Astro-nn.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Принцип действия электролизера

Электролизер

Промышленный электролизер – это технологическое оборудование, которое используется при добыче полезных ископаемых и производственных предприятиях для получения некоторых видов газов (хлора, водорода), для производства алюминия и магния. Отдельные виды оборудования могут применяться для обессоливания, обеззараживания и дезинфекции сточных вод.

Конструктивные особенности устройства

Рассмотрим подробнее устройство и принцип работы устройства. Устройство имеет токопроводящий корпус, электроды из разных материалов (медный, цинковый и т. д.) – катод и анод, а также патрубки для ввода внутрь электролита и вывода вещества, которое получают электролитическим методом.

Конструкция оборудования может быть изменения для выполнения специализированных задач. Например, для выделения магния и хлора применяется емкость со стенками, облицованными огнеупорными кирпичами или иными подобными материалами.

При подключении установки к электрическому току электроды, которые опущены в токопроводящую жидкость – электролит – начинают электрохимическую реакцию. Между анодом и катодом протекает ионный ток, а в процессе реакции положительные частицы направляются к катоду, а отрицательные – к аноду. Таким образом электролит разлагается, например, на водород кислород, металлы и хлор.

Если электролизная установка используется для получения газа, образующиеся в процессе реакции пузырьки поднимаются и собираются в емкость с помощью специальных патрубков.

Используется несколько видов электролизеров:

  • Сухие;
  • Проточные – в них организован постоянный поток электролитической жидкости;
  • Мембранные – в этих устройства применяется твердый электролит на полимерной основе;
  • Диафрагменные – применяются в случаях, когда нельзя допускать диффузию продуктов электролиза между камерами.

Характеристики электролизеров могут варьироваться в зависимости от области применения и задач, которые решаются с их помощью на производстве.

Где применяются электролизеры?

Основные сферы применения оборудования:

  • Получение цветных металлов из растворов;
  • Выделение золота из цианистых растворов;
  • Разложение воды на кислород и водород;
  • Получение хлора из раствора.

Также применяется проточный для нефти электролизер, который используется в комплексах для добычи полезных ископаемых для обеспечения технологического процесса.

Основными преимуществами оборудования является цена, простота обслуживания и высокая производительность, а также большой коэффициент полезного действия.

Как подобрать устройство?

При выборе оборудования для использования в промышленности необходимо обращать внимание на мощность и производительность электролизных установок. Обычно эти параметры указываются в маркировке оборудования. На рынке в России представлены различные модели, среди которых можно подобрать нужный вариант под любое производство.

Электролизер. Виды и типы. Устройство и работа. Применение

Электролизер – это специальное устройство, которое предназначено для разделения компонентов соединения или раствора с помощью электрического тока. Данные приборы широко используются в промышленности, к примеру, для получения активных металлических компонентов из руды, очищения металлов, нанесения на изделия металлических покрытий. Для быта они используются редко, но также встречаются. В частности для домашнего использования предлагаются устройства, которые позволяют определить загрязненность воды или получить так называемую «живую» воду.

Основа работы устройства принцип электролиза, первооткрывателем которого считается известный зарубежный ученый Фарадей. Однако первый электролизер воды за 30 лет до Фарадея создал русский ученый по фамилии Петров. Он на практике доказал, что вода может обогащаться в катодном или анодном состоянии. Несмотря на эту несправедливость, его труды не пропали даром и послужили развитию технологий. На данный момент изобретены и с успехом используются многочисленные виды устройств, которые работают по принципу электролиза.

Что это

Электролизер работает благодаря внешнему источнику питания, который подает электрический ток. Упрощенно агрегат выполнен в виде корпуса, в который вмонтировано два или несколько электродов. Внутри корпуса находится электролит. При подаче электрического тока происходит разложение раствора на требуемые составляющие. Положительно заряженные ионы одного вещества направляются к отрицательно заряженному электроду и наоборот.

Основной характеристикой подобных агрегатов является производительность. То есть это количество раствора или вещества, которое установка может перерабатывать за определенный период времени. Данный параметр указывается в наименовании модели. Однако на него также могут влиять и иные показатели: сила тока, напряжение, вид электролита и так далее.

Виды и типы
По конструкции анода и расположению токопровода электролизер может быть трех видов, это агрегаты с:
  1. Прессованными обожженными анодами.
  2. Непрерывным самообжигающимся анодом, а также боковым токопроводом.
  3. Непрерывным самообжигающимся анодом, а также верхним токопроводом.
Электролизер, используемый для растворов, по конструктивным особенностям можно условно разделить на:

  • Сухие.
  • Проточные.
  • Мембранные.
  • Диафрагменные.
Устройство

Конструкции агрегатов могут быть различными, но все они работают на принципе электролиза.

Устройство в большинстве случаев состоит из следующих элементов:
  • Электропроводящий корпус.
  • Катод.
  • Анод.
  • Патрубки, предназначенные для ввода электролита, а также вывода веществ, полученных в ходе реакции.

Электроды выполняются герметичными. Обычно они представлены в виде цилиндров, которые сообщаются с внешней средой с помощью патрубков. Электроды изготавливаются из специальных токопроводящих материалов. На катоде осаждается металл или к нему направляют ионы отделенного газа (при расщеплении воды).

В цветной промышленности часто применяют специализированные агрегаты для электролиза. Это более сложные установки, которые имеют свои особенности. Так электролизер для выделения магния и хлора требует ванну, выполненную из стенок торцевого и продольного вида. Она обкладывается с помощью огнеупорных кирпичей и иных материалов, а также делится с помощью перегородки на отделение для электролиза и ячейку, в которой собираются конечные продукты.

Конструктивные особенности каждого вида подобного оборудования позволяют решать лишь конкретные задачи, которые связаны с обеспечением качества выделяющихся веществ, скоростью происходящей реакции, энергоемкостью установки и так далее.

Принцип действия

В электролизных устройствах электрический ток проводят лишь ионные соединения. Поэтому при опускании электродов в электролит и включении электрического тока, в нем начинает течь ионный ток. Положительные частицы в виде катионов направляются к катоду, к примеру, это водород и различные металлы. Анионы, то есть отрицательно заряженные ионы текут к аноду (кислород, хлор).

При подходе к аноду анионы лишаются своего заряда и становятся нейтральными частицами. В результате они оседают на электроде. У катода происходят похожие реакции: катионы забирают у электрода электроны, что приводит к их нейтрализации. В результате катионы оседают на электроде. К примеру, при расщеплении воды образуется водород, которые поднимается наверх в виде пузырьков. Чтобы собрать этот газ над катодом сооружаются специальные патрубки. Через них водород поступает в необходимую емкость, после чего его можно будет использовать по назначению.

Принцип действия в конструкциях разных устройств в целом схож, но в ряде случаев могут быть и свои особенности. Так в мембранных агрегатах используется твердый электролит в виде мембраны, которая имеет полимерную основу. Главная особенность подобных приборов кроется в двойном назначении мембраны. Эта прослойка может переносить протоны и ионы, в том числе разделять электроды и конечные продукты электролиза.

Диафрагменные устройства применяются в случаях, когда нельзя допустить диффузию конечных продуктов электролизного процесса. С этой целью применяют пористую диафрагму, которая выполнена из стекла, асбеста или керамики. В ряде случаев в качестве подобной диафрагмы могут применяться полимерные волокна либо стеклянная вата.

Применение

Электролизер широко применяется в различных отраслях промышленности. Но, несмотря на простую конструкцию, оно имеет различные варианты исполнения и функции. Данное оборудование применяется для:

  • Добычи цветных металлов (магний, алюминий).
  • Получения химических элементов (разложение воды на кислород и водород, получение хлора).
  • Очистки сточных вод (обессоливание, обеззараживание, дезинфекция от ионов металлов).
  • Обработки различных продуктов (деминерализация молока, посол мяса, электроактивация пищевых жидкостей, извлечение нитратов и нитритов из овощных продуктов, извлечения белка из водорослей, грибов и рыбных отходов).

В медицине установки используются в интенсивной терапии для детоксикации организма человека, то есть для создания растворов гипохлорита натрия высокой чистоты. Для этого используется устройство проточного вида с электродами из титана.

Электролизные и электродиализные установки нашли широкое применение для решения экологических проблем и опреснения воды. Но эти агрегаты в виду их недостатков используются редко: это сложность конструкции и их эксплуатации, необходимость трехфазного тока и требования периодической замены электродов из-за их растворения.

Подобные установки находят применение и в быту, к примеру, для получения «живой» воды, а также ее очистки. В будущем возможно создание миниатюрных установок, которые будут использоваться в автомобилях для безопасного получения водорода из воды. Водород станет источником энергии, а машину можно будет заправлять обычной водой.

Что такое электролизер и как его сделать своими руками?

Электролиз широко используется в производственной сфере, например, для получения алюминия (аппараты с обожженными анодами РА-300, РА-400, РА-550 и т.д.) или хлора (промышленные установки Asahi Kasei). В быту этот электрохимический процесс применялся значительно реже, в качестве примера можно привести электролизер для бассейна Intellichlor или плазменный сварочный аппарат Star 7000. Увеличение стоимости топлива, тарифов на газ и отопление в корне поменяли ситуацию, сделав популярной идею электролиза воды в домашних условиях. Рассмотрим, что представляют собой устройства для расщепления воды (электролизеры), и какова их конструкция, а также, как сделать простой аппарат своими руками.

Что такое электролизер, его характеристики и применение

Так называют устройство для одноименного электрохимического процесса, которому требуется внешний источник питания. Конструктивно это аппарат представляет собой заполненную электролитом ванну, в которую помещены два или более электродов.

Основная характеристика подобных устройств – производительность, часто это параметр указывается в наименовании модели, например, в стационарных электролизных установках СЭУ-10, СЭУ-20, СЭУ-40, МБЭ-125 (мембранные блочные электролизеры) и т.д. В данных случаях цифры указывают на выработку водорода (м 3 /ч).

Промышленная стационарная электролизная установка, вырабатывающая 40 м3 водорода в час (СЭУ-40)

Что касается остальных характеристик, то они зависят от конкретного типа устройства и сферы применения, например, когда осуществляется электролиз воды, на КПД установки влияют следующие параметры:

  1. Уровень напряжения (минимального электродного потенциала), оно должно быть от 1,8 до 2 вольт, меньшее значение «не запустит» процесс, а большее приводит к чрезмерному расходу энергии, идущей на нагрев электролита. Если в качестве источника используется блок питания, например, на 14 вольт имеет смысл разделить емкость ванны пластинами на 7 ячеек, в соответствии с рисунком 2. Рис 2. Расположение пластин в ванне электролизера

Таким образом, подавая на выходы 14 вольт, мы получим 2 вольта на каждой ячейке, при этом на пластинах с каждой стороны будут разные потенциалы. Электролизеры, где используется подобная система подключения пластин, называются сухими.

  1. Расстояние между пластинами (между катодным и анодным пространством), чем оно меньше, тем меньше будет сопротивление и, следовательно, больший ток пройдет через раствор электролита, что приведет к увеличению выработки газа.
  2. Размеры пластины (имеется в виду площадь электродов), прямо пропорциональны току, идущему через электролит, а значит, также оказывают влияние на производительность.
  3. Концентрация электролита и его тепловой баланс.
  4. Характеристики материала, используемого для изготовления электродов (золото – идеальный материал, но слишком дорогой, поэтому в самодельных схемах используется нержавейка).
  5. Применение катализаторов процесса и т.д.

Как уже упоминалось выше, установки данного типа могут использоваться как генератор водорода, для получения хлора, алюминия или других веществ. Они также применяются в качестве устройств, при помощи которых осуществляется очистка и обеззараживание воды (УПЭВ, VGE), а также проводится сравнительный анализ ее качества (Tesp 001).

А) Установка прямого электролиза воды (УПЭВ); Б) анализатор качества воды Tesp 001

Нас, прежде всего, интересуют устройства, производящие газ Брауна (водород с кислородом), поскольку именно эта смесь имеет все перспективы для использования в качестве альтернативного энергоносителя или добавок к топливу. Их мы рассмотрим чуть позже, а пока перейдем к конструкции и принципу работы простейшего электролизера, расщепляющего воду на водород и кислород.

Устройство и подробный принцип работы

Аппараты для производства гремучего газа, в целях безопасности, не предполагают его накопление, то есть газовая смесь сжигается сразу после получения. Это несколько упрощает конструкцию. В предыдущем разделе мы рассмотрели основные критерии, влияющие на производительность аппарата и накладывающие определенные требования к исполнению.

Принцип работы устройства демонстрирует рисунок 4, источник постоянного напряжения подключен к погруженным в раствор электролита электродам. В результате через него начинает проходить ток, напряжение которого выше точки разложения молекул воды.

Рисунок 4. Конструкция простого электролизера

В результате этого электрохимического процесса катод выделяет водород, а анод – кислород, в соотношении 2 к 1.

Виды электролизеров

Кратко ознакомимся с конструктивными особенностями основных видов устройств для расщепления воды.

Сухие

Конструкция прибора данного типа была показана на рисунке 2, ее особенность заключается в том, что манипулируя количеством ячеек, можно запитать устройство от источника с напряжением, существенно превышающим минимальный электродный потенциал.

Проточные

С упрощенным устройством приборов этого вида можно ознакомиться на рисунке 5. Как видим, конструкция включает в себя ванну с электродами «A», полностью залитую раствором и бак «D».

Рис 5. Конструкция проточного электролизера

Принцип работы устройства следующий:

  • входе электрохимического процесса газ вместе с электролитом выдавливается в емкость «D» через трубу «В»;
  • в баке «D» происходит отделение от электролитного раствора газа, который выводится через выходной клапан «С»;
  • электролит возвращается в гидролизную ванну через трубу «Е».

Мембранные

Основная особенность устройств этого типа – использование твердого электролита (мембраны) на полимерной основе. С конструкцией приборов этого вида можно ознакомиться на рисунке 6.

Читать еще:  Почему появляется запах канализации в ванной и как его можно устранить

Рис 6. Электролизер мембранного типа

Основная особенность таких устройств заключается в двойном назначении мембраны, она не только переносит протоны и ионы, а и на физическом уровне разделяет как электроды, так и продукты электрохимического процесса.

Диафрагменные

В тех случаях, когда не допустима диффузия продуктов электролиза между электродными камерами, используют пористую диафрагму (что и дало название таким приборам). Материалом для нее может служить керамика, асбест или стекло. В некоторых случаях для создания такой диафрагмы можно использовать полимерные волокна или стеклянную вату. На рисунке 7 показан простейший вариант диафрагменного прибора для электрохимических процессов.

Конструкция диафрагменного электролизера

  1. Выход для кислорода.
  2. U-образная колба.
  3. Выход для водорода.
  4. Анод.
  5. Катод.
  6. Диафрагма.

Щелочные

Электрохимический процесс невозможен в дистиллированной воде, в качестве катализатора применяется концентрированный раствор щелочи (использование соли нежелательно, так как при этом выделяется хлор). Исходя из этого, щелочными можно назвать большую часть электрохимических устройств для расщепления воды.

На тематических форумах советуют использовать гидроксид натрия (NaOH), который, в отличие от пищевой соды (NaHCO3), не разъедает электрод. Заметим, что у последней имеются два весомых преимущества:

  1. Можно использовать железные электроды.
  2. Не выделяются вредные вещества.

Но, один существенный недостаток сводит на нет все преимущества пищевой соды, как катализатора. Ее концентрация в воде не более 80 грамм на литр. Это снижает морозостойкость электролита и его проводимость тока. Если с первым еще можно смириться в теплое время года, то второе требует увеличения площади пластин электродов, что в свою очередь, увеличивает размер конструкции.

Электролизер для получения водорода: чертежи, схема

Рассмотрим, как можно сделать мощную газовую горелку, работающую от смеси водорода с кислородом. Схему такого устройства можно посмотреть на рисунке 8.

Рис. 8. Устройство водородной горелки

  1. Сопло горелки.
  2. Резиновые трубки.
  3. Второй водяной затвор.
  4. Первый водяной затвор.
  5. Анод.
  6. Катод.
  7. Электроды.
  8. Ванна электролизера.

На рисунке 9 представлена принципиальная схема блока питания для электролизера нашей горелки.

Рис. 9. Блок питания электролизной горелки

На мощный выпрямитель нам понадобятся следующие детали:

  • Транзисторы: VT1 – МП26Б; VT2 – П308.
  • Тиристоры: VS1 – КУ202Н.
  • Диоды: VD1-VD4 – Д232; VD5 – Д226Б; VD6, VD7 – Д814Б.
  • Конденсаторы: 0,5 мкФ.
  • Переменные резисторы: R3 -22 кОм.
  • Резисторы: R1 – 30 кОм; R2 – 15 кОм; R4 – 800 Ом; R5 – 2,7 кОм; R6 – 3 кОм; R7 – 10 кОм.
  • PA1 – амперметр со шкалой измерения не менее 20 А.

Краткая инструкция по деталям к электролизеру.

Ванну можно сделать из старого аккумулятора. Пластины следует нарезать 150х150 мм из кровельного железа (толщина листа 0,5 мм). Для работы с вышеописанным блоком питания потребуется собрать электролизер на 81 ячейку. Чертеж, по которому выполняется монтаж, приведен на рисунке 10.

Рис. 10. Чертеж электролизера для водородной горелки

Заметим, что обслуживание такого устройства и управление им не вызывает трудностей.

Электролизер для автомобиля своими руками

В интернете можно найти много схем HHO систем, которые, если верить авторам, позволяют экономить от 30% до 50% топлива. Такие заявления слишком оптимистичны и, как правило, не подтверждаются никакими доказательствами. Упрощенная схема такой системы продемонстрирована на 11 рисунке.

Упрощенная схема электролизера для автомобиля

По идее, такое устройство должно снизить расход топлива за счет его полного выгорания. Для этого в воздушный фильтр топливной системы подается смесь Брауна. Это водород с кислородом, полученные из электролизера, запитанного от внутренней сети автомобиля, что повышает расход топлива. Замкнутый круг.

Безусловно, может быть задействована схема шим регулятора силы тока, использован более эффективный импульсный блок питания или другие хитрости, позволяющие снизить расход энергии. Иногда в интернете попадаются предложения приобрести низкоамперный БП для электролизера, что вообще является нонсенсом, поскольку производительность процесса напрямую зависит от силы тока.

Это как система Кузнецова, активатор воды которой утерян, а патент отсутствует и т.д. В приведенных видео, где рассказывают о неоспоримых преимуществах таких систем, практически нет аргументированных доводов. Это не значит, что идея не имеет прав на существование, но заявленная экономия «слегка» преувеличена.

Электролизер своими руками для отопления дома

Делать самодельный электролизер для отопления дома на данный момент не имеет смысла, поскольку стоимость водорода, полученного путем электролиза значительно дороже природного газа или других теплоносителей.

Также следует учитывать, что температуру горения водорода не выдержит никакой металл. Правда имеется решение, которое запатентовал Стен Мартин, позволяющее обойти эту проблему. Необходимо обратить внимание на ключевой момент, позволяющий отличить достойную идею от очевидного бреда. Разница между ними заключается в том, что на первый выдают патент, а второй находит своих сторонников в интернете.

На этом можно было бы и закончить статью о бытовых и промышленных электролизерах, но имеет смысл сделать небольшой обзор компаний, производящих эти устройства.

Обзор производителей электролизеров

Перечислим производителей, выпускающих топливные элементы на базе электролизеров, некоторые компании также выпускают и бытовые устройства: NEL Hydrogen (Норвегия, на рынке с 1927 года), Hydrogenics (Бельгия), Teledyne Inc (США), Уралхиммаш (Россия), РусАл (Россия, существенно усовершенствовали технологию Содерберга), РутТех (Россия).

MefistofeL24 › Блог › Электролиз ( огонь из воды )

Расчет необходимых энергозатрат на электролиз воды можно вести многими способами. Ограничимся тремя принципиально различными. Во-первых, памятуя о существовании закона сохранения энергии, можно рассчитать энергозатраты на электролиз через данные о теплотворной способности водорода как топлива. Используются результаты, полученные методом калориметрии — сколько энергии выделяется при горении водорода, столько же ее должно быть поглощено при его получении путем электролиза. Во-вторых, расчет энергозатрат можно вести по данным резонансной спектроскопии, поскольку при электролизе разрываются одни связи (с разрушением молекул воды) и замыкаются другие (с образованием молекул газов), а в настоящее время энергии каждого вида связи известны. В-третьих, можно произвести расчет, используя законы электролиза Фарадея и некоторые физические константы. Каждый метод имеет свои плюсы и минусы, а также погрешности.

Первый способ (по теплотворной способности водорода)
Продуктами сгорания любого углеводородного топлива являются углекислый газ и вода. В термодинамике и теплотехнике различают низшую и высшую удельную (т.е. отнесенную к единице количества) теплотворную способность топлив. Низшая теплотворная способность включает в себя тепло, полученное при горения топлива и охлаждения продуктов реакции до температуры топлива без учета теплоты конденсации паров воды. Высшая теплотворная способность включает в себя помимо низшей еще и теплоту конденсации паров воды в жидкую фазу и охлаждения ее до температуры топлива. Температура топлива принимается равной 15°C. Критерий низшей теплотворной способности используется в теплотехнике, поскольку продукты горения топлив как правило удаляются из теплообменников с заведомо высокой температурой и теплота конденсации паров воды для потребителей недоступна. В нашем же случае необходимо воспользоваться критерием высшей теплотворной способности водорода. Логика очевидна – для электролиза мы берем в составе электролита жидкую воду, следовательно после всего круговорота поглощения и выделения энергии мы к ней же должны и вернуться.
Высшая теплотворная способность водорода составляет 33850 ккал/кг = 33850 ккал/кг * 4,2 Дж/кал = 142,2 Мдж/кг (источник). Один килограмм водорода при н.у. (нормальные условия — давление 101325 Па, температура 273,15К) при плотности 0,0899 г/л (источник) имеет объем 11124 литра. Гремучий газ по объему на 2/3 состоит из водорода и на 1/3 из кислорода. Поскольку горючим компонентом является только водород, то при сгорании гремучего газа выделяется энергия = 2/3 * 142,2 Мдж/кг : 11124 л/кг = 8522 Дж / л = 8522 Вт*сек / л = 8522 Вт * (час / 3600) / л = 2,37 Вт*час / л.

Второй способ (по энергиям связей в молекулах).
Энергия связи в молекуле водорода составляет 432 кДж/моль (источник), в молекуле кислорода — 493 кДж/моль (источник). В молекуле воды есть две равноценных связи O-H. При последовательном их разрыве энергия первой разрываемой из них составит 495 кДж/моль, второй – 435 кДж/моль. В расчетах берут среднее значение 465 кДж/моль (источник).
При электролизе 2 моль воды превращаются в 2 моль водорода и 1 моль кислорода — суммарное уравнение реакции:

В двух молекулах воды разрываются 4 связи О-Н, в образовавшихся продуктах замыкаются две связи Н-Н и одна О-О. Уравнение энергобаланса должно выглядеть следующим образом:
Энергия электролиза – Энергия разрыва связей + Энергия образования связей = 0
Энергия электролиза — 2*465 кДж/моль * 2 моль + (432 кДж/моль * 2 моль + 493 кДж/моль * 1 моль) = 0
Энергия электролиза = 503 кДж.
Эта энергия идет на образование гремучего газа (2 моль водорода и 1 моль кислорода). Один моль любого газа при нормальных условиях занимает обьем 22,4 л (источник). Таким образом, суммарный объем гремучего газа, полученного из двух молей воды, составит 2 моль * 22,4 л/моль + 1 моль * 22,4 л/моль = 67,2 л.
Энергия получения гремучего газа = 503 кДж/67,2 л = 7,485 кДж/л = 7,485 * 1000 * Вт * сек / л = 7485 * Вт * (час/3600) / л = 2,08 Вт*час/л.

Третий способ (из законов электролиза).
По закону электролиза Фарадея для получения одного грамм-эквивалента любого вещества в электрохимической ячейке необходимо перенести 96485 Кл заряда (источник).
Электрохимический процесс – это всегда совокупность двух (групп) реакций – окисления и восстановления. Заряд при этом переносится от одной химической сущности, находящейся на аноде, к другой, пребывающей на катоде. Таким образом, правильнее будет сказать, что при переносе 96485 Кл заряда получается один грамм-эквивалент вещества на аноде и один грамм-эквивалент вещества на катоде. В случае электролиза воды – это совокупность водорода и кислорода, т.е. гремучий газ.
Масса одного грамм-эквивалента водорода – 1 грамм (1/2 моль), что соответствует объему 11,2 литра (н.у.). Масса одного грамм-эквивалента кислорода – 8 граммов (1/4 моль), что соответствует объему 5,6 литра (н.у.). Следовательно, при прохождении 96485 Кл заряда выделяется 11,2 л + 5,6 л = 16,8 литров гремучего газа, а значит для его получения удельные затраты электричества (заряда) составят 96485 Кл : 16,8 л = 5743 Кл / л.
Теперь необходимо вспомнить, что заряд в электрохимической ячейке переносится сторонними силами (ЭДС источника для электролиза) против градиента электрохимического потенциала. Говоря проще, для переноса заряда в данном случае нужно приложить некоторое электрическое напряжение, минимально необходимая величина которого равна сумме равновесных потенциалов реакций на противоположных электродах. В случае воды минимальная ЭДС составляет 1,23 В (Якименко Л.М. Электролиз воды, стр.38) и не зависит от рН среды используемого электролита.
Энергозатраты на получение гремучего газа:
1,23 В * 5743 Кл / л = 7064 В*А*сек / л = 7064 Вт*(час / 3600) / л = 1,96 Вт*час/л.

Метод расчета Энергозатраты, Вт*час/л
1. По теплотворной способности водорода 2.37
2. По энергиям связей в молекулах 2.08
3. Из законов электролиза 1.96

В качестве эталона энергозатрат мы предпочитаем минимальную теоретически необходимую для электролиза энергию 1,96 Вт*час/л. Оценка КПД в данном случае – самая худшая из всех возможных, но в случае с проверкой КПД наших установок мы идем на это намеренно.
Попутно с освещением вопроса энергозатрат при электролизе воды необходимо вспомнить о таких понятиях как выход реакции по току и энергетическая эффективность процесса (КПД).

Выход реакции по току.
Выход электрохимической реакции по току представляет собой отношение количества электричества (в кулонах, ампер-часах или любых других внесистемных единицах), потраченного на получение некоторого количества вещества, к теоретически необходимому для этого получения количеству электричества.
Выход по току не может превышать 100%. Причиной снижения этого показателя (в отсутствие прямых утечек тока при коротком замыкании через электролит) может быть прохождение на электроде других электрохимических реакций, не дающих данного целевого продукта. При электролизе воды в электролите всегда есть некоторое количество растворенных кислорода и водорода в молекулярной форме, т.е. в форме незаряженных молекул, не образующих отдельной фазы. Отсутствие заряда и процессы диффузии приводят к тому, что часть выделившегося при электролизе кислорода может восстанавливаться на катоде, а часть полученного водорода – окисляться на аноде. При отсутствии в ячейке разделительной диафрагмы и сравнительно небольшой толщине слоя электролита затраты тока на эти конкурирующие реакции могут составлять от 3 до 5%. Таким образом, токовый выход бездиафрагменных электролизеров не может превышать 95-97%. Все конструкции электролизеров для получения гидроксигаза на борту авто именно бездиафрагменные и с тонким слоем электролита в ячейках. Кроме того подавляющее большинство из них — проточные, а значит имеющие утечки тока еще и по конструктивным причинам — вследствие шунтирования по электролиту. Вследствие этого токовые выходы должны быть еще ниже, особенно на малых токах (подробнее).

Миф I. Одноатомный водород.
Многие производители систем для получения гидроксигаза на борту авто уверяют потенциальных покупателей в том, что в их системах получается именно химически активный одноатомный газ (ННО), состоящий в основном из атомов водорода и кислорода, а не молекул. При этом приводятся такие данные о соответствии скорости выработке газа и потребляемого системой тока, которые соответствуют почти 200%- ному токовому выходу. Если поверить в одноатомность этого газа, которая неявно предполагает удваивание объема по сравнению с обычным двухатомным, то данные о производительности по току выглядят как будто бы убедительно. Попробуем разобраться.
При повышении температуры все большая доля молекул распадается на атомы. Порядок энергии связи в молекулах таков, что даже при температуре в 2000°C степень диссоциации (распада) молекул на атомы составляет для водорода и кислорода 0,081% и 0,03% соответственно, полная диссоциация наблюдается при температуре на короне Солнца – выше 6000°C (источник (водород), источник (кислород)). Таким образом говорить об одноатомном гидроксигазе при температуре заведомо более низкой невежественно до неприличия. Учитывая это, нужно с необходимостью признать, что если предлагаемые системы и тестировались производителями, то приведенные значения результатам этих тестов не соответствуют и явно завышены.

Читать еще:  Лучший утюг 2020

Миф II. Сверхэффективный электролиз.
Существуют прецеденты, когда производители публикуют данные о производительности своих систем, не ссылаясь на одноатомность получаемого газа, но анализ этих данных также приводит к выводу о токовой сверхэффективности. В качестве объяснения этого феномена, если об этом и возникает разговор, предлагается невыполнение законов электролиза Фарадея, в частности в системах, разработанных для так называемого резонансного электролиза в объеме электролита или даже просто чистой воды. Несмотря на обилие в Интернете материалов, посвященных данным технологиям, в том числе и патентов на изобретения, нигде не описана достаточно внятная и научно обоснованная теория вопроса и не проведено результатов сколько-нибудь серьезной экспериментальной экспертизы. Таким образом, приведенные данные о производительности систем также кажутся подозрительными.

Производительность системы по гидроксигазу.
Какова же должна быть зависимость между величиной тока, подаваемого в электролизер, и его производительностью по гремучему газу в идеале?
Вспомним из предыдущего изложения, что для получения при нормальных условиях одного литра газа в одной электрохимической ячейке через нее необходимо пропустить 5743 Кл электричества. Какая сила тока должна быть подана на ячейку, чтобы это количество заряда прошло через нее за одну минуту?
5743 Кл = 5743 А*сек = 5743 А*(мин/60) = 95,72 А*мин.
Т.е. для производительности одной ячейки по газу в один литр в минуту необходима сила тока 95,72 А. Это достаточно большая величина. Уменьшить ее можно, набирая ячейки в секцию с последовательным электрическим подключением. Тогда во сколько раз увеличено количество ячеек, во столько же раз можно уменьшить ток для получения того же объема газа в минуту.
При последовательном соединении проводников суммарное падение напряжения в цепи равно сумме падений на элементах. В реальных условиях падение напряжения на одной ячейке составляет нескольким более 2 вольт. Целесообразно собирать системы в среднем из 6 (коммерческие варианты от 5 до 7) или 12 (10-14) ячеек — при бортовом напряжении автомобилей 12(14) или 24(28) вольт.
Предположим, мы имеем идеальный по токовому выходу электролизер, имеющий 6 последовательно соединенных ячеек. Для получения производительности этого электролизера по газу в один литр в минуту он должен потреблять ток 95,72/6 = 15,95 ампер. Если учитывать, что при электролизе в предлагаемых системах получаемый газ имеет как минимум комнатную температуру, то получается очень просто запоминаемое соотношение:
6 ячеек — потребление тока 15 ампер — выход газа 1 литр в минуту.
Если используется идеальный по токовому выходу электролизер с 12 ячейками, то производительность по газу при том же токе удваивается:
12 ячеек — потребление тока 15 ампер — выход газа 2 литра в минуту.

Энергетическая эффективность процесса электролиза (КПД электролизера).
Как было отмечено выше, минимальное напряжение, при котором процесс электролиза воды может происходить в одной электролизной ячейке, составляет 1,23 вольта – это так называемый равновесный потенциал обратимой реакции. В реальных условиях для электрохимического получения достаточных количеств продуктов необходима существенно большая разность потенциалов, связанная с явлениями поляризации электродов (перенапряжение). Но мы не будем вникать в тонкости электрохимической кинетики.
КПД электролизера численно равен отношению минимально необходимой для получения единицы массы вещества электрической энергии к практически затрачиваемой, выраженному в процентах.
Приложение разности потенциалов (напряжения) к электродам позволяет перенести некоторый заряд, поддерживая некоторую силу тока через ячейку в течение некоторого промежутка времени. Очевидно, чем меньшее напряжение будет приложено и чем больший токовый выход будет иметь место при всех прочих равных условиях, тем больше будет и энергетическая эффективность процесса. Таким образом, максимальный КПД может быть получен при напряжении на ячейке, равном равновесному потенциалу (1,23В), при 100%- ном токовом выходе.
Основываясь на предыдущем изложении, получаем формулу:

U — среднее напряжение на электролизере [В], I — ток через электролизер [А], t — время [сек], в течение которого производится объем газа V[л], 7060 Дж/л — минимальная энергия для производства одного литра газа при нормальных условиях.
Поскольку в реальных условиях одна и та же масса газа будет иметь разный объем в зависимости от его температуры и атмосферного давления, необходимо делать соответствующую поправку (источник)
В следующем выражении учтены температура газа и атмосферное давление:

Когда нами проводились эксперименты с целью отработки конструкции электролизной системы, было сделано несколько опытов для проверки правильности расчетов ее КПД. Для этого в лабораторных условиях электролизер какой-либо очередной конструкции, соединенный с ним резервуар электролита (термостатирующий контур не подключен), а также газоотводящий шланг и барботер с водой для промывки газа термоизолировались пенопластом или вспененным полиэтиленом, после чего через электролизер подавали постоянный ток 25-35 ампер (стабилизация по току) в течение продолжительного времени – 30-50 минут. Поскольку КПД электролизера заведомо был ниже 100%, часть мощности тратилась на нагревание. Были известны –время эксперимента (электронный секундомер), исходная и конечная температура электролита и всех частей установки, включая технологические жидкости (прямое измерение), а также их масса (прямое измерение) и теплоемкости (справочные данные по использованным материалам), кроме того, в течение эксперимента через короткие интервалы времени регулярно измерялись рабочее напряжение (мультиметр) и стабилизированный ток (амперметр с шунтом 50А, 75 мВ). Производительность по газу определялась с помощью газовых часов. Атмосферное давление определялось бытовым барометром. После очередного эксперимента по данным о темпе газовыделения, токе и усредненном по времени напряжении делался расчет КПД (метод законов электролиза). Параллельно производился и расчет калориметрическим способом – по темпу тепловыделения. Последний метод всегда давал завышенное значение КПД системы по сравнению с первым, очевидно, вследствие неучтенных теплопотерь. Однако, расхождение результатов расчетов не превышало 10-12%.

Электрохимические и электрофизические технологии и установки

В основе работы установок этой группы лежит электрохимическое действие тока. На этом принципе созданы следующие типы установок: электролизные; электрохимические; электроэрозионные; электрохимико — механические.

Электролизные установки

Электролиз — это процесс разложения вещества при прохождении тока через электролит или процессы электрохимического окисления-восстановления на электродах, сопровождающиеся приобретением или потерей электронов частицами вещества.

Электролизёр — это ванна, в которой идёт процесс электролиза с поглощением электрической энергии.

Принцип действия электролизной установки рассмотрим на схеме электролизёра с анодным растворением и катодным осаждением (рис. 11.4).

Основными элементами установки являются: электролит 1, электроды 2 и источник питания 3. Напряжение в электролизной ванне (СУ) состоит из трёх составляющих

где U напряжение электрохимического разложения вещества, Um

приэлектродное напряжение (на аноде и катоде), U3 напряжение в электролите.

Мощность, выделяющая в электролизной ванне Рэв, определяется выражением:

где / -ток в ванне, А; Цф UK — падение напряжения на катоде и аноде, В; / — расстояние между электродами, м; 2 )

где S — площадь части электрода погружённой в электролит, м 2 .

Около поверхности электродов образуется двойной электрический слой, который противодействует подходу и выходу ионов. Для ослабления противодействия применяются: циркуляция электролита, для выравнивания температуры; вибрация электродов; импульсный источник питания.

В промышленности электролиз металлов и исходная среда определяются электрическим потенциалом выделяемого металла. Потенциалы металлов определены по отношению к водородному электроду, у которого электрический потенциал равен нулю.

Металлы с положительным потенциалом выделяют из твёрдой черновой основы путём её растворения (например, медь с потенциалом +0,34 В). Металлы с отрицательным потенциалом больше -1 В выделяют из растворов их солей (например, цинк с потенциалом -0,76 В). Металлы с отрицательным потенциалом меньше -1 В выделяют из расплавов их солей (например, алюминий с потенциалом -1,43 В).

Электролиз меди применяется для получения чистой электролитической меди из черновой (полученной после плавки в печах) и для извлечения ценных металлов, находящихся в ней. Процесс ведётся в электролизных ваннах. Анодом является литая чёрная медь в виде плит толщиной 35-45 мм и массой около 300 кг. Катодом является электролитическая (чистая) медь в виде пластин толщиной 0,6-0,7 мм, подвешенных на крюках между анодами. Расстояние между соседними анодами и катодами 35-40 мм.

Электролитом, которым заполняется ванна, является водный раствор медного купороса (CUSO4), подкисленный серной кислотой (H2SO4) для уменьшения сопротивления.

Процесс идёт следующим образом:

на аноде Си — 2е-> Си 2+ ;

на катоде Си 2+ +2е-> Си 0 ;

в ванне CUSO4 2+ +S04 2_ ;

При пропускании через ванну электрического тока черновая медь анодов растворяется, чистая медь осаждается на катодах, а благородные металлы и некоторые примеси выпадают в осадок или переходят в раствор (например, никель).

Процесс электролиза меди характеризуется следующими показателями: начальное напряжение Uo=0,3-0.35 В; электродная плотность токауэ=180-270 А/м 2 ; фактический выход по току Ат=92-98 %; удельный расход электроэнергии Wyd-200-379 кВтч/т; температура электролита в ванне Г=60°С.

В целях выравнивания концентрации ионов меди у электродов и температуры применяется прямая циркуляция электролита, который подаётся снизу и сливается сверху ванны.

Электролиз цинка применяется для получения высококачественного цинка из водных растворов его солей.

Катодом являются алюминиевые пластины толщиной 4мм. Анодом являются свинцовые пластины толщиной 5- 8 мм, с добавкой 1 % серебра для снижения коррозии. Электролитом является 5-6 % водный раствор сернокислого цинка (ZnS04) и серной кислоты (H2SO4). Во время электролиза на катоде осаждается металлический цинк, который периодически снимают.

На аноде выделяется газообразный кислород, а в растворе образуется серная кислота.

Процесс идёт следующим образом: на катоде Zn*+2e -» Zn;

на аноде НгО-2е -» 2Н + +0,5С>2;

в ванне ZnS04+H20 H2SO4+0,5O2.

Процесс электролиза цинка характеризуется следующими показателями: электродная плотность тока /,=400-600 А/м 2 ; фактический выход по току Ат-88-94 %; удельный расход электроэнергии JVyd = 3500 кВтч/т чистого цинка; температура электролита Г=40°.

Снятие цинка с катодов производится до двух раз в сутки, затем их промывают, формуют в пакеты и переплавляют в печах.

В процессе электролиза износ катодов составляет около 1,5 кг/т цинка, а анодов — 0,8-1,5 кг/т цинка. Резкое повышение падения напряжения в ванне (до 3,3-3,6 В) указывает на необходимость очистки анодов от шлама, которая осуществляется один раз в 20-25 дней, а для катодов — один раз в десять дней. В электролизном цехе ванны устанавливают в один ряд по 20-30 штук и соединяют в один блок.

Для поддержания заданной температуры ванны охлаждаются водой, подаваемой по алюминиевым или углеродистым змеевикам. Для снижения выделения водорода на катоде в раствор добавляют поверхностно-активные вещества.

Электролиз алюминия применяется для получения качественного алюминия из расплавленных солей путём электролиза.

Анодом является угольный электрод, который расходуется в процессе электролиза, так как находится в сильно агрессивной среде. Анод подвешивается на подвижной раме, которая автоматически перемещается по металлоконструкциям печи. Управляющим сигналом является потеря напряжения в электролите.

Электролитом является раствор оксида алюминия (АЬОз) в расплавленном криолите (NajAlF^). Присутствие фтора придаёт среде высокую агрессивность. Катодом являются подовые блоки печи. Ток к ванне подводится с двух сторон: к аноду — по пакетам алюминиевых шин, по гибким медным токопроводам, по стальным штырям, к катоду — по специальным токопроводам (блюмсам).

Размеры анода определяются заданной мощностью ванны и допустимой плотностью тока. Процесс электролиза алюминия характеризуется следующими показателями: электродная плотность тока/,=(0,65-1)Т О 4 А/м 2 ; удельный расход электроэнергии ^=16000 кВт ч/т; напряжение одной ванны

U=4,2-4,5 В; сила тока при работе /=40-250 кА в зависимости от мощности.

Выливают металл из ванны вакуум-ковшами. Вылитый из ванн алюминий поступает в миксеры литейного корпуса, где он после усреднения и отстаивания разливается в слитки.

Что такое электролиз и где он применяется?

Вопрос о том, что такое электролиз, рассматривается еще в школьном курсе физике, и для большинства людей не является секретом. Другое дело – его важность и практическое применение. Этот процесс с большой пользой используется в различных отраслях и может пригодиться для домашнего мастера.

Что такое электролиз?

Электролиз представляет собой комплекс специфических процессов в системе электродов и электролита при протекании по ней постоянного электрического тока. Его механизм основывается на возникновении ионного тока. Электролит – это проводник 2-го типа (ионная проводимость), в котором происходит электролитическая диссоциация. Она связана с разложением на ионы с положительным (катион) и отрицательным (анион) зарядом.

Электролизная система обязательно содержит положительный (анод) и отрицательный (катод) электрод. При подаче постоянного электрического тока катионы начинают двигаться к катоду, а анионы – к аноду. Катионами в основном являются ионы металлов и водород, а анионами – кислород, хлор. На катоде катионы присоединяют к себе избыточные электроны, что обеспечивает протекание восстановительной реакции Men+ + ne → Me (где n – валентность металла). На аноде, наоборот, электрон отдается из аниона с протеканием окислительной реакции.

Читать еще:  Алкидная краска для внутренних работ без запаха, с запахом и прочие модификации: особенности выбора

Таким образом, в системе обеспечивается окислительно-восстановительный процесс. Важно учитывать, что для его протекания необходима соответствующая энергия. Ее должен обеспечить внешний источник тока.

Законы электролиза Фарадея

Великий физик М.Фарадей своими исследованиями позволил не только понять природу электролиза, но и производить необходимые расчеты для его осуществления. В 1832 г. появились его законы, связавшие основные параметры происходящих процессов.

Первый закон

Первый закон Фарадея гласит, что масса восстанавливающегося на аноде вещества прямо пропорциональна электрическому заряду, наведенному в электролите: m = kq = k*I*t, где q — заряд, k – коэффициент или электрохимический эквивалент вещества, I – сила тока, протекающего через электролит, t – время прохождения тока.

Второй закон

Второй закон Фарадея позволил определить коэффициент пропорциональности k. Он звучит следующим образом: электрохимический эквивалент любого вещества прямо пропорционален его молярной массе и обратно пропорционален валентности. Закон выражается в виде:

k = 1/F*A/z, где F – постоянная Фарадея, А- молярная масса вещества, z – его химическая валентность.

С учетом обоих законов можно вывести окончательную формулу для расчета массы, оседающего на электроде вещества: m = A*I*t/(n*F), где n – количество электронов, участвующих в электролизе. Обычно n соответствует заряду иона. С практической точки зрения важна связь массы вещества с подаваемым током, что позволяет контролировать процесс, изменяя его силу.

Электролиз расплавов

Один из вариантов электролиза – использование в качестве электролита расплав. В этом случае в электролизном процессе участвуют только ионы расплава. В качестве классического примера можно привести электролиз солевого расплава NaCl (поваренная соль). К аноду устремляются отрицательные ионы, а значит, выделяется газ (Cl). На катоде будет происходить восстановление металла, т.е. оседание чистого Na, образующегося из положительных ионов, притянувших избыточные электроны. Аналогично можно получать другие металлы (К, Са, Li и т.д.) из расправа соответствующих солей.

При электролизе в расплаве электроды не подвергаются растворению, а участвуют только в качестве источника тока. При их изготовлении можно использовать металл, графит, некоторые полупроводники. Важно, чтобы материал имел достаточную проводимость. Один из наиболее распространенных материалов – медь.

Особенности электролиза в растворах

Электролиз в водном растворе существенно отличается от расплава. Здесь имеют место 3 конкурирующих процесса: окисление воды с выделением кислорода, окисление аниона и анодное растворение металла. В процессе задействованы ионы воды, электролита и анода. Соответственно, на катоде может происходить восстановление водорода, катионов электролита и металла анода.

Возможность протекания указанных конкурирующих процессов зависит от величины электрических потенциалов системы. Протекать будет только тот процесс, который требует меньше внешней энергии. Следовательно, на катоде будут восстанавливаться катионы, имеющие максимальный электродный потенциал, а на аноде – окисляться анионы с наименьшим потенциалом. Электродный потенциал водорода принят за «0». Для примера, у калия он равен (-2,93 В), натрия – (-2,71 В), свинца (-0,13 В), а у серебра – (+0,8 В).

Электролиз в газах

Газ может исполнить роль электролита только при наличии ионизатора. В этом случае ток, проходя через ионизированную среду, вызывает необходимый процесс на электродах. При этом законы Фарадея не распространяются на газовый электролиз. Для его осуществления необходимы такие условия:

  1. Без искусственной ионизации газа не поможет ни высокое напряжение, ни большой ток.
  2. Для электролиза подходят лишь кислоты, не содержащие кислорода и находящиеся в газообразном состоянии, и некоторые газы.

Важно! При выполнении необходимых условий процесс протекает аналогично электролизу в жидком электролите.

Особенности процессов, происходящих на катоде и аноде

Для практического применения электролиза важно понимать, что происходит на обоих электродах при подаче электрического тока. Характерны такие процессы:

  1. Катод. К нему устремляются положительно заряженные ионы. Здесь происходит восстановление металлов или выделение водорода. Можно выделить несколько категорий металлов по катионной активности. Такие металлы, как Li, K, Ba, St, Ca, Na, Mg, Be, Al, хорошо восстанавливаются только из расплава солей. Если используется раствор, то выделяется водород за счет электролиза воды. Можно обеспечить восстановление в растворе, но при достаточной концентрации катионов, у следующих металлов — Mn, Cr, Zn, Fe, Cd, Ni, Ti, Co, Mo, Sn, Pb. Процесс протекает наиболее легко для Ag, Cu, Bi, Pt, Au, Hg.
  2. Анод. К этому электроду поступают отрицательно заряженные ионы. Окисляясь, они отбирают электроны у металла, что приводит к их анодному растворению, т.е. переходу в положительно заряженные ионы, которые направляются к катоду. Анионы также подразделяются по своей активности. Только из расплавов могут разряжаться такие анионы PO4, CO3, SO4, NO3, NO2, ClO4, F. В водных растворах электролизу подвергаются не они, а вода с выделением кислорода. Наиболее легко реагируют такие анионы, как ОН, Cl, I, S, Br.

При обеспечении электролиза важно учитывать склонность материала электродов к окислению. В этом отношении выделяются инертные и активные аноды. Инертные электроды делаются из графита, угля или платины и не участвуют в снабжении ионами.

Факторы, влияющие на процесс электролиза

Процесс электролиза зависит от следующих факторов:

  1. Состав электролита . Значительное влияние оказывают различные примеси. Они подразделяются на 3 типа – катионы, анионы и органика. Вещества могут быть более или менее отрицательными, чем основной металл, что и мешает процессу. Среди органических примесей выделяются загрязнители (например масла) и ПАВ. Их концентрация имеет предельно допустимые значения.
  2. Плотность тока . В соответствии с законами Фарадея, масса осаждаемого вещества увеличивается с увеличением силы тока. Однако возникают неблагоприятные обстоятельства – концентрированная поляризация, повышенное напряжение, интенсивный разогрев электролита. С учетом этого существуют оптимальные значения плотности тока для каждого конкретного случая.
  3. рН электролита . Кислотность среды также выбирается с учетом металлов. Например оптимальное значение кислотности электролита для цинка – 140 г/куб.дм.
  4. Температура электролита . Она влияет неоднозначно. С увеличением температуры растет скорость электролиза, но повышается и активность примесей. Для каждого процесса есть оптимальная температура. Обычно она находится в пределах 38-45 градусов.

Важно! Электролиз можно ускорить или замедлить путем различных воздействий и выбора состава электролита. Для каждого варианта применения существует свой режим, который следует строго соблюдать.

Где применяется электролиз?

Электролиз применяется во многих сферах. Можно выделить несколько основных направлений использования для получения практических результатов.

Гальваническое покрытие

Тонкое, прочное гальваническое покрытие из металла можно наложить путем электролиза. Покрываемое изделие устанавливается в ванну в виде катода, а электролит содержит соль нужного металла. Так можно покрыть сталь цинком, хромом или оловом.

Электроочистка — рафинирование меди

Примером электроочистки может служить такой вариант: катод – чистая медь, анод – медь с примесями, электролит – водный раствор медного сульфата. Медь из анода переходит в ионы и оседает в катоде уже без примесей.

Добыча металлов

Для получения металлов из солей они переводятся в расплав, а затем обеспечивается электролиз в нем. Достаточно эффективен такой способ для получения алюминия из бокситов, натрия и калия.

Анодирование

При этом процессе покрытие выполняется из неметаллических соединений. Классический пример – анодирование алюминия. Алюминиевая деталь устанавливается, как анод. Электролит – раствор серной кислоты. В результате электролиза на аноде оседает слой из оксида алюминия, обладающего защитными и декоративными свойствами. Указанные технологии широко используются в различных отраслях промышленности. Можно осуществить процессы и своими руками с соблюдением техники безопасности.

Энергетические затраты

Электролиз требует больших энергетических затрат. Процесс будет иметь практическую ценность при достаточной величине анодного тока, а для этого необходимо приложить значительный постоянный ток от источника электроэнергии. Кроме того, при его проведении возникают побочные потери напряжения – анодное и катодное перенапряжение, потери в электролите за счет его сопротивления. Эффективность работы установки определяется путем отнесения мощности энергозатрат к единице полезной массы полученного вещества.

Принцип действия электролизера

Идеальный электролизер должен обеспечить следующие условия: герметизацию; термостатирование; подвод газа для удаления растворенных электроактивных газов; хорошее перемешивание испытуемого раствора; удобное размещение электродов, механической или магнитной мешалки и электролитического ключа; исключение диффузии анолита и католита из одной камеры электролизера в другую.

Однако соблюдение всех перечисленных условий не обязательно во всех случаях проведения кулонометрического анализа. Например, термостатирование требуется тогда, когда необходимо работать при температуре выше комнатной (если химическая реакция или электрогенерация протекают при повышенной или пониженной температуре). Герметизация и подвод инертного газа необходимы, если в электролизируемом растворе содержатся , и т. п. или если необходимо исключить диффундирование их из воздуха, поскольку эти соединения могут искажать результаты анализа, участвуя в электродных процессах или в химических реакциях.

В качестве инертного газа удобнее всего применять чистый азот, свободный от примесей других газов (обычно от кислорода). Простейшим способом очистки является предварительное пропускание через кислый раствор соли двухвалентного ванадия или хрома.

Соблюдение всех остальных условий обязательно. Перемешивание с помощью механической или магнитной мешалки не только увеличивает скорость электрохимической реакции, но и обеспечивает эффективное взаимодействие электрогенерированного продукта с определяемым веществом.

Рис. 75. Электролизер для прямого потенциостатического кулонометрического анализа: 1 — рабочий катод (ртуть); 2 — вспомогательный анод (платина); 3 — электрод сравнения; 4 — механическая мешалка; 5 — газоподводящая трубка.

Электроды (генераторный и индикаторные в случае электрохимической индикации конечной точки, а также вспомогательный, если он находится в одном растворе с остальными) должны быть так размещены в камерах электролизера, чтобы они не соприкасались друг с другом и не сталкивались с мешалкой.

Очень важно анодную и катодную камеры ячейки разделить таким образом, чтобы анолит и католит не смешивались. Для этой цели можно применять диафрагму из пористого стекла, не мешающую миграции токопроводящих электролитов, но препятствующую диффузии католита и анолита. Обычно вспомогательный электрод фиксируют в стеклянной трубке со стеклянным пористым дном (типа фильтрующего стеклянного тигля), содержащей электролит, и все вместе погружают в испытуемый раствор, в котором находятся рабочий (генераторный) и индикаторные (при необходимости) электроды и мешалка (рис. 75 и 76). Мешалка должна энергично перемешивать (но не разбрызгивать) не только раствор, но и поверхность ртути, если она используется в качестве генераторного электрода (см. рис. 75). Ради простоты можно также применять два отдельных сосуда в качестве катодной и анодной камер, которые сообщаются между собой электролитическим ключом (-образной стеклянной трубкой), наполненным соответствующим раствором электролита (обычно тот же раствор электролита, в котором находится вспомогательный электрод) или гелем агар-агара, насыщенным подходящим для данной цели электролитом, — и т. д. (рис. 77).

Рис. 76. Электролизер для кулонометрического титрования с биамперометрической индикацией момента завершения химической реакции: 1 — рабочий электрод (платина); 2 — вспомогательный электрод (платина); 3 — индикаторные электроды (платина).

Рис. 77. Электролизер для кулонометрического титрования кислот и оснований с -метрической индикацией момента завершения химической реакции: 1 — рабочий катод (платина); 2 — вспомогательный анод (серебро); 3 — индикаторный электрод (стеклянный); 4 — газоподводящая трубка; 5 — электролитический ключ; 6 — магнитная мешалка.

Все способы разделения католита и анолита вызывают сильное увеличение внутреннего сопротивления ячейки (порядка нескольких тысяч ом). Это сказывается на омическом падении напряжения и при больших значениях тока в потенциостатической кулонометрии затрудняет сохранение постоянства потенциала рабочего электрода. Кроме того, из-за большой величины R измеряемые в процессе электролиза предельные токи имеют малую величину. В подобных случаях целесообразно генераторный и вспомогательный электроды помещать в один и тот же сосуд, но необходимо применять такие вспомогательные электроды, чтобы продукты электрохимической реакции, протекающей на них, не мешали основной реакции.

Для этого используют вспомогательные электроды, к которым плотно пристают образуемые на них продукты электрохимической реакции. В результате эти продукты не могут диффундировать к генераторному электроду. Например, при определениях с использованием катодного процесса в солянокислой среде можно применять в качестве вспомогательного серебряный электрод.

При проведении катодных реакций к анализируемому раствору иногда прибавляют гидразин или гидроксиламин. На вспомогательном аноде эти соединения окисляются до азота

и препятствуют другим анодным процессам; вместе с тем азот не восстанавливается на катоде и не мешает протеканию основной катодной реакции. Эти приемы пригодны в потенциостатической прямой кулонометрии, но в кулонометрическом титровании прибавленные посторонние вещества могут реагировать с участвующими в химических и электрохимических реакциях веществами или с их продуктами. Так как в кулонометрическом титровании внутреннее сопротивление цепи имеет мало значения вследствие фиксации величины тока генерации, необходимость использовать подобные приемы в основном отпадает.

Один из видов ячейки с внешней генерацией кулонометрического титранта представлен на рис. 78.

Рис. 78. Электролизер для кулонометрического титрования с внешней генерацией промежуточного реагента: 1 — рабочий электрод; 2 — вспомогательный электрод; 3 — механическая мешалка; 4 — титрационный сосуд, в который поступает раствор с генерированным промежуточным реагентом; 5 — вспомогательный сосуд; 6 — капиллярные трубкн, через которые растворы с продуктами электродных реакций поступают в сосуды 4 и 5.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector