротивление проводов сети относительно земли; Unp, Uш – напряжения прикосновения шага.

Наибольшую опасность представляет двухфазное прикосновение, так как в этом случае человек оказывается под рабочим напряжением сети. Наибольшее же число электротравм связано с однофазным прикосновением человека к токоведущим частям, при этом напряжение, под которым оказывается человек, не превышает фазного напряжения.

Явления при отекании тока в землю

Стенание тока в землю происходит только через проводник, находящийся в непосредственном контакте с землей. Такой контакт может быть случайным или преднамеренным. В последнем случае проводник или группа соединенных между собой проводников, находящихся в контакте с замлей, называется заземлителем.

Причинами стекания тока в землю являются: замыкание токоведущей части на заземленный корпус электрического оборудования, падение провода на землю, использование земли в качестве провода и т. п. Во всех этих случаях происходит резкое снижение потенциала заземлителя φ3 (т. е. напряжения относительно земли) из заземлившейся токоведущей части до значения, равного произведению тока, стекающего в землю I3, на сопротивление, которое этот ток встречает на своем пути, т. е. сопротивление заземлителя Rs растеканию тока

Это явление, весьма благоприятное по условиям безопасности, используется как мера защиты от поражения током при случайном появлении напряжения на металлических нетоковедущих частях, которые с этой целью заземляются. Минимальный потенциал, то есть φ = 0, будет иметь точка, отстоящая от заземлителя на х = x0. Практически область нулевого потенциала начинается на расстоянии примерно 20 м от заземлителя (рис. 11.5).

Напряжение прикосновения. Напряжением прикосновения называется напряжение между двумя точками цепи тока, которых одновременно касается человек. Напряжение прикосновения Unp или сила тока I, протекающего через тело человека при нормальном (неаварийном) режиме электроустановки, не должны превышать следующих значений (табл. 11.2).

Основные причины поражения электрическим током

Из-за повсеместного использования электричества, как в производственных процессах, так и для решения бытовых задач, создается значительная угроза поражения электрическим током. Для предотвращения таких ситуаций существует ряд правил, позволяющих обезопасить персонал и простых обывателей от плачевных последствий безграмотного обращения с электричеством. Для этого важно понимать причины поражения электрическим током и меры, необходимые в тех или иных ситуациях для исключения поражения током.

Понятие электроудара

Под электрическим ударом следует понимать такую ситуацию, когда электрический заряд от источника тока в качестве одного из путей протекания или единственного пути использует человеческий организм. При этом направленное движение частиц создает самопроизвольное сокращение мышц, попадающих под его воздействие на пути протекания, ток разрушает ткани и наносит другие повреждения.

Электроудар может возникать как при нормальной работе электроустановок, так и в аварийных ситуациях (повреждение изоляции проводов, пробое диэлектриков, разрушении изоляторов, при горении электрической дуги и т.д.). Помимо взаимодействия с током в быту существует возможность поражения молнией. Но какое бы то ни было протекание тока, оно может вызвать ряд неблагоприятных последствий для организма человека.

Как электричество действует на организм человека?

Если не рассматривать запланированные воздействия током, при медицинских или косметических процедурах приборами, действие которых направлено на пропускание электрического тока через ткани организма, то при всех случаях электрического травматизма организм получает три основных воздействия тока:

  • Термическое – приводи к возникновению ожогов в точках воздействия электротока. В отличии от обычного, электрический ожог дополнительно усложняется повреждением тканей мелкими частицами раскаленного металла. Которые после удара остаются в кожных покровах, соответственно и заживание таких ран происходит дольше и требует дополнительных усилий. В зависимости от условий протекания электрического удара могут образовываться легкие, средние или тяжелые ожоги.
  • Динамическое – вызывает сокращение и последующее повреждение мышц и связок. Так как все мышцы в организме управляются электрическими импульсами, то при протекании тока, происходит самопроизвольное их сокращение. Из-за чего может произойти механическое повреждение тканей – разрывы. А также судорожное сжатие конечностей, при котором человек не может самостоятельно разжать пальцы рук и освободиться от действия тока. Тот же эффект происходит и с сердцем, что может вызвать смертельный шок.
  • Электролитическое – при протекании тока наиболее низким сопротивлением обладают кровеносные сосуды, которые и являются проводниками в организме. При прохождении электротока по сосудам кровь выступает в роли проводника, который при длительном воздействии разлагается на плазму и кровяные тельца.

В зависимости от ситуации повреждение может также привести к электрическому шоку. Состояние пострадавшего при этом характеризуется отсутствием адекватной реакции на происходящие события и расширенными зрачками. В таком состоянии сложно судить о нанесенных повреждениях организму, из-за того, что человек не может сообщить о собственном самочувствии. Поэтому его состояние определяется по косвенным факторам (пульс, дыхание и т.д.).

Основные причины поражения электротоком

Причины воздействия электрического тока на организм человека могут обуславливаться различными факторами и ситуациями. Из-за этих отличий в ситуациях правила регламентируют использование тех или иных средств защиты или вменяют в обязательства выполнение определенных мер. В связи с чем, причины поражения подразделяются на такие, которые могут случаться в бытовых условиях, и те, которые могут возникать на производстве.

В быту

Наиболее частыми причинами поражения в бытовых условиях являются какие-либо неисправности или неосторожное обращение самого человека с эксплуатируемыми устройствами. Сила тока, воздействующая на человека, зависит от сопротивления электрической цепи, в которую входят сопротивление кожи, обуви, растеканиею тока в полу или какой-либо другой точке. Наименьшая величина сопротивления получается в случае наличия ранок на коже, мокрой поверхности рук или когда человек касается заземленных элементов.

Причины поражения током в быту

Особое внимание следует обратить на такие причины поражения:

  • Нарушение изоляции внутри приборов – в большинстве своем все домашние пылесосы, чайники, микроволновки, стиралки и прочие помощники оснащаются надежной изоляцией еще на заводе. Но, в связи с естественным старением или из-за повреждения, сопротивление изоляции может нарушиться, что и обуславливает поражение электрическим током. Данная неполадка характеризуется переходом потенциала на корпус или металлические детали электрических приборов и обуславливает возникновение напряжения прикосновения.
  • Повреждение изоляционной оболочки проводов – относится как к проводке, так и к всевозможным питающим шнурам и удлинителям. От мест, где происходили перегибы, удары или перетирания существует возможность поражения электротоком, особенно при попадании на них воды.
  • Контакт с самодельными приборами и оголенными токоведущими частями. И то и другое не гарантирует человеку никакого соблюдения стандартов. Поэтому взаимодействие с сомнительными устройствами или оголенными проводами могут привести к тяжелому поражению током.
  • Самопроизвольные попытки ремонта – когда люди без наличия необходимых навыков и знаний пытаются починить какие-то приборы или электропроводку. При этом они подвергаю себя опасности случайно прикоснуться к элементам, находящимся под напряжением, что и является причиной поражения. К примеру, при замене электрической лампы в светильнике, когда с патрона не снято напряжение.
  • Использование выключателей или розеток с поврежденным корпусом. Корпус этих устройств выполняет функцию естественного барьера, который при повреждении открывает доступ к токоведущим элементам и возникает угроза поражения током.
  • Попытки замены ламп при наличии напряжения в патроне – по причине неосторожности человек может коснуться внутренних элементов, что приведет к поражению электротоком. Также возможна ситуация, когда перегоревшая лампа разрушается, и распадается в руках, а какие-то детали могут стать проводниками электротока. При этом отключенный выключатель не является гарантией отсутствия напряжения из-за того, что он может не разрывать фазу.
  • Эксплуатация электрических приборов совместно с водой – попытки сушить голову феном и пользоваться электробритвой, находясь в ванной, доливка воды во включенный электрочайник и прочие варианты при контакте устройства с водой могут стать причиной поражения током.
  • Временная проводка на скрутках – нередко в быту, чтобы ускорить подачу напряжения и не тратить уйму времени на полноценную прокладку в стену или хотя бы канал делают подключение открытым способом. Именно такие «сопли», развешенные в разрез всех норм по дому, сараю или гаражу могут стать причиной поражения током.
Читать еще:  Комбинированные котлы на дровах и электричестве: критерии выбора и нюансы монтажа

На производстве

Преимущественное большинство работ, которые выполняются на производстве, предусматривают ряд мер, направленных на предупреждение поражения электротоком. Но, из-за нарушения этих мероприятий и правил персонал, контактирующий с электроустановками или просто выполняющий работы в непосредственной близи, может попасть под воздействие напряжения.

Рассмотрите наиболее частые причины поражения током на производстве:

    • Отсутствие защитных средств или использование непригодных. Особенно актуально в тех ситуациях, когда какие-либо устройства остаются под напряжением во время работы на них.
    • Нарушение изоляции и отсутствие заземление – в силовых цепях это повреждение изоляторов, изоляции кабелей и прочие тяжелые повреждения оборудования. Они обуславливают наличие потенциала на корпусе, несущих конструкциях, которые могут привести к смертельному поражению в случае контакта. Изначально, заземление предусматривается как страховка на случай повреждения изоляции, поэтому поражение током возможно лишь при отсутствии или неисправности заземления.
    • Горение электрической дуги – может происходить как неотъемлемая часть работы тех же выключателей, сварочных аппаратов или короткозамыкателей, так и аварийная ситуация. Поражение дугой может вызвать ожоги, характеризоваться переходом части заряда и последующим прохождением тока через человека.
    • Падение проводов на землю – создает опасную зону, которая составляет 10 м для открытой местности и 8 м для помещений. В этом пространстве происходит растекание токов, если защита не отключает линию. Из-за растекания токов на поверхности грунта образуется потенциал, который уменьшается пропорционально удалению от точки падения. В такой зоне причиной поражения становится шаговое напряжение, образуемое разностью потенциалов между стопами человека. Шаговое напряжение
    • Нарушение требований знаков безопасности – большинство опасных мест на предприятии ограждается. На самом ограждении или в местах возможной подачи напряжения вывешиваются временные или устанавливаются постоянные знаки или плакаты. В случае, когда человек намеренно или по неосторожности нарушает требование знаков, может произойти поражение током.
    • Если коммутация или срабатывание не произошли или выполнены не полностью. Так как большинство высоковольтного оборудования управляется дистанционно, а узлы электрических контактов в выключателях и разъединителях довольно сложно проконтролировать, информацию об отсутствии напряжения получают посредством указателей или сигнализаторов. В случае, когда по механическим причинам выключатель или разъединитель не отключил хотя бы одну из фаз, возникает угроза поражения током на каком-то участке сети, поэтому обязательно необходимо пользоваться указателем.
    • Ошибочная подача напряжения – при выполнении работ со снятием напряжения, в линию или на электроустановку случайно может быть подан потенциал как работниками, так и в результате аварийной ситуации. Если персонал выйдет за пределы защитной зоны, огражденной заземлениями, или вовсе не установит их, то для них возникает угроза поражения током.
    • Наведенное напряжение – является наиболее опасным фактором в обесточенных проводах и нейтральных элементах (участках проводника, огражденных двумя изоляторами). На производстве наиболее опасным считается поражение постоянным током. Потому что частота переменного тока самостоятельно спадает до нуля и снова поднимается, из-за чего его воздействие является непостоянным. Образование наведенного напряжения
    • Нарушение порядка снятия или завешивания заземления – согласно требований правил при установке заземления сначала его соединяют с землей, а затем завешивают на проводник. В противном случае, при наличии потенциала в линии, работник сначала подведет заземление под потенциал линии, а когда попытается подключить его к заземляющему контуру, сам станет элементом в цепи протекания тока. Снятие заземления производится в обратном порядке – сначала снимается с токоведущих элементов, а потом отключается от контура. При снятии так же существует подобная угроза.

Что делать в случае поражения током?

Если вы стали свидетелем того, что кто-то поражен электричеством и еще находится под его воздействием, вам необходимо как можно быстрее освободить его. Так как исход электротравмы напрямую зависит от длительности контакта, скорость реагирования должна быть максимальной.

Во-первых, необходимо обесточить электроустановку или ее части, с которыми взаимодействует человек. Лучше всего для этого подойдут автоматы, рубильники или предохранители, расположенные в непосредственной близи. Для высоковольтных сетей их аналогом являются выключатели и разъединители. Если под рукой их нет, чтобы уменьшить длительность воздействия могут использоваться другие меры.

Самым важным правилом при освобождении является соблюдение самим спасающим правил безопасности, чтобы и ему не оказаться пораженным током. В остальном, чтобы предотвратить смертельный исход, подойдут любые средства.

Для линий до 1 кВ может подойти любая сухая одежда, намотанная на руку, в идеале это должны быт диэлектрические перчатки. Ими можно оттянуть пострадавшего за отстающие концы именно сухой одежды. Воспользоваться инструментом с изолированными ручками, чтобы перекусить провод. Также можно разорвать электрическую цепь посредством помещения между пострадавшим и землей листа диэлектрика.

Удаление провода штангой

В устройствах выше 1 кВ приближаться к пострадавшему опасно уже тем, что спасающий и сам может попасть под шаговое напряжение. Но, при этом можно сделать наброс любого неизолированного провода между источником и пострадавшим. Попытаться оттащить провод изолирующей штангой, но в диэлектрических перчатках. Кабель, также в перчатках, разрешается пофазно перерубать топором.

Меры защиты от поражения электрическим током

Чтобы избежать поражения током и минимизировать причины, способные его обусловить достаточно придерживаться ряда простых правил:

  • Не прикасаться к электрическим приборам, выключателям, вилкам, розеткам мокрыми руками;
  • Не допускать включения в сеть неисправных приборов или устройств, у которых отсутствует заземление корпуса (отсутствие допускается только у приборов, рассчитанных на очень низкое напряжение);
  • Не нарушать указаний, предписываемых электрическими знаками, которые регламентируют те или иные действия;
  • Не бросать включенными приборы, уходя из дома, не допускать выдергивания вилки за шнур;
  • При работе в электроустановках обязательно выполнять требования правил, инструкций, порядок технологических процессов;
  • Работу в электроустановках выполнять только с применением необходимых средств защиты.

Видео в развитие темы


Удар током и электротравма: причины возникновения, симптомы и признаки, меры первой помощи и комплексное лечение

Удар током и электротравма: причины возникновения, симптомы и признаки, меры первой помощи и комплексное лечение
Удар током относится к наиболее опасным бытовым и производственным несчастным случаям и всегда сопряжен с большой смертностью. Действие электрического тока на организм человека приводит к сильному нагреву тканей и развитию ожога, а так же к нарушению работы внутренних органов. Первая помощь при ударе током заключается в прекращении действия электрического тока на организм пострадавшего, проведение закрытого массажа сердца и искусственного дыхания, если от удара током у пострадавшего остановилось сердце, обработка и наложение повязки на обожженные места.

Электротравма обычно возникает в результате воздействия на ткани организма человека бытового электрического тока большой силы или разряда атмосферного электричества (молнии). Источниками поражения электрическим током являются: неисправное электрооборудование на предприятиях и бытовые электроприборы, оборвавшиеся провода высоковольтных линий, несоблюдение правил техники безопасности при работе с электрооборудованием. Степень воздействия электрического тока на организм человека определяется напряжением и силой тока, способом прохождения тока по телу, общим состоянием здоровья пострадавшего и тем насколько своевременно была оказана первая помощь.

Особенности удара током и электротравмы

Электрический ток при прохождении через тело человека вызывает нагрев тканей, и может привести к электрическим ожогам кожи и повреждениям подлежащих тканей и органов.
Электрические ожоги возникают в местах входа и выхода электрического тока и носят название «меток тока».
Электрические ожоги могут показаться незначительными на вид, но на самом деле они зачастую глубокие со значительными повреждениями мышц, костей и внутренних органов.
Электрический ток может нарушить работу сердца, вплоть до его остановки.
У пострадавшего от удара тока может произойти остановка дыхания.
Признаки и симптомы удара током электротравмы

Нахождение оголенного источника электрического тока вблизи пострадавшего;
Бессознательное состояние у пострадавшего;
Очевидные ожоги на поверхности кожи;
Нарушение дыхания с возможной остановкой дыхания;
Пульс слабый, аритмичный или отсутствует;
Входное и выходное отверстие электрического заряда обычно расположено на кистях рук или ступнях.

Вследствие особенностей электротравмы даже при кратковременном воздействии электрического тока у пострадавшего может наступить остановка дыхания и сердца. Поэтому достаточно эффективная первая помощь при ударах электрическим током на месте происшествия часто является решающим фактором в спасении пострадавшего.

При возникновении ниже перечисленных симптомов у пострадавшего от удара током срочно вызовите скорую помощь:

Остановка сердца (отсутствие пульса)
Нарушение сердечного ритма (неровный пульс)
Расстройство или остановка дыхания (неровное дыхание)
Боль в мышцах или сокращения мышц
Судорожные припадки
Ощущение покалывания или онемения в конечностях
Потеря сознания
удар токомДо прибытия бригады скорой помощи при ударе электрическим током примите следующие меры:
Оцените обстановку. Не прикасайтесь к пострадавшему сразу же. Возможно, он все еще находится под действием электрического тока. Дотронувшись до пострадавшего, вы также можете попасть под удар.Если есть возможность, отключите источник электроэнергии ( выверните пробки, выключите рубильник). Если это невозможно, отодвиньте источник тока от себя и от пострадавшего сухим, непроводящим ток предметом (веткой, деревянной палкой и т. д.).
Если необходимо оттащить пострадавшего от провода электросети, надо при этом помнить, что тело человека, через которое прошел ток, проводит ток так же, как и электропровод. Поэтому голыми руками не следует дотрагиваться до открытых частей тела пострадавшего, можно касаться только сухих частей его одежды, а лучше надеть резиновые перчатки или обернуть руки сухой шелковой материей.
После прекращения действия электрического тока необходимо обратить внимание на присутствие признаков жизни (дыхания и пульса на крупных сосудах).
При отсутствии признаков дыхания и пульса необходимы срочные реанимационные мероприятия: проведение закрытого массажа сердца и искусственной вентиляции легких (искусственного дыхания). Осмотрите открытые участки тела пострадавшего. Всегда ищите два ожога (места входа и выхода электрического тока). Наложите на обожженные участки стерильную или чистую салфетку. Не используйте с этой целью одеяло или полотенце – волокна с них могут прилипнуть к обожженной поверхности. Для улучшения работы сердца следует увеличить приток крови к нему. Для этого уложите пострадавшего так, чтобы его грудь находилась несколько ниже ног.
Всех пострадавших от удара током следует как можно быстрее госпитализировать.

Анализ опасности поражения током в различных электрических сетях

Чем определяется опасность поражения током в различных электрических сетях?

Анализ опасности поражения практически сводится к определению значения тока, протекающего через тело человека в различных условиях, в которых он может оказаться при эксплуатации электроустановок, или напряжения прикосновения. Опасность поражения зависит от ряда факторов: схемы включения человека в электрическую цепь, напряжения сети, схемы самой сети, режима ее нейтрали, степени изоляции токоведущих частей от земли, емкости токоведущих частей относительно земли и т. п.

Каковы схемы включения человека в электрическую цепь?

Наиболее характерными являются две схемы включения: между двумя фазами электрической сети, между одной фазой и землей. Кроме того, возможно прикосновение к заземленным нетоковедущим частям, оказавшимся под напряжением, а также включение человека под шаговое напряжение.

Что называется нейтралью трансформатора (генератора) и каковы режимы ее работы?

Точка соединения обмоток питающего трансформатора (генератора) называется нейтральной точкой, или нейтралью. Нейтраль источника питания может быть изолированная и заземленная.

Заземленной называется нейтраль генератора (трансформатора), присоединенная к заземляющему устройству непосредственно или через малое сопротивление (например, через трансформаторы тока).

Изолированной называется нейтраль генератора или трансформатора, не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление (приборы сигнализации, измерения, защиты, заземляющие дугогасящие реакторы).

Что положено в основу выбора режима нейтрали?

Выбор схемы сети, а следовательно, и режима нейтрали источника тока производят исходя из технологических требований и условий безопасности.

При напряжении до 1000 В широкое распространение получили обе схемы трехфазных сетей: трехпроводная с изолированной нейтралью и четырехпроводная с заземленной нейтралью.

По технологическим требованиям предпочтение часто отдается четырехпроводной сети, она использует два рабочих напряжения — линейное и фазное. Так, от четырехпроводной сети 380 В можно питать как силовую нагрузку — трехфазную, включая ее между фазными проводами на линейное напряжение 380 В, так и осветительную, включая ее между фазным и нулевым проводами, т. е. на фазное напряжение 220 В. При этом становится значительно дешевле электроустановка за счет применения меньшего числа трансформаторов, меньшего сечения проводов и т. п.

По условиям безопасности выбирают одну из двух сетей исходя из положения: по условиям прикосновения к фазному проводу в период нормального режима работы сети более безопасной является сеть с изолированной нейтралью, а в аварийный период — сеть с заземленной нейтралью. Поэтому сети с изолированной нейтралью целесообразно применять, когда имеется возможность поддерживать высокий уровень изоляции сети и когда емкость сети относительно земли незначительна. Это могут быть мало разветвленные сети, не подверженные воздействию агрессивной среды и находящиеся под постоянным надзором квалифицированного персонала. Примером могут служить сети небольших предприятий, передвижные установки.

Сети с заземленной нейтралью применяют там, где невозможно обеспечить хорошую изоляцию электроустановок (из-за высокой влажности, агрессивной среды и пр.) или нельзя быстро отыскать и устранить повреждение изоляции, когда емкостные токи сети вследствие значительной ее разветвленности достигают больших значений, опасных для жизни человека. К таким сетям относятся сети крупных промышленных предприятий, городские распределительные и пр.

Существующее мнение о более высокой степени надежности сетей с изолированной нейтралью недостаточно обоснованно.

Статистические данные указывают, что по условиям надежности работы обе сети практически одинаковы.

При напряжении выше 1000 В вплоть до 35 кВ сети по технологическим причинам имеют изолированную нейтраль, а выше 35 кВ — заземленную.

Поскольку такие сети имеют большую емкость проводов относительно земли, для человека одинаково опасно прикосновение к проводу сети как с изолированной, так и с заземленной нейтралью. Поэтому режим нейтрали сети выше 1000 В по условиям безопасности не выбирается.

Какова опасность двухфазного прикосновения?

Под двухфазным прикосновением понимается одновременное прикосновение к двум фазам электроустановки, находящейся под напряжением (рис. 1).


Рис. 1. Схема двухфазного прикосновения человека к сети переменного тока

Читать еще:  Розетки и выключатели в Балашихе

Двухфазное прикосновение более опасно. При двухфазном прикосновении ток, проходящий через тело человека по одному из самых опасных для организма путей (рука—рука), будет зависеть от прикладываемого к телу человека напряжения, равного линейному напряжению сети, а также от сопротивления тела человека:

  • Uл — линейное напряжение, т. е. напряжение между фазными проводами сети;
  • Rчел — сопротивление тела человека.

В сети с линейным напряжением Uл = 380 В при сопротивлении тела человека Rчел = 1000 Ом ток, проходящий через тело человека, будет равен:

Этот ток для человека смертельно опасен. При двухфазном прикосновении ток, проходящий через тело человека, практически не зависит от режима нейтрали сети. Следовательно, двухфазное прикосновение одинаково опасно как в сети с изолированной, так и с заземленной нейтралью (при условии равенства линейных напряжений этих сетей).

Случаи прикосновения человека к двум фазам происходят сравнительно редко.

Чем характеризуется однофазное прикосновение?

Однофазным прикосновением называется прикосновение к одной фазе электроустановки, находящейся под напряжением.

Оно происходит во много раз чаще, чем двухфазное прикосновение, но менее опасно, поскольку напряжение, под которым оказывается человек, не превышает фазного. Соответственно меньше оказывается и ток, проходящий через тело человека. Кроме того, на этот ток большое влияние оказывают режим нейтрали источника тока, сопротивление изоляции проводов сети относительно земли, сопротивление пола (или основания), на котором стоит человек, сопротивление его обуви и некоторые другие факторы.

Какова опасность однофазного прикосновения в сети с заземленной нейтралью?


Рис. 2. Схема прикосновения человека к одной фазе трехфазной сети с заземленной нейтралью

В сети с заземленной нейтралью (рис. 2) цепь тока, проходящего через тело человека, включает в себя сопротивления тела человека, его обуви, пола (или основания), на котором стоит человек, а также сопротивление заземления нейтрали источника тока. С учетом указанных сопротивлений ток, проходящий через тело человека, определяется из следующего выражения:

  • Uф — фазное напряжение сети, В;
  • Rчел — сопротивление тела человека, Ом;
  • Rоб — сопротивление обуви человека, Ом;
  • Rп — сопротивление пола (основания), на котором человек стоит, Ом;
  • Ro — сопротивление заземления нейтрали источника тока, Ом.

При наиболее неблагоприятных условиях (человек, прикоснувшийся к фазе, имеет на ногах токопроводящую обувь — сырую или подбитую металлическими гвоздями, стоит на сырой земле или на проводящем основании — металлическом полу, на заземленной металлоконструкции), т. е. когда Rоб = 0 и Rп = 0, уравнение принимает вид:

Поскольку сопротивление нейтрали Ro обычно во много раз меньше сопротивления тела человека, то им можно пренебречь. Тогда

Однако при этих условиях и однофазное прикосновение, несмотря на меньший ток, весьма опасно. Так, в сети с фазным напряжением Uф = 220 В при Rчел = 1000 Ом ток, проходя через тело человека, будет иметь значение:

Такой ток смертельно опасен для человека.

Если человек имеет на ногах непроводящую обувь (например, резиновые галоши) и стоит на изолирующем основании (например, на деревянном полу), то

  • 45 000 — сопротивление обуви человека, Ом;
  • 100 000 — сопротивление пола, Ом.

Ток такой силы не опасен для человека.

Из приведенных данных видно, что для безопасности работающих в электроустановках большое значение имеют изолирующие полы и непроводящая ток обувь.

Каковы особенности однофазного прикосновения в сети с изолированной нейтралью?

В сети с изолированной нейтралью (рис. 3) ток, проходящий через тело человека в землю, возвращается к источнику тока через изоляцию проводов сети, которая в исправном состоянии обладает большим сопротивлением.

С учетом сопротивлений обуви Rоб и пола или основания Rп, на котором стоит человек, включенных последовательно сопротивлению тела человека Rчел, ток, проходящий через тело человека, определяется уравнением:

где Rиз — сопротивление изоляции одной фазы сети относительно земли, Ом.


Рис. 3. Схема прикосновения человека к одной фазе трехфазной сети с изолированной нейтралью

При наиболее неблагоприятном случае, когда человек имеет проводящую ток обувь и стоит на токопроводящем полу, т. е. при Rоб = 0 и Rп = 0, уравнение значительно упростится:

Для этого случая в сети с фазным напряжением Uф = 220 В и сопротивлением изоляции фазы Rиз = 90 000 Ом при Rчел = 1000 Ом ток, проходящий через человека, будет равен:

Этот ток значительно меньше тока (220 мА), вычисленного нами для случая однофазного прикосновения при аналогичных условиях, но в сети с заземленной нейтралью. Он определяется в основном сопротивлением изоляции проводов относительно земли.

Какая сеть является более безопасной — с изолированной или заземленной нейтралью?

При прочих равных условиях прикосновение человека к одной фазе сети с изолированной нейтралью менее опасно, чем в сети с заземленной нейтралью. Однако этот вывод справедлив лишь для нормальных (безаварийных) условий работы сетей, при наличии незначительной емкости относительно земли.

В случае же аварии, когда одна из фаз замкнута на землю, сеть с изолированной нейтралью может оказаться более опасной. Объясняется это тем, что при такой аварии в сети с изолированной нейтралью напряжение неповрежденной фазы относительно земли может возрасти с фазного до линейного, в то время как в сети с заземленной нейтралью повышение напряжения окажется незначительным.

Однако современные электрические сети ввиду их разветвленности и значительной протяженности создают большую емкостную проводимость между фазой и землей. В этом случае опасность прикосновения человека к одной и двум фазам практически одинакова. Каждое из этих прикосновений весьма опасно, так как ток, проходящий через тело человека, достигает очень больших значений.

Что такое напряжение шага?

Под напряжением шага понимается напряжение между двумя точками цепи тока, находящихся одна от другой на расстоянии шага, на которых одновременно стоит человек. Величина шага обычно принимается равной 0,8 м.

Для некоторых животных (лошади, коровы) величина напряжения шага больше, чем для людей, и путь тока захватывает грудную клетку. По этим причинам они более подвержены поражениям шаговым напряжением.

Шаговое напряжение возникает вокруг места перехода тока от поврежденной электроустановки в землю. Наибольшая величина будет около места перехода, а наименьшая — на расстоянии более 20 м, т. е. за пределами, ограничивающими поле растекания тока в грунте.

На расстоянии 1 м от заземлителя падение напряжения составляет 68% полного напряжения, на расстоянии 10 м — 92%, на расстоянии 20 м потенциалы точек настолько малы, что практически могут быть равны нулю.

Такие точки поверхности почвы считаются находящимися вне зоны растекания тока и называются «землей».

Опасность напряжения шага увеличивается, если человек, подвергшийся его воздействию, падает. И тогда напряженйе шага возрастает, так как путь тока проходит уже не через ноги, а через все тело.

Случаи поражения людей из-за воздействия напряжения шага относительно редки. Они могут произойти, например, вблизи упавшего на землю провода (в такие моменты до отключения линии нельзя допускать людей и животных на близкое расстояние к месту падения провода). Наиболее опасны напряжения шага при ударе молнии.

Оказавшись в зоне шагового напряжения, выходить из нее следует небольшими шагами в сторону, противоположную месту предполагаемого замыкания на землю, и в частности лежащего на земле провода.

Поражение электрическим током

Электротравма — повреждение, возникающее в результате прохождения электрического тока через ткани, от места входа до места его выхода.

Факторы, определяющие тяжесть действия электрического тока:

* сила электрического тока,

* род тока (переменный или постоянный),

* тип ткани, через которые проходит электрический ток (электрическая дуга),

* общая сопротивляемость тела пострадавшего (состояние здоровья),

* индивидуальные особенности организма в момент действия электрического тока,

* условия, при которых происходит травма (влажная одежда, руки, наличие воды, осадков),

* длительность воздействия тока.

Постоянный ток менее опасен, чем переменный. Действие переменного тока на организм зависит от его частоты: так, низкочастотные токи (50–60 Гц) более опасны, чем высокочастотные. Наиболее опасен для человека электрический ток в диапазоне частот в 20-100 Гц. Однако наибольшее значение имеют сила и напряжение электрического тока. Порог восприятия уровня силы постоянного тока, входящего в тело, составляет 5–10 мА, порог восприятия используемого в быту переменного тока (60 Гц) — 1–10 мА. При токе 10–15 мА человек не может оторвать руки от электропроводов. Ток силой 0,05–0,1 А (50-100 мА) признается смертельным, хотя в отдельных случаях смерть может наступать и при меньшей силе.

Различают поражения электрическим током низкого и высокого напряжения, а также поражение атмосферным электричеством (молнией). Низким считается напряжение до 1000 вольт, высоким — более 1000. Следует отметить, что поражение током высокого напряжения может происходить и без непосредственного контакта с источником электроэнергии в результате действия шагового напряжения или вольтовой дуги. Под термином «шаговое напряжение» понимают разность напряжения между двумя точками земли, находящимися на расстоянии шага (обычно 0,8 м). Оно возникает в результате электризации земли случайно упавшим или проложенным в земле проводником с высоким напряжением тока или же может наблюдаться во время вхождения в землю разряда атмосферного электричества (молнии). Под термином «вольтова дуга» подразумевают перемещение электрического заряда по воздуху на расстояние от нескольких сантиметров до метра от источника тока с высоким напряжением в несколько киловольт. Возникающие при этом локальные ожоги ограничены, но распространяются на большую глубину. Образованию дугового контакта способствует повышенная влажность воздуха.

Низковольтные ожоги — преимущественно бытовые. Электрический ток низкого напряжения обычно проходит с учетом пути наименьшего сопротивления, то есть по тканям, обладающим низким сопротивлением, которые располагаются в порядке, описанном ниже.

Высоковольтные ожоги чаще возникают на производстве (при установке аппаратов, контактах с высоковольтными линиями и т.п.), являются, как правило, более тяжелыми, нередко сочетаются с механической травмой и ожогами пламенем от горящей одежды и располагающихся рядом предметов. Ток высокого напряжения распространяется по кратчайшему пути, вызывая значительно более тяжелые повреждения. Часто развивается ожоговая болезнь. Характерны сочетанные и комбинированные поражения магистральных сосудов с некрозом мышечных массивов, повреждения внутренних органов. Общее действие тока на организм наблюдается у большинства пациентов. Летальные исходы, как правило, возникают именно в результате высоковольтных поражений.

Наряду с силой и напряжением тока большое значение имеет путь его прохождения от точки входа до точки выхода. Путь тока через тело называют петлей тока. Наиболее опасным вариантом считается так называемая полная петля (две руки — две ноги): в этом случае ток неизбежно проходит через сердце, что может вызвать нарушение его работы вплоть до остановки. Прохождение электрического тока по различным путям в некоторой степени условно. Даже при одной и той же петле ток в организме может продвигаться по ряду параллельных проводников с различным сопротивлением и ответвлениями. Сопротивление тканей существенно варьирует и связано с удельным весом жидкости, присутствующей в них. Так, наименьшим сопротивлением обладают нервная система, кровь, слизистые оболочки и мышцы. Среднее сопротивление имеет сухая кожа. Высокое сопротивление свойственно хрящевой и жировой ткани, костям. Следует отметить, что сопротивление может меняться в зависимости от объективных обстоятельств: например, сухая и утолщенная кожа людей, занимающихся ручным трудом, оказывает значительно большее сопротивление по сравнению с влажной и тонкой кожей.

Важное значение имеет продолжительность контакта пострадавшего с источником электроэнергии. Так, при воздействии тока высокого напряжения потерпевший может быть сразу же отброшен за счет резкого сокращения мышц. Вместе с тем при более низком напряжении спазм мышц может спровоцировать длительный захват проводника руками. Чем продолжительнее действие тока, тем тяжелее поражение и больше вероятность летального исхода.

Наряду с характеристиками самого электричества следует учитывать и некоторые другие факторы. Так, во влажных и сырых помещениях (бани, ванные, землянки и т.п.) проводимость электричества существенно увеличивается. Исход электротравм, в то же время, во многом зависит от состояния организма в момент поражения и возраста пострадавшего.

Поражение электрическим током организма может быть в виде электрического удара или электрической травмы. Наибольшую опасность представляют электрические удары. При этом поражаются внутренние органы организма: происходит судорожное сокращение мышц, нарушается сердечный ритм, происходит остановка дыхания, сердца. При электрической травме наблюдаются местные поражения тела: электрические ожоги (тепловое действие тока напряжением выше 1000В), электрометаллизация кожи (проникновение в глубь кожи мельчайших частиц металла), электрические знаки (поражение кожного покрова в виде округлых пятен серого или бело-желтого цвета при плотном контакте с токоведущими частями), электроофтальмия (ослабление зрения и слепота в результате воздействия ультрафиолетовых лучей электрической дуги на роговицу и конъюнктиву глаза).

Проходя через тело человека, эл. ток оказывает на него термическое (перегрев и функциональное расстройство органов на пути прохождения тока), механическое (разрыв тканей, расслоение, ударное действие испарения жидкости из тканей организма), электролитическое(электролиз жидкости в тканях организма, изменение состава крови) и биологическое воздействие (раздражение и перевозбуждение нервной системы).

Общие явления при поражении электрическим током обусловлены нарушениями деятельности ЦНС, органов дыхания и кровообращения.

Симптомы (признаки)поражения электрическим током:

* Визуальными признаками поражения электрическим током являются «знаки тока», расположенные в местах входа и выхода электрического заряда.

У пациентов наблюдаются:

1. Нарушение сознания

2. Двигательное возбуждении, судороги

3. Ретроградная амнезия (отсутствуют воспоминания предшествующие электротравме)

4. Головная боль

7. Чувство страха

8. Нарушение работы сердца, дыхания, ЦНС.

Выделяют 4 стадии поражения электрическим током:

1) легкая электротравма — судорожное сокращение мышц без потери сознания;

2) электротравма средней тяжести — судорожное сокращение мышц и потеря сознания, ЭКГ в норме;

3) тяжелая электротравма — потеря сознания и нарушение сердечной и дыхательной деятельности;

4) крайне тяжелая электротравма — клиническая смерть.

Основными причинами смертельных исходов при электротравме принято считать остановки сердца — чаще вследствие фибрилляции, остановки дыхания из-за паралича дыхательного центра, шока, а также вследствие комбинации указанных причин.

Электротравма. Рис. 1-3. Контактная электротравма при нарушении изоляции электрического утюга (220 в). Знаки тока.

Рис. 1. До лечения.

Рис. 2. В период лечения.

Рис. 3. После заживления.

Рис. 4. Контактная электротравма (220 в). Знаки тока на предплечье.

Рис. 5. Знаки тока при электротравме от вилки провода (220 в).

Рис. 6. Контактная электротравма лица и волосистой части головы с поражением кости.

Рис. 7. Ожог электрической дугой лица, шеи и верхней конечности при ремонте электроустановки под напряжением (380 в).

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты