Astro-nn.ru

Стройка и ремонт
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Принцип действия турбины автомобиля

Принципы работы автомобильной турбины – описание, механизм, схемы

Опубликовано Master в 7 марта, 2019

Турбокомпрессор, турбонаддув, или турбина с постоянным наддувом представляет собой механическое устройство, функция которого состоит в перегрузе эндотермического двигателя, улучшая его характеристики. Чтобы правильно понять функционирование агрегата, необходимо ввести понятие количества поглощаемого воздуха. Существуют различные способы увеличения количества воздуха, поступающего в двигатель, например, увеличение его смещения или увеличение скорости вращения. Однако самый простой способ – в буквальном смысле «залить» камеру сгорания воздухом. Именно в этой гипотезе турбокомпрессор вступает в игру. Целью турбокомпрессора на практике является увеличение плотности поступаемого воздуха, условие, которое позволяет двигателю пропорционально увеличивать его эффективную мощность. В этой статье рассмотрим принципы работы автомобильной турбины в следующем порядке:

  1. Как увеличивается плотность воздуха в турбине.
  2. Как работает автомобильная турбина с наддувом.

Увеличение плотности воздуха в турбине

Для увеличения плотности воздуха используется турбина (турбокомпрессор с наддувом) с промежуточным охладителем, который выполняет функцию охлаждения сжатого воздуха. Эта конфигурация позволяет вводить большее количество кислорода в камеру сгорания, что, в свою очередь, позволяет заливать большую массу топлива. Так увеличивается мощность двигателя авто.

Но важно понять пошаговые принципы работы автомобильной турбины. Итак, турбокомпрессор состоит из двух основных элементов: компрессора и турбины. Они состоят из рабочего колеса, заключенного в корпус в форме улитки, который может вращаться на значительном числе оборотов. Компрессор и турбина вращаются с одинаковой угловой скоростью, поскольку они выполнены как одно целое через шпиндель.

Принцип работы автомобильной турбины – схема

Турбина здесь в роли интеллектуального устройства, поскольку оно восстанавливает кинетическую энергию выхлопных газов (в противном случае они будут потеряны), превращая их в механическую энергию, полезную для привода крыльчатки компрессора. Следовательно, сжатый воздух вводится во впускной коллектор, обеспечивая невозможный (в противном случае) объем воздуха для безнаддувного двигателя. Не менее важной является функция, выполняемая интеркулером, поскольку сжатый воздух имеет тенденцию повышать свою температуру, а теплообменник (интеркулер) позволяет снизить её и увеличить плотность воздуха.

Принципы работы автомобильной турбины с постоянным наддувом

Внедрение турбокомпрессоров в автопромышленности высветило некоторые проблемы, которые пытались решить в течение многих лет. Например, явление детонации из-за слишком высоких или недостаточных коэффициентов сжатия для надлежащего функционирования системы. Решение было найдено путем установки клапанов, называемых перепускной и отводной, предназначенных для поступления или отвода всасываемого воздуха или выхлопных газов наружу системы.

Клапан перепускной заслонки установлен в выпускном коллекторе, и его отверстие прямо пропорционально давлению наддува. Его функция заключается в ограничении оборотов двух рабочих колес, чтобы двигатель не подвергался чрезмерному напряжению из-за избыточного давления. При превышении пределов, установленных на этапе проектирования, избыточное давление преодолевает сопротивление пружины, помещенной внутрь клапана, отводя выхлопные газы наружу, позволяя компрессору замедляться, снижая следствие наддува.

Турбины компрессора с постоянным наддувом работают только под давлением потока выхлопного газа, который сначала собирается в контейнере, пока не будет создано достаточно высокое давление. При импульсном усилении используется импульс движения выхлопных газов. Поток выхлопных газов поступает непосредственно в турбину через наименьшую возможную трубу выхлопных газов при её перемещении.

Современные турбокомпрессоры развивают скорость до 300 000 оборотов/мин, и требуют экстремальных технических требований для строительства и охлаждения. Гидродинамический подшипник скольжения, который позволяет непрерывной масляной пленке минимизировать трение вала в турбине, является требованием для таких высоких оборотов. Кроме того, в современных турбокомпрессорах используются керамические элементы, что делает устройство более прочным.

Принципы работы турбины в автомобиле, видео:

Основным преимуществом турбокомпрессора является увеличение мощности и оборотов. В результате, значительно снижается расход топлива. Основным недостатком является повышение температуры, вызванное элементами двигателя, что требует более сложной системы охлаждения. В старых турбодвигателях также существует проблема так называемой «задержки турбонаддува», которая при низких оборотах не может создавать достаточно высокое давление и, следовательно, приводит к снижению производительности авто.

Принцип работы турбины. Как работает турбонаддув

Турбонаддув — вид наддува, при котором воздух в цилиндры двигателя подается под давлением за счет использования энергии отработавших газов.

В настоящее время турбонаддув является наиболее эффективной системой повышения мощности двигателя без увеличения частоты вращения коленчатого вала и объема цилиндров. Помимо повышения мощности турбонаддув обеспечивает экономию топлива в расчете на единицу мощности и снижение токсичности отработавших газов за счет более полного сгорания топлива.

Система турбонаддува применяется как на бензиновых, так и на дизельных двигателях. Вместе с тем, наиболее эффективен турбонаддув на дизелях вследствие высокой степени сжатия двигателя и относительно невысокой частоты вращения коленчатого вала. Сдерживающими факторами применения турбонаддува на бензиновых двигателях являются возможность наступления детонации, которая связана с резким увеличением частоты вращения двигателя, а также высокая температура отработавших газов (1000°С против 600°С у дизелей) и соответствующий нагрев турбонагнетателя.

Несмотря на различия в конструкции отдельных систем, можно выделить следующее общее устройство турбонаддува — воздухозаборник и далее последовательно воздушный фильтр, дроссельная заслонка, турбокомпрессор, интеркулер, впускной коллектор. Все элементы объединяют соединительные патрубки и напорные шланги.

Большинство элементов турбонаддува являются типовыми элементами впускной системы. Отличительной особенностью турбонаддува является наличие турбокомпрессора, интеркулера и новых конструктивных элементов управления.

Турбокомпрессор (другое наименование – турбонагнетатель, газотурбинный нагнетатель) является основным конструктивным элементом турбонаддува и обеспечивает повышение давления воздуха во впускной системе. Конструкция турбокомпрессора объединяет два колеса — турбанное и компрессорное, расположенные на валу ротора. Каждое из колес, а также вал с подшипниками помещены в отдельные корпуса.

Турбинное колесо воспринимает энергию отработавших газов. Колесо вращается в корпусе специальной формы. Турбинное колесо и корпус турбины изготавливаются из жаропрочных материалов (сплавы, керамика).

Компрессорное колесо всасывает воздух, сжимает и нагнетает его в цилиндры двигателя. Компрессорное колесо также вращается в специальном корпусе.

Турбинное и компрессорное колеса жестко закреплены на валу ротора. Вал вращается в подшипниках скольжения. Подшипники плавающего типа, т.е. имеют зазор со стороны корпуса и вала. Подшипники смазываются моторным маслом системы смазки двигателя. Масло подается по каналам в корпусе подшипников. Для герметизации масла на валу установлены уплотнительные кольца.

В некоторых конструкциях бензиновых двигателей для улучшения охлаждения дополнительно к смазке применяется жидкостное охлаждение турбонагнетателей. Корпус подшипников турбонагнеталея включен в двухконтурную систему охлаждения двигателя.

Интеркулер предназначен для охлаждения сжатого воздуха. За счет охлаждения сжатого воздуха повышается его плотность и увеличивается давление. Интеркулер представляет собой радиатор воздушного или жидкостного типа .

Основным элементом управления системы турбонаддува является регулятор давления наддува, который представляет собой перепускной клапан (вейстгейт, wastegate). Клапан ограничивает энергию отработавших газов, направляя их часть в обход турбинного колеса, тем самым обеспечивает оптимальное давление наддува. Клапан имеет пневматический или электрический привод. Срабатывание перепускного клапана производится на основании сигналов датчика давления наддува системой управления двигателем.

В воздушном тракте высокого давления (после компрессора) может устанавливаться предохранительный клапан. Он защищает системы от скачка давления воздуха, который может произойти при резком закрытии дроссельной заслонки. Избыточное давление может стравливаться в атмосферу с помощью блуофф-клапана (blowoff) или перепускаться на вход компрессора с помощью байпас-клапана (bypass).

Принцип работы системы турбонаддува

Работа системы турбонаддува основана на использовыании энергии отработавших газов. Отработавшие газы вращают турбинное колесо, которое через вал ротора вращает компрессорное колесо. Компрессорное колесо сжимает воздух и нагнетает его в систему. Нагретый при сжатии воздух охлаждается в интеркулере и поступает в цилиндры двигателя.

Несмотря на то, что турбонаддув не имеет жесткой связи с коленчатым валом двигателя, эффективность работы системы во многом зависит от числа оборотов двигателя. Чем выше частота вращения коленчатого вала двигателя, тем выше энергия отработавших газов, быстрее вращается турбина, больше сжатого воздуха поступает в цилиндры двигателя.

В силу конструкции, турбонаддув имеет ряд негативных особенностей, среди которых с одной стороны задержка увеличения мощности двигателя при резком нажатии на педаль газа, т.н. «турбояма» (turbolag), с другой — резкое увеличение давления наддува после преодоления «турбоямы», т.н. «турбоподхват».

«Турбояма» обусловлена инерционностью системы (для повышения давления наддува при резком нажатии на педаль газа требуется определенное время), которая приводит к несоответствию между потребной мощностью и производительностью компрессора. Существует несколько способов решения данной проблемы:

  1. применение турбины с изменяемой геометрией;
  2. использование двух последовательных или параллельных турбокомпрессоров (twin-turbo или bi-turdo);
  3. комбинированный наддув.

Турбина с изменяемой геометрией (VNT – турбина) обеспечивает оптимизацию потока отработавших газов за счет изменения площади входного канала. Турбины с изменяемой геометрией нашли широкое применение в турбонаддуве дизельных двигателей, к примеру турбонаддув двигателя TDI от Volkswagen.

Система с двумя параллельными турбокомпрессорами применяется в основном на мощных V-образных двигателях (по одному на каждый ряд цилиндров). Принцип работы системы основан на том, что две маленькие турбины обладают меньшей инерцией, чем одна большая.

При установке на двигатель двух последовательных турбин максимальная производительность системы достигается за счет использования разных турбокомпрессоров на разных оборотах двигателя. Некоторые производители идут еще дальше и устанавливают три последовательных турбокомпрессора — triple-turbo (BMW) и даже четыре турбокомпрессора — quad-turbo (Bugatti).

Комбинированный наддув (twincharger) объединяет механический и турбонаддув. На низких оборотах коленчатого вала двигателя сжатие воздуха обеспечивает механический нагнетатель. С ростом оборотов подхватывает турбокомпрессор, а механический нагнетатель отключается. Примером такой системы является двойной наддув двигателя TSI от Volkswagen.

Читать еще:  Распределительные коробки для электропроводки

—>Автозапчасти и СТО —>

Для более ясного представления о том, как работает турбина в автомобиле, прежде всего необходимо ознакомится с принципом работы двигателя внутреннего сгорания. Сегодня, основная масса грузовых и легковых автомобилей оснащаются 4-х тактными силовыми агрегатами, работа которых контролируется впускными и выпускными клапанами.

Каждый из рабочих циклов такого двигателя состоит из 4 тактов, при которых коленвал делает 2 полных оборота.

Впуск — при этом такте осуществляется движение поршня вниз, при этом в камеру сгорания поступает смесь топлива и воздуха (если это бензиновый двигатель) или только воздуха в случае если это дизельный агрегат.

Компрессия — при этом такте происходит сжатие горючей смеси.

Расширение — на этом этапе происходит воспламенение горючей смеси при помощи искры, вырабатываемой свечами. В случае с дизельным двигателем, воспламенение осуществляется произвольно под действием высокого давления впрыска.

Выпуск — поршень двигается вверх, при этом освобождаются выхлопные газы.

Такой принцип работы двигателя определяет следующие способы повышения его эффективности:

— Установка турбонаддува
— Увеличение рабочего объёма двигателя
— Увеличение числа оборотов коленчатого вала двигателя

Как работает турбина в автомобиле?

Увеличение рабочего объёма двигателя

Увеличение объёма двигателя возможно двумя путями: либо увеличением объема камер сгорания, либо — увеличением количества цилиндров в силовом агрегате. Однако такой способ повышения мощности не совсем оправдан, так как имеет ряд недостатков, среди которых: повышенный расход топлива.

Увеличение числа оборотов коленчатого вала двигателя

Еще один возможный способ повышения производительности двигателя заключается в увеличении числа оборотов коленчатого вала. Это достигается путем увеличения количества ходов поршня за единицу времени. Но использование такого способа имеет жесткие ограничения, которые обусловлены техническими возможностями двигателя. Кроме этого, такая модернизация приводит к падению эффективности работы силового агрегата из-за потерь при впуске и других операциях.

Турбонаддув

В двух предыдущих способах двигатель использует воздух, который поступает благодаря собственному нагнетанию. При использовании турбокомпрессора в цилиндр поступает тот же объем воздуха но с предварительным его сжатием. Это дает возможность поступлению большего количества воздуха в цилиндр, благодаря чему появляется возможность сжигания большего объема топлива. При использовании такой технологии, мощность двигателя возрастает по отношению к количеству потребляемого топлива и объему двигателя.

Охлаждение воздуха

В процессе компрессии воздух может нагреваться вплоть до 180 С. Однако воздух имеет свойство увеличения плотности при охлаждении, что дает возможность значительно увеличить объем воздуха, попадающего в цилиндр. Кроме этого, увеличение плотности воздуха существенно снижает расход топлива и количество выбросов продуктов сгорания.

Также существует два разных типа турбонаддува: турбокомпрессор, основанный на использовании энергии выхлопных газов и турбонагнетатель с механическим приводом.

Турбонагнетатель с механическим приводом

В случае использования такого типа компрессии, воздух сжимается благодаря специальному компрессору, который работает от привода двигателя. Но такой метод имеет один большой недостаток. Все дело в том, что при использовании механического турбокомпрессора часть мощность двигателя уходит на обеспечение работы самого компрессора, по этому двигатель, оборудован таким нагнетателем, имеет больший расход топлива чем обычный двигатель такой же мощности.

Турбокомпрессор основанный на использовании энергии выхлопных газов

Такой метод основан на использовании энергии выхлопных газов, которая направлена на привод турбины. При использовании такого способа отсутствует механическое соединение с двигателем, благодаря чему потери мощности не происходит.

Плюсы и минусы турбонаддува

Как уже известно читателю, турбина в автомобиле не имеет жесткой связи с коленчатым валом двигателя. По логике, подобное решение должно нивелировать зависимость оборотов турбины от частоты вращения последнего.

Тем не менее, в реальности эффективность работы турбины находится в прямой зависимости от оборотов мотора. Чем сильнее открыта дроссельная заслонка, чем больше обороты мотора, тем выше энергия выхлопных газов, вращающих турбину и, как результат, больше объем воздуха, нагнетаемого компрессором в цилиндры силового агрегата.

Собственно говоря, «опосредованная» связь между оборотами и частотой вращения турбины не через коленвал, а через выхлопные газы, приводит к «хроническим» недостаткам турбонаддувов.

Среди них – задержка роста мощности мотора при резком нажатии на педаль «газа», ведь турбине нужно раскрутиться, а компрессору – дать цилиндрам достаточную порцию сжатого воздуха. Подобное явление называют «турбоямой», то есть моментом, когда отдача мотора минимальна.

Исходя из этого недостатка сразу исходит и второй – резкий скачок давления после того, как двигатель преодолевает «турбояму». Это явление получило название «турбоподхвата».

И главной задачей инженеров-мотористов, создающих наддувные двигатели, является «выравнивание» этих явлений для обеспечения равномерной тяги. Ведь «турбояма», по своей сути, обуславливается высокой инерционностью системы турбонаддува, ведь для приведения наддува «в полную готовность» требуется определенное время.

В результате потребность в мощности со стороны водителя в конкретной ситуации приводит к тому, что мотор не способен «выдать» все свои характеристики одномоментно. В реальной жизни это, например, потерянные секунды при сложном обгоне…

Безусловно, сегодня существует ряд инженерных ухищрений, позволяющих минимизировать и даже полностью исключить неприятный эффект. В их числе:

  • использование турбины с переменной геометрией;
  • использование пары турбокомпрессоров, расположенных последовательно либо параллельно (так называемые схемы twin-turdo или bi-turdo);
  • применение комбинированной схемы наддува.

Турбина, имеющая переменную геометрию, осуществляет оптимизацию потока выхлопных газов силового агрегата за счет изменения в режиме реального времени площади входного канала, через который они поступают. Подобная схема турбин очень распространена в турбонаддувах дизельных моторов. В частности, именно по этому принципу функционируют турбодизели Volkswagen серии TDI.

Схема с парой параллельных турбокомпрессоров используется, как правило, в мощных силовых агрегатах, построенных по V-образной схеме, когда каждый ряд цилиндров оснащен собственной турбиной. Минимизация эффекта «турбоямы» достигается за счет того, что две малые турбины имеют гораздо меньшую инерцию, нежели одна большая.

Система с парой последовательных турбин используется несколько реже двух перечисленных, но она же обеспечивает наибольшую эффективность за счет того, что двигатель оснащается двумя турбинами, обладающими различной производительностью.

То есть при нажатии на педаль «газа» в действие вступает малая турбина, а при росте скорости и оборотов подключается вторая, и они работают суммарно. При этом эффект «турбоямы» практически исчезает, а мощность нарастает планомерно сообразно ускорению и росту оборотов.

При этом многие автопроизводители используют даже не два, а три турбокомпрессора, как например компания BMW в своей схеме triple-turbo. А вот инженеры, проектировавшие суперкар Bugatti, вообще оснастили силовой агрегат сразу четырьмя последовательными компрессорами, что позволило достичь уникальных мощностных характеристик при вполне «гражданском» поведении мотора в рядовых режимах езды.

Схема так называемого комбинированного наддува или, как ее называют автопроизводители, twincharger, подразумевает совместное использование механического и турбонаддува. При малых оборотах двигателя наддув обеспечивается механическим нагнетателем, а турбина вступает в действие при увеличении числа оборотов. При этом механический нагнетатель отключается. По такой схеме работают наддувные моторы TSI компании Volkswagen.

Как видим, принципы работы турбонаддува достаточно просты и понятны. При этом сегодня автопроизводители всячески делают ставку на турбированные агрегаты малого рабочего объема, которые обеспечивают достаточную мощность при относительной экологической чистоте выхлопа.

Но не следует забывать и еще об одном серьезном недостатке – турбированный мотор испытывает гораздо большие нагрузки и, что вполне закономерно, имеет меньший моторесурс, чем безнаддувный агрегат. Соответственно, взвесив все преимущества и недостатки, и следует выбирать тот или иной силовой агрегат.

Основные преимущества двигателей с турбонаддувом

1) Турбодвигатель имеет меньшее показатели по расходу топлива нежели двигатель без турбины той же мощности и при прочих равных условиях.

2) Силовой агрегат с с турбонаддувом имеет заметно лучшие показатели соотношения веса двигателя к развиваемой им мощности.

3) Использование турбокомпрессора открывает новые возможности по оптимизации других параметров и характеристик двигателя, а также улучшения крутящего момента, что позволит избежать очень часто переключения передач при езде в пробках или гористой местности.

4) Турбодвигатели работают тише чем агрегаты такой же мощности без турбонаддува.

Турбонаддув: что это такое, зачем нужен, как устроен и как работает турбонагнетатель

Турбонаддув представляет собой разновидность наддува, позволяющий подавать воздух в цилиндры ДВС под высоким давлением, которое обеспечивается высвобождаемой от сгорания топлива энергией выхлопных газов.

За счет турбонаддува повышается рабочая мощность двигателя, при этом не увеличивается внутренние объемы цилиндров двигателя и количество оборотов, совершаемых коленвалом. Кроме всего прочего турбонаддув позволяет снизить прожорливость двигателя, а также уменьшить токсичность газов благодаря более эффективному сгоранию топливовоздушной смеси.

Турбонаддув довольно широко используется на ДВС, работающих как на бензине так и на дизтопливе. При этом использование системы турбонаддува на дизелях считается более выгодным благодаря высокому показателю сжатия ДВС и малой частоте оборотов коленвала.

В бензиновых двигателях высока вероятность возникновения детонирующего эффекта вследствие значительного увеличения количества оборотов двигателя и высокого температурного режима газов при сгорании топлива (до 1000 °C, у дизеля лишь 600 °C).

Устройство системы турбонаддува

Система турбонаддува состоит из следующих элементов:

  • воздушный заборник и фильтр;
  • дроссельная заслонка;
  • турбинный компрессор;
  • интеркулер;
  • коллектор впускной;
  • соединительные патрубки;
  • напорные шланги

Турбинный компрессор (нагнетатель)

Основной элемент устройства турбонаддува, который предназначен для увеличения рабочего давления воздушной массы в системе впуска. Турбокомпрессор состоит из турбинного и компрессорного колес, которые установлены на роторном валу. Все элементы турбокомпрессора находятся в специальных защитных корпусах.

Читать еще:  Что такое реактивная мощность и как её рассчитать

Турбинное колесо используется для переработки энергии, выделяемой отработанными газами. Колесо и его корпус изготавливаются из высокопрочных и жароустойчивых материалов – стальных и керамических сплавов.

Компрессорное кольцо применяется для всасывания воздушной массы, с дальнейшим ее сжатием и нагнетанием в цилиндры ДВС.

Кольца турбокомпрессора установлены на роторном валу, который совершает вращательные движения в плавающих подшипниках. Для более эффективной работы подшипники постоянно смазываются маслом, которое поступает по канальцам, расположенным в подшипниковом корпусе.

Интеркулер

Интеркулер – воздушный или жидкостной радиатор, который применяется для своевременного охлаждения предварительно сжатого воздуха, вследствие чего происходит увеличивается давление и плотность воздушного потока.

Регулятор давления наддува

Ключевым элементом управления турбонаддувом является регулятор давления наддува, который по сути своей является перепускным клапаном. Основным назначением клапана является сдерживание и перенаправление части вырабатываемых газов в обход турбинного колеса для снижения давления наддува.

Перепускной клапан может быть оснащен приводом электрического или пневматического типа. Активация клапана происходит вследствие приема сигналов от датчика давления.

Предохранительный клапан

Клапан предохранительный используется для предотвращения скачков давления воздушной массы, которое часто возникает при быстром закрытии дроссельной заслонки. Избыточное давление либо стравливается в атмосферу, либо переподается на вход компрессора.

Принцип действия турбонаддува

Система турбонаддува использует энергию газов, которые образуются при сгорании топлива. Газы обеспечивают вращательные движения колеса турбинного типа, которое в свою очередь запускает компрессорное колесо, отвечающее за сжатие и нагнетание воздушной массы в систему. Далее происходит охлаждение воздуха при помощи интеркулера и подача его в цилиндры.

Очевидно, что хотя турбонаддув механически никак не связан с коленвалом двигателя, однако его работа и ее эффективность находится в прямой зависимости от скорости вращения коленчатого вала. Чем выше обороты двигателя, тем эффективнее работает турбонаддув.

Несмотря на свою практичность и эффективность, система турбонаддува имеет некоторые недостатки. Ключевым из них является появление турбоям – задержка в увеличении мощности ДВС.

Подобное явление проявляется вследствие инерционности системы – задержки в увеличении давления наддува при достаточно резком нажатии на газ, что может привести к разрыву между требуемой мощностью двигателя и производительностью турбины.

Устройство и принцип работы турбокомпрессора

Турбокомпрессор (турбина) – механизм, применяемый в автомобилях для принудительного нагнетания воздуха в цилиндры двигателя внутреннего сгорания. При этом привод турбины осуществляется исключительно за счет действия отработавших газов (выхлопа). Применение турбокомпрессора позволяет существенно увеличить мощность двигателя (примерно на 40%), сохраняя компактными его габаритные размеры и низкий уровень расхода топлива.

  1. Конструкция и принцип работы турбины
  2. Особенности эксплуатации турбин
  3. Виды и срок службы турбокомпрессоров

Конструкция и принцип работы турбины

Классический турбокомпрессор состоит из следующих элементов:

  1. Корпус. Выполняется из жаропрочных материалов (стали). Он имеет форму улитки с двумя разнонаправленными патрубками, оснащенными фланцами для крепления в системе турбонаддува.
  2. Турбинное колесо. Преобразует энергию отработавших газов во вращение вала, на котором оно жестко зафиксировано. Изготавливается из жаропрочных материалов (железо-никелевый сплав).
  3. Компрессорное колесо. Воспринимает вращение от турбинного колеса и нагнетает воздух в цилиндры двигателя. Колесо компрессора зачастую изготавливают из алюминия, что снижает потери энергии. Температурный режим на этом участке близок к нормальным условиям, и применение жаропрочных материалов не требуется.
  4. Вал турбины (ось) – соединяет турбинное и компрессорное колеса.
  5. Подшипники скольжения, или шарикоподшипники. Необходимы для крепления вала в корпусе. В конструкции может быть предусмотрен один или два подшипника. Смазка последних осуществляется общей системой смазки двигателя.
  6. Перепускной клапан – предназначен для управления потоком отработавших газов, воздействующим на колесо турбины. Это позволяет управлять мощностью наддува. Клапан оснащен пневматическим приводом. Его положение регулируется ЭБУ двигателя, получающим соответствующий сигнал от датчика скорости.

Принцип работы турбокомпрессора

Основной принцип работы турбины на бензиновом и дизельном двигателях заключается в следующем:

  • Отработавшие газы направляются в корпус турбокомпрессора, где воздействуют на лопатки турбинного колеса.
  • Колесо турбины начинает вращаться и разгоняться. Скорость вращения турбины при высоких оборотах может достигать до 250 000 оборотов в минуту.
  • Пройдя через колесо турбины, отработавшие газы отводятся в систему выпуска.
  • Компрессорное колесо синхронно вращается (поскольку находится на одном валу с турбинным) и направляет поток сжатого воздуха в интеркулер и далее во впускной коллектор двигателя.

Особенности эксплуатации турбин

В сравнении с механическим нагнетателем, работающим от привода коленчатого вала, достоинствами турбины является то, что она не отнимает мощность у двигателя, а использует энергию побочных продуктов его работы. Она дешевле в изготовлении и экономичнее в эксплуатации.

Хотя технически устройство турбины дизельного двигателя практически не отличается от систем для бензиновых моторов, на дизеле она встречается чаще. Основная особенность заключается в режимах работы. Так для дизеля могут применяться менее жаропрочные материалы, поскольку температура отработавших газов в среднем составляет от 700 °С в дизельных двигателях и от 1000°С в бензиновых моторах. Это значит, что устанавливать дизельную турбину на бензиновый двигатель нельзя.

С другой стороны, для этих систем характерны и разные уровни давления наддува. При этом стоит учитывать, что производительность турбины зависит от ее геометрических размеров. Давление нагнетаемого в цилиндры воздуха складывается из двух частей: 1 атмосфера давления окружающей среды плюс избыточное, создаваемое турбокомпрессором. Оно может варьироваться от 0,4 до 2,2 и более атмосфер. Если учесть, что принцип работы турбины на дизельном двигателе предусматривает поступление большего объема выхлопных газов, конструкция для бензинового мотора также не может устанавливаться на дизелях.

Виды и срок службы турбокомпрессоров

Основным недостатком работы турбины является возникающий на малых оборотах двигателя эффект “турбоямы”. Он представляет собой временную задержку отклика системы на изменение оборотов двигателя. Для устранения этого недостатка разработаны различные виды турбокомпрессоров:

  • Система twin-scroll, или раздельный турбокомпрессор. Конструкция имеет два канала, которые разделяют камеру турбины и, соответственно, поток отработавших газов. Это обеспечивает более быстрое реагирование, максимальную производительность турбины, а также предотвращает перекрытие выпускных каналов.
  • Турбина с изменяемой геометрией (с переменным соплом). Такая конструкция чаще используется на дизеле. Она предусматривает изменение сечения входа в колесо турбины за счет подвижности ее лопастей. Смена угла поворота позволяет регулировать поток отработавших газов, благодаря чему происходит согласование скорости отработавших газов и рабочих оборотов двигателя. На бензиновом двигателе турбина с изменяемой геометрией часто устанавливается на спортивных автомобилях.

К минусам турбокомпрессоров можно отнести и небольшой срок службы турбины. Для бензиновых двигателей он в среднем составляет 150 000 километров пробега машины. В свою очередь, ресурс турбины дизельного двигателя несколько больше и в среднем достигает 250 000 километров. При постоянной езде на высоких оборотах, а также при неправильном подборе масла сроки эксплуатации могут сократиться в два или даже в три раза.

В зависимости от того, как работает турбина, на бензиновом или дизельном двигателе, можно судить о ее исправности. Сигналом о необходимости проверки узла является появление синего или черного дыма, снижение мощности двигателя, а также появление свиста и скрежета. Для профилактики неисправностей необходимо вовремя менять масло, воздушные фильтры и регулярно проходить техобслуживание.

Как работает турбонаддув

Турбокомпрессор или попросту турбина – это дополнительное устройство двигателя, которое для своей работы использует энергию отработавших газов. Что позволяет увеличить мощность двигателя на величину от 25% до 100%. Прежде чем понять, как работает турбокомпрессор, стоит рассмотреть функционирование двигателя внутреннего сгорания.

Принцип работы ДВС

Любой двигатель внутреннего сгорания, дизельный или бензиновый, работает на принципе получения энергии, образующейся от воспламенения топливовоздушной смеси в камерах сгорания. Через впускные клапаны в цилиндр подается отфильтрованный внешний воздух и впрыскивается топливо, причем при пассивной подаче воздуха, в цилиндр подается дозированное количество топлива. Именно эта смесь сгорает в цилиндре и заставляет двигаться поршень, который передает свою кинетическую энергию на ходовую систему автомобиля. Чем больше такой смеси подается и сгорает в цилиндрах, тем больше выходной крутящий момент и соответственно выше общая мощность мотора.

Принцип работы турбины

Для увеличения подачи воздуха в цилиндр, без изменения объема самого цилиндра, используют турбокомпрессор. При работе турбины используются продукты сгорания топливной смеси, которые приводят в действие роторный механизм турбокомпрессора, с помощью которого атмосферный воздух принудительно нагнетается в цилиндры (турбонаддув). И, благодаря этому, в цилиндр подается и большая дозировка топлива. Во время нагнетания, воздух может нагреваться, из-за чего уменьшается его плотность и масса в цилиндрах. Для подачи большего количества воздуха, его необходимо охладить. Для лучшего охлаждения используется радиаторное устройство, называемое интеркулером, который устанавливается на выходе из холодной части турбокомпрессора и через который проходит воздух перед попаданием в цилиндры. На следующем этапе поршень всасывает этот охлажденный воздух через впускные клапаны и одновременно в камеру сгорания подается топливо, образуется топливовоздушная смесь. Возгорание топливной смеси происходит от искры (бензиновые двигатели), либо от сжатия (дизельные двигатели). После того, как произошло сгорание порции смеси, продукты горения выбрасываются через выпускной клапан и попадают снова в турбину, на ее ротор. Таким образом, она работает без участия движущих частей двигателя, используя энергию потока выхлопных газов.

Читать еще:  Как отрегулировать просевшую входную дверь

Для каждого двигателя турбокомпрессор подбирается индивидуально, исходя из его собственной мощности и объема. Причем величина наддува зависит от геометрических параметров (размеров) улиток, компрессорного колеса, ротора турбины. Некоторые конструкции двигателей оборудуют не одной турбиной, а двумя: одинакового размера – би-турбо, разного размера – твин-турбо. В последнее время широкое распространение получили турбокомпрессоры с механизмом изменяемой геометрии. Стоит отметить, что сложность, а соответственно и стоимость ремонта турбины зависит от ее конструктивных особенностей и модификации.

Механизм изменяемой геометрии

Такой механизм позволяет дозировать подачу отработавших газов на колесо в турбине (ротор). Тем самым, позволяет оптимизировать работу турбокомпрессора на различных оборотах.

Это достигается за счет движения специальных лопаток, смонтированных на кольце геометрии. Они синхронно передвигаются, получая движение от вакуумного актуатора или электронного сервопривода в определенный момент, и контролируют наддув. Как правило, устанавливаются они на дизельных ДВС, потому как температура выхлопных газов у бензиновых моторов выше, чем у дизеля, соответственно лопатки геометрии могут деформироваться. Такие турбины позволяют оптимизировать процесс турбонаддува, что приводит к уменьшению расхода топлива и вредных выбросов при одновременном повышении мощности и крутящего момента.

Многие автомобилисты ошибочно полагают, что турбокомпрессор начинает включаться в работу с оборотов мотора от 1500-2000 об/мин. На самом деле, он запускается сразу после заводки автомобиля и работает на холостом ходу. А оптимальных оборотов достигает в диапазоне свыше 1500 об/мин.

Турбокомпрессор достаточно надежный агрегат, однако если Вы столкнулись с его поломкой, решить проблему Вам помогут специалисты ТурбоМикрон. Мы производим замену турбины на автомобиле, а также ремонт снятых с авто турбокомпрессоров.

Устройство и принцип работы турбины

by admin · Апрель 1, 2010

Турбина (турбокомпрессор) стала определяющим агрегатом в деле увеличения мощности моторов.

Что такое турбина и для чего она нужна?

Турбина — устройство в автомобиле, которое направлено на увеличение давления во впускном коллекторе автомобиля для того, чтобы обеспечить большее поступление воздуха, а значит и кислорода, в камеру сгорания.
Главное назначение турбины – с ее помощью можно значительно увеличить мощность автомобиля. При увеличении давления во впускном коллекторе на 1 атмосферу в камеру сгорания попадет в два раза больше кислорода, а значит от небольшого турбового двигателя можно ожидать мощности как от атмосферника с объемом в два раза больше — грубая теоретическая арифметика не лишенная смысла…

Принцип работы турбокомпрессора

Принцип работы турбины несложен: горячие выхлопные газы через выпускной коллектор поступают в горячую часть турбины, проходят через крыльчатку горячей части приводя ее и вал на который она крепится в движение. На этом же вале закреплена крыльчатка самого компрессора в холодной части турбины, эта крыльчатка при вращении создает давление во впускном тракте и впускном коллекторе, что обеспечивает большее поступление воздуха в камеру сгорания.

Устройство турбины

Турбина состоит из двух улиток — улитки компрессора, через которую всасывается воздух и нагнетается во впускной коллектор, и улитки горячей части, через которую проходят выхлопные газы вращая колесо турбины и выходят в выхлопной тракт. Из крыльчатки компрессора и крыльчатки горячей части. Из шарикоподшипникового картриджа. Из корпуса, который соединяет обе улитки, держит подшипники, так же в корпусе находится охлаждающий контур.

В процессе работы турбина подвергается очень большим термодинамическим нагрузкам. В горячую часть турбины попадают выхлопные газы очень большой температуры 800-9000 °С, поэтому корпус турбины изготавливают из чугуна особого состава и особого способа отливки.

Частота вращения вала турбины достигает 200 000 об/мин и более, поэтому изготовление деталей требует большой точности, подгонки и балансировки. Помимо этого в турбине высокие требования к используемым смазочным материалам. В некоторых турбинах система смазки служит так е системой охлаждения подшипниковой части турбины.

Система охлаждения турбин

Система охлаждения турбин двигателя служит для улучшения теплоотдачи частей и механизмов турбокомпрессора.
Существует два самых распространенных способа охлаждения деталей турбокомпрессора — охлаждение маслом, которое используется для смазки подшипников и комплексное охлаждение маслом и антифризом из общей системы охлаждения автомобилем.

Оба способа имеют ряд преимуществ и недостатков.
Охлаждение маслом.
Преимущества:

  • Более простая конструкция
  • Меньшая стоимость изготовления самой турбины
  • Меньшая эффективность охлаждения по сравнению с комплексной системой
  • Более требовательна к качеству масла и к его более частой смене
  • Более требовательна к контролю за температурным режимом масла

Изначально, большинство серийных двигателей с турбонаддувом оснащались тубинами с масляным охлаждением. При прохождении через шарикоподшипниковую часть масло сильно нагревалось. Тогда, когда температура выходила за пределы нормального рабочего температурного диапазона, масло начинало закипать, коксоваться забивая каналы и ограничивая доступ смазки и охлаждения к подшипникам. Это приводило к быстрому износу, заклиниванию и дорогостоящему ремонту. Причин у неполадки могло быть несколько — некачественной масло или не рекомендованное для данного типа двигателей, превышение рекомендованы сроков замены масла, неисправности в системе смазки двигателя и пр.

Комплексное охлаждение маслом и антифризом
Преимущества:

  • Большая эффективность охлаждения
  • Более сложная конструкция самого турбокомпрессора, как следствие большая стоимость

При охлаждении турбины маслом и антифризом повышается эффективность и такие проблемы, как закипание и коксование масла, практически не встречаются. Но данная систем охлаждения имеет более сложную конструкцию т.к. имеет раздельные масляный контур и контур охлаждающей жидкости. Масло как и прежде служит для смазки подшипников и для охлаждения, а антифриз, который используется из общей системы охлаждения двигателя, не дает перегреться и закипеть маслу. Как следствие увеличивается стоимость самой конструкции.

При работе турбины воздух под действием компрессора сжимается и, как следствие, очень сильно греется, что приводит к нежелательным последствиям т.к. чем выше температура воздуха, тем меньшее количество кислорода в нем содержится — тем меньше эффективность наддува. С этим явлением призван бороться интеркулер — промежуточный охладитель воздуха.

Нагрев воздуха не единственная проблема, с которой пытаются справиться конструкторы при проектировании турбодвигателя. Насущной проблемой является инерционность турбины (лаг турбины, турбояма) — задержка в реакции мотора на открытие дроссельной заслонки. Турбина выходит на пик своих возможностей при определенных оборотах двигателя, отсюда и появилось мнение, что турбина включается при определенных оборотах. Турбина в большинстве случаев, работает всегда, а значение оборотов при которых ее эффективность максимальная у каждого двигателя и у каждой турбины разные. В погоне за решением этой проблемы появились системы их двух турбин (твин-турбо, twin-turbo, би-турбо, biturbo), твин-скрол (twin-scroll) турбины, турбины с изменяемой геометрией сопла и изменяемым углом наклона крыльчатки (VGT), изменяются материалы частей чтобы повысить прочность и увеличить вес (керамические лопатки крыльчатки) и пр.

Twin-turbo (твин-турбо) — система при которой используются две одинаковые турбины. Задача данной системы повысить объем или давление поступающего воздуха. Используется когда необходима максимальная мощность на высоких оборотах, например в драг-рейсинге. Такая система реализована на легендарном японском автомобиле Nissan Skyline Gt-R с двигателем rb26-dett.

Такая же система, но с маленькими одинаковыми турбинами позволяет добиться прироста мощности при небольших оборотах и держать наддув постоянным до красной зоны.

Biturbo (би-турбо) — систем а с двумя разными турбинами, которые соединены последовательно. Система устроена таким образом, что при низких оборотах работает маленькая турбина, обеспечивая хороший отклик на малых оборотах, при определенных условиях «включается» большая турбина и обеспечивает наддув при высоких оборотах. Это позволяет автомобилю уменьшить лаг двигателя и получить хороший прирост производительности во всем диапазоне работы двигателя.

Такая систем турбонаддува используется в автомобилях BMW biturbo.

Турбина с изменяемой геометрией (VGT) — система при которой лопатки крыльчатки в горячей части могут изменять угол наклона к потоку выхлопных газов.

При малых оборотах двигателя пропускное сечение прохода выхлопных газов становится более узкое и «выхлоп» проходит с большей скоростью и большей отдачей энергии. Когда обороты двигателя увеличиваются проходное сечение становится шире и и уменьшается сопротивление движению выхлопных газов, но при этом достаточно энергии для создания необходимого давления компрессором. Чаще систему VGT используют на дизельных двигателях т.к. там меньше тепловые нагрузки, меньшая скорость вращения ротора турбины.

Twin-scroll ( двойная улитка) — система состоит из двойного контура движения выхлопных газов энергия которых вращает один ротор с крыльчаткой и компрессором. При этом существует два типа реализации когда выхлопные газы идут по обоим контурам сразу, при этом система работает как twin-turbo в одном корпусе — выхлопные газы делятся на два потока каждый из которых идут в свой контур горячей части раскручивая ротор турбины. Второй тип реализации работает на подобии системы biturbo — горячая часть имеет два контура с разной геометрией, при низких оборотах выхлопные газы направляются по меньшему контуру, который увеличивает скорость и энергию прохождения за счет небольшого диаметра, при повышении оборотов двигателя выхлопные газы двигаются по контуру диаметр которого больше — тем самым сохраняется рабочее давление в системе впуска и не создается запора на пути выхлопных газов. Это все регулируется клапанами, которые переключают поток из одного контура в другой.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector