Astro-nn.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое разность потенциалов в электричестве

Про разность потенциалов, электродвижущую силу и напряжение

Известно, что одно тело можно нагреть больше, а другое меньше. Степень нагрева тела называется его температурой. Подобно этому, одно тело можно наэлектризовать больше другого. Степень электризации тела характеризует величину, называемую электрическим потенциалом или просто потенциалом тела.

Что значит наэлектризовать тело? Это значит сообщить ему электрический заряд , т. е. прибавить к нему некоторое количество электронов, если мы тело заряжаем отрицательно, или отнять их от него, если мы тело заряжаем положительно. В том и другом случае тело будет обладать определенной степенью электризации, т. е. тем или иным потенциалом, причем тело, заряженное положительно, обладает положительным потенциалом, а тело, заряженное отрицательно, — отрицательным потенциалом.

Разность уровней электрических зарядов двух тел принято называть разностью электрических потенциалов или просто разностью потенциалов .

Следует иметь в виду, что если два одинаковых тела заряжены одноименными зарядами, но одно больше, чем другое, то между ними также будет существовать разность потенциалов.

Кроме того, разность потенциалов существует между двумя такими телами, одно из которых заряжено, а другое не имеет заряда. Так, например, если какое-либо тело, изолированное от земли, имеет некоторый потенциал, то разность потенциалов между ним и землей (потенциал которой принято считать равным нулю) численно равна потенциалу этого тела.

Итак, если два тела заряжены таким образом, что потенциалы их неодинаковы, между ними неизбежно существует разность потенциалов.

Всем известное явление электризации расчески при трении ее о волосы есть не что иное, как создание разности потенциалов между расческой и волосами человека.

Действительно, при трении расчески о волосы часть электронов переходит на расческу, заряжая ее отрицательно, волосы же, потеряв часть электронов, заряжаются в той же степени, что и расческа, но положительно. Созданная таким образом разность потенциалов может быть сведена к нулю прикосновением расчески к волосам. Этот обратный переход электронов легко обнаруживается на слух, если наэлектризованную расческу приблизить к уху. Характерное потрескивание будет свидетельствовать о происходящем разряде.

Говоря выше о разности потенциалов, мы имели в виду два заряженных тела, однако разность потенциалов можно получить и между различными частями (точками) одного и того же тела.

Так, например, рассмотрим, что произойдет в куске медной проволоки, если под действием какой-либо внешней силы нам удастся свободные электроны, находящиеся в проволоке, переместить к одному концу ее. Очевидно, на другом конце проволоки получится недостаток электронов, и тогда между концами проволоки возникнет разность потенциалов.

Стоит нам прекратить действие внешней силы, как электроны тотчас же, в силу притяжения разноименных зарядов, устремятся к концу проволоки, заряженному положительно, т. е. к месту, где их недостает, и в проволоке вновь наступит электрическое равновесие.

Электродвижущая сила и напряжение

Такими источниками энергии служат так называемые источники электрического тока , обладающие определенной электродвижущей силой , которая создает и длительное время поддерживает разность потенциалов на концах проводника.

Электродвижущая сила (сокращенно ЭДС) обозначается буквой Е . Единицей измерения ЭДС служит вольт. У нас в стране вольт сокращенно обозначается буквой «В», а в международном обозначении — буквой «V».

Итак, чтобы получить непрерывное течение электрического тока, нужна электродвижущая сила, т. е. нужен источник электрического тока.

Первым таким источником тока был так называемый «вольтов столб», который состоял из ряда медных и цинковых кружков, проложенных кожей, смоченной в подкисленной воде. Таким образом, одним из способов получения электродвижущей силы является химическое взаимодействие некоторых веществ, в результате чего химическая энергия превращается в энергию электрическую. Источники тока, в которых таким путем создается электродвижущая сила, называются химическими источниками тока .

В настоящее время химические источники тока — гальванические элементы и аккумуляторы — широко применяются в электротехнике и электроэнергетике.

Другим основным источником тока, получившим широкое распространение во всех областях электротехники и электроэнергетики, являются генераторы .

Генераторы устанавливаются на электрических станциях и служат единственным источником тока для питания электроэнергией промышленных предприятий, электрического освещения городов, электрических железных дорог, трамвая, метро, троллейбусов и т. д.

Как у химических источников электрического тока (элементов и аккумуляторов), так и у генераторов действие электродвижущей силы совершенно одинаково. Оно заключается в том, что ЭДС создает на зажимах источника тока разность потенциалов и поддерживает ее длительное время.

Эти зажимы называются полюсами источника тока. Один полюс источника тока испытывает всегда недостаток электронов и, следовательно, обладает положительным зарядом, другой полюс испытывает избыток электронов и, следовательно, обладает отрицательным зарядом.

Соответственно этому один полюс источника тока называется положительным (+), другой — отрицательным (—).

Источники тока служат для питания электрическим током различных приборов — потребителей тока. Потребители тока при помощи проводников соединяются с полюсами источника тока, образуя замкнутую электрическую цепь. Разность потенциалов, которая устанавливается между полюсами источника тока при замкнутой электрической цепи, называется напряжением и обозначается буквой U.

Единицей измерения напряжения, так же как и ЭДС, служит вольт.

Если, например, надо записать, что напряжение источника тока равно 12 вольтам, то пишут: U — 12 В.

Для измерения ЭДС или напряжения применяется прибор, называемый вольтметром.

Чтобы измерить ЭДС или напряжение источника тока, надо вольтметр подключить непосредственно к его полюсам. При этом, если электрическая цепь разомкнута, то вольтметр покажет ЭДС источника тока. Если же замкнуть цепь, то вольтметр уже покажет не ЭДС, а напряжение на зажимах источника тока.

ЭДС, развиваемая источником тока, всегда больше напряжения на его зажимах.

Что такое разность потенциалов

Работа электростатического поля

Рассмотрим ситуацию: заряд q0 попадает в электростатическое поле. Это электростатическое поле тоже создается каким-то заряженным телом или системой тел, но нас это не интересует. На заряд q0 со стороны поля действует сила, которая может совершать работу и перемещать этот заряд в поле.

Работа электростатического поля не зависит от траектории. Работа поля при перемещении заряда по замкнутой траектории равна нулю. По этой причине силы электростатического поля называются консервативными

, а само поле называется
потенциальным
.

Характеристики электрического поля

Человек быстро понял, что электрическое поле есть, уже в XVIII веке – либо раньше – нарисована опилками его картина. Люди увидели линии, выходившие из полюсов. По аналогии стали пытаться изобразить электрическое поле. К примеру, Шарль Кулон на исходе восемнадцатого столетия открыл закон притяжения и отталкивания зарядов. Записав формулу, понял, что эквипотенциальные линии силы взаимодействия концентрически расходятся вокруг точечного скопления электричества, а траектории движения – прямолинейны.

Так оказалась изображена первая картина электрического поля. Напоминает картину, как исследователи представляли магнитное, но с гигантской разницей: в природе нашлись заряды обоих знаков. Линии напряжённости уходят в бесконечность (в теории, безусловно, закончатся). А магнитные заряды поодиночке не найдены, линии их всегда замыкаются в видимой области пространства.

Первая картина электрического поля

В остальном нашлось много общего, к примеру, заряды одинакового знака отталкиваются, а разных – притягиваются. Это справедливо для магнитов и электричества. Гильберт заметил, что магнетизм – сильная субстанция, которую сложно экранировать или уничтожить, а электричество легко разрушается влагой и прочими веществами. Дёгтя в бочку добавил Кулон, который, следуя Бенджамину Франклину, присвоил электронам отрицательный заряд. Хотя речь шла о количестве флюида. И избыток электронов следовало назвать положительным.

Как результат, линии напряжённости поля располагаются в направлении обратном правильному. Потенциал растёт не туда… Главными характеристиками электрического поля считаются:

  1. Напряжённость – показывает, какая сила действует на положительный единичный заряд в данной точке со стороны поля.
  2. Потенциал – показывает, какую работу способно затратить поле, чтобы переместить единичный пробный положительный заряд в бесконечно удалённую точку.
  3. Напряжение – разность потенциалов между двумя точками. Напряжение определяется исключительно относительно некоторого уровня.

Наиболее вероятно происхождение терминов из латинского языка. Напряжённость ввёл в обиход, предположительно, Алессандро Вольта, а потенциал называется по наименованию типа поля, которое указанной величиной характеризуется: работа по перемещению заряда не зависит от траектории, равна разнице потенциалов начальной и конечной точки. Следовательно, на замкнутой траектории равна нулю.

Потенциал

Система «заряд — электростатическое поле» или «заряд — заряд» обладает потенциальной энергией, подобно тому, как система «гравитационное поле — тело» обладает потенциальной энергией.

Физическая скалярная величина, характеризующая энергетическое состояние поля называется потенциалом

данной точки поля. В поле помещается заряд q, он обладает потенциальной энергией W. Потенциал — это характеристика электростатического поля.

Вспомним потенциальную энергию в механике. Потенциальная энергия равна нулю, когда тело находится на земле. А когда тело поднимают на некоторую высоту, то говорят, что тело обладает потенциальной энергией.

Касательно потенциальной энергии в электричестве, то здесь нет нулевого уровня потенциальной энергии. Его выбирают произвольно. Поэтому потенциал является относительной физической величиной.

В механике тела стремятся занять положение с наименьшей потенциальной энергией. В электричестве же под действием сил поля положительно заряженное тело стремится переместится из точки с более высоким потенциалом в точку с более низким потенциалом, а отрицательно заряженное тело — наоборот.

Потенциальная энергия поля — это работа, которую выполняет электростатическая сила при перемещении заряда из данной точки поля в точку с нулевым потенциалом.

Рассмотрим частный случай, когда электростатическое поле создается электрическим зарядом Q. Для исследования потенциала такого поля нет необходимости в него вносить заряд q. Можно высчитать потенциал любой точки такого поля, находящейся на расстоянии r от заряда Q.

Диэлектрическая проницаемость среды имеет известное значение (табличное), характеризует среду, в которой существует поле. Для воздуха она равна единице.

Понятие потенциала в физике

Что такое потенциал в физике? Это понятие очень часто применяется для описания качеств сил и полей самой разной природы. Скалярная функция, характеризующая некоторую величину, представляющуюся вектором, – вот что это потенциал. Гравитационный потенциал описывает соответствующее поле. В термодинамике это понятие применяется для системной внутренней энергии, в механике – для той или иной приложенной к предмету силы.

Электрика, прежде всего, интересует, что такое потенциал в электричестве. Из общего определения нетрудно вывести, что характеристика электрополя – это электрический потенциал. В своей статической форме электрический потенциал показывает потенциальную энергию одиночного «плюсового» заряда, помещаемого в данное место электрополя, и является одной из разновидностей электромагнитного потенциала. Вторая его форма – векторная (в отличие от скалярной), описывает магнитное поле.

Важно! Характеристика поля, описывающая зависимость работы при передвижении исключительно от исходной точки и места назначения, – это потенциальность поля. Траектория перемещения в этом случае на работу не влияет.

Как определить знак потенциала

При решении задач возникает много путаницы при определении знака потенциала, разности потенциалов, работы.

На рисунке изображены линии напряженности. В какой точке поля потенциал больше?

Верный ответ — точка 1. Вспомним, что линии напряженности начинаются на положительном заряде, а значит положительный заряд находится слева, следовательно максимальным потенциалом обладает крайняя левая точка.

Читать еще:  Расчет батарей отопления на площадь

Если происходит исследование поля, которое создается отрицательным зарядом, то потенциал поля вблизи заряда имеет отрицательное значение, в этом легко убедиться, если в формулу подставить заряд со знаком «минус». Чем дальше от отрицательного заряда, тем потенциал поля больше.

Если происходит перемещение положительного заряда вдоль линий напряженности, то разность потенциалов и работа являются положительными. Если вдоль линий напряженности происходит перемещение отрицательного заряда, то разность потенциалов имеет знак «+», работа имеет знак «-«.

Порассуждайте самостоятельно отрицательные или положительные значения будут принимать работа и разность потенциалов, если заряд перемещать в обратном направлении относительно линий напряженности.

Что такое электрический потенциал и разница потенциалов

Для наглядности можно рассмотреть доходчиво на простом примере две металлических монеты, которые нагреть до разных температур:

  • Т1 = 100 ̊С;
  • Т2 =70 ̊С.

ΔТ = 100 – 70 = 30 ̊С – разница температур будет в 30 градусов.

Если соединить монеты, тепло начнет перемещаться: более нагретая – будет отдавать тепло и остывать, менее нагретая – принимает тепло, разогревается больше. Таким образом, происходит теплообмен до выравнивания температуры на двух монетах.

В нашем случае рассматривается электрический потенциал, монеты или другие предметы можно зарядить электрическим зарядом, в этом случае будет перемещаться не тепло, а заряженные частицы от большего заряда к меньшему заряду, произойдет выравнивание потенциалов до сбалансированного состояния зарядов. Таким образом, временно возникает электрический ток.


Понятие потенциала

В международной системе измерения СИ электрический потенциал измеряют как работу электрического поля по перемещению положительного заряда из определенной точки магнитного поля на бесконечно удаленное расстояние.

Величина потенциала измеряется вольтами:

  • Дж – энергия магнитного поля, измеряется в Джоулях;
  • Кл – величина заряда, измеряется в Кулонах;

Разница между потенциалами двух зарядов, как в случае с нагревом монет, будет:

ΔВ = 100В – 70В = 30В.


Разность потенциалов уравнение

Разницу потенциалов в электрических цепях между двумя токопроводящими поверхностями, чаще всего это бывают провода, корпуса электроустановок, водопроводные тубы, шины заземления, называют напряжением и обозначают буквой «U».

Не вдаваясь в подробности физических процессов, принимается за аксиому, что в промышленных электрических цепях за объект с абсолютно нулевым потенциалом принимается земля. Поэтому напряжение в цепи измеряется относительно заземляющего контура.

Разность потенциалов (напряжение)

Напряжение является одним из важнейших терминов в электрике, оно описывается как работа, совершаемая электрополем с целью перемещения некоторого заряда из одной точки в другую. По аналогии с гравитацией, заряд при помещении в зону действия поля обладает потенциалом, который можно сравнить с соответствующим видом энергии у тела. Величина электрического потенциала прямо пропорциональна степени полевой напряженности и величине самого заряда.

Что такое фаза в электричестве

Встает вопрос: потенциал в чем измеряется? Правильнее будет сказать, в чем обычно измеряется разность потенциалов, так как работники электротехники имеют дело именно с этой величиной в форме напряжения. Для самого потенциала специальной измерительной единицы не существует. В СИ принято измерять разность в вольтах (В). Она равна одному вольту в том случае, если для транспортировки заряда в один кулон из одной точки электрополя в другую потребуется совершить работу в один джоуль.

Важно! Измерить напряжение можно с помощью специального устройства – вольтметра. Стрелочная разновидность прибора, использующаяся на школьных уроках физики, оснащена градуированной шкалой, базирующейся на угле отклонения проволочной рамки, по которой проходит электроток. Помимо него, существуют и приборы с цифровым дисплеем, а также мультиметры, способные работать в нескольких режимах и измеряющие разные величины, описывающие электроцепь. Для измерения важно правильно подключить щупы.


Измерить напряжение поможет вольтметр

Проводники в электростатическом поле

Размещение проводника в электростатическом поле приводит к тому, что поле начнет действовать на носители заряда внутри проводящего предмета. Носители начинают перемещаться до тех пор, пока электростатическое поле вне поверхности ни обратится в нуль.

Поскольку поле внутри вещества отсутствует, то во всех точках проводящего материала энергия будет постоянной, а поверхность эквипотенциальной. Векторы напряженности поля направлены под прямым углом в любой точке поверхности проводника.


Проводник в электростатическом поле

Под действием поля заряды внутри проводника отсутствуют, поскольку они сосредоточены исключительно на поверхности. Этот факт используется при экранировке – защите тел от влияния внешних электромагнитных и электростатических полей. Для экранирования может использоваться не только сплошной проводящий материал, но и сетка, так называемая «клетка Фарадея».


Клетка Фарадея

Также свойство перемещения заряженных частиц (электронов) используется в электростатических генераторах для получения напряжения в несколько миллионов вольт.

Электрический ток, напряжение — поймет даже ребенок!

Автор: Владимир Васильев · Опубликовано 11 января 2015 · Обновлено 29 августа 2018

Всем привет, на связи с вами снова Владимир Васильев. Новогодние празднования подходят к концу, а значить надо готовиться к рабочим будням, с чем вас дорогие друзья и поздравляю! Хех, только не надо расстраиваться и впадать в депрессию, нужно мыслить позитивно.

Так вот в эти новогодние праздники я как-то размышлял о аудитории моего блога: «Кто он? Кто тот посетитель моего блога, что каждый день заходит почитать мои посты?». Может быть это прошаренный спец зашел из любопытства почитать что я тут накалякал? А может это какой -нибудь доктор радиотехнических наук зашел посмотреть как спаять схему мультивибратора?

Содержание статьи

Знаете все это маловероятно, потому как для прошаренного специалиста все это уже пройденный этап и скорее всего все уже не так интересно и они сами с усами. Им может быть интересно лишь из праздного любопытства, мне конечно очень приятно и я жду каждого с распростертыми объятьями.

Так что я пришел к выводу, что основной контингент моего блога да и большинства радиолюбительских сайтов это новички и любители рыскающие по интернету в поисках полезной информации. Так какого лешего, у меня ее так мало? Будет в скором временя поболее так что [urlspan] не пропустите! [/urlspan]

Я вспоминаю себя, когда я искал в интернете какую-нибудь простенькую схемку чтобы с чего-нибудь начать, но постоянно что-то не подходило, что-то казалось заумным. Мне не хватало азов, таких, чтобы можно было по принципу от простого к сложному начать разбираться в интересующей меня теме.

Кстати первая книга которая мне действительно помогла, от прочтения которой действительно начало приходить понимание — это была книга «Искусство схемотехники» П. Хоровица, У. Хилла. Я писал про нее в этой статье, там и книжку можно скачать. Так вот, если вы новичок то обязательно ее скачайте и пусть она станет вашей настольной книгой.

Что такое напряжение и ток?

Кстати действительно что же такое электрический ток и напряжение? Я думаю, что никто на самом деле и не знает, ведь чтобы это знать это надо хотябы видеть. Кто может видеть ток, бегущий по проводам?

Да никто, человечество еще не достигло таких технологий, чтобы воочию наблюдать движения электрических зарядов. Все что мы видим в учебниках и научных трудах это некая абстракция созданная в результате многочисленных наблюдений.

Ну ладно об этом можно много рассуждать… Так давайте попробуем разобраться, что такое электрический ток и напряжение. Я не буду писать определения, определения не дают самого понимания сути. Если интересно, возьмите любой учебник по физике.

Так как мы его не видим электрического тока и всех процессов протекающих в проводнике, тогда попробуем создать аналогию.

И традиционно электрический ток текущий в проводнике сравнивают с водой бегущей по трубам. В нашей аналогии вода это электрический ток. Вода бежит по трубам с определенной скоростью, скорость это сила тока, измеряемая в амперах. Ну трубы это само собой проводник.

Хорошо, электрический ток мы себе представили, но а что такое напряжение? Сейчас помозгуем.

Вода в трубе, в отсутствии каких-либо сил (сила тяжести, давления) теч не будет, она будет покоиться как и любая другая жижа вылитая на пол. Так вот эта сила или точнее сказать энергия в нашей водопроводной аналогии и будет тем самым напряжением.

Но что происходит с водой бегущей из резервуара расположенного высоко над землей? Вода устремляется бурным потоком из резервуара к поверхности земли, гонимая силами тяготения. И чем выше от земли расположен резервуар тем с большей скоростью вытекает вода из шланга. Понимаете о чем я говорю?

Чем выше резервуар, тем больше сила (читай напряжение) воздействующая на воду. И тем больше скорость водного потока (читай сила тока). Теперь становится понятно и в голове начинает создаваться красочная картинка.

Понятие потенциала, разности потенциалов

С понятием напряжения электрического тока тесно связано понятие «потенциал» , или «разность потенциалов». Хорошо, обратимся снова к нашей водопроводной аналогии.

Наш резервуар находится на возвышенности что позволяет воде беспрепятственно стекать по трубе вниз. Так как бак с водой на высоте, то и потенциал этой точки будет более высоким или более положительным чем тот что находится на уровне земли. Видите что получается?

У нас появилось две точки имеющие разные потенциалы, точнее разную величину потенциала.

Получается, для того чтобы электрический ток мог бежать по проводу, потенциалы не должны быть равны. Ток бежит от точки с большим потенциалом к точки с меньшим потенциалом.

Помните такое выражение, что ток бежит от плюса к минусу. Так вот это все тоже самое. Плюс это более положительный потенциал а минус более отрицательный.

Кстати а хотите вопрос на засыпку? Что произойдет с током, если величины потенциалов будет периодически меняться местами?

Тогда мы будем наблюдать то как электрический ток меняет свое направление на противоположное каждый раз как потенциалы поменяются. Это получится уже переменный ток. Но его мы пока рассматривать не будем, дабы в голове сформировалось ясное понимание процессов.

Измерение напряжения

Для замера напряжение используется прибор вольтметр, хотя сейчас наиболее популярны мультиметры. Мультиметр это такой комбинированный прибор имеющий в себе много чего. О нем я писал в статье и рассказывал как им пользоваться.

Вольтметр это как раз тот прибор который измеряет разность потенциалов между двумя точками. Напряжение (разность потенциалов) в любой точке схемы обычно измеряется относительно НОЛЯ или ЗЕМЛИ или МАССЫ или МИНУСА батарейки. Не важно главное это должна быть точка имеющая наименьший потенциал во всей схеме.

Итак чтобы измерить напряжение постоянного тока между двумя точками, делаем следующее. Черный (минусовой ) щуп вольтметра втыкается в ту точку, где предположительно мы можем наблюдать точку с меньшим потенциалом (НОЛЬ). Красный щуп (плюсовой) втыкаем в точку, потенциал которой нам интересен.

И результатом измерения будет числовое значение разности потенциалов, или другими словами напряжение.

Читать еще:  Терморегулятор для водяного теплого пола; рассмотрим досконально

Измерение тока

В отличие от напряжения, которое замеряется в двух точках, величина тока замеряется в одной точке. Так как сила тока (или говорят просто ток) по нашей аналогии есть скорость течения воды, то эту скорость нужно замерять только в одной точке.

Нам нужно распилить водопровод и вставить в разрыв некий счетчик, который будет подсчитывать литры и минуты. Както так.

Аналогично если вернемся в реальный мир нашей электрической модели, то получим тоже самое. Чтобы замерить величину электрического тока, нам нужно подключить в разрыв электрической цепи нехитрый прибор — амперметр. Амперметр также входит в состав мультиметра. Вы также можете почитать в моей статье.

Щупы мультиметра нужно переставить в режим измерения тока. Затем перекусываем наш проводник, и подключаем обрывки провода к мультиметру и вуаля — на экране мультиметра будет показана величина тока.

Закон Ома

Ну что дорогие друзья, я думаю что мы не теряли время даром. Ознакомившись с нашими водопроводными моделями в голове начал складываться пазл, начало формироваться понимание.

Ну чтож попробуем проверить его на законе Ома.

  • I — ток измеряемый в Амперах (А);
  • U-напряжение измеряемое в Вольтах (В);
  • R-сопротивление измеряемое в Омах (Ом)

Ом нам говорил, что Электрический ток прямо пропорционален напряжению и обратно пропорционален сопротивлению.

Про сопротивление я сегодня не говорил, но я думаю что вы поняли. Сопротивление электрическому току оказывается материалом проводника. В нашей водопроводной системе сопротивление току воды оказывают ржавые трубы, забитые ржавчиной и прочей какой.

Таким образом закон Ома работает во всей своей красе что для водопроводной системы, что для электрической. Может быть мне податься в сантехники, уж очень много схожего.

Чем выше задран резервуар с водой, тем быстрее по трубам будет теч вода. Но если трубы загажены то скорость будет меньше. Чем больше сопротивление воде тем медленнее она будет теч. Если засор, то вода вообще может встать.

Ну и для электричества. Величина тока зависит прямо пропорционально от величины напряжения (разности потенциалов), и обратно пропорционально зависит от сопротивления.

Чем выше напряжение тем больше величина тока, но чем больше сопротивление тем меньше величина тока. Напряжение может быть очень большим, но ток может не теч из-за обрыва. А обрыв это все равно, что если вместо металлического проводника мы подключили проводник из воздуха, а воздух обладает просто гигантским сопротивлением. Вот ток и остановится.

Чтоже дорогие друзья, вот и подходит время закругляться, вроде все что хотел сказать в этой статье я сказал. Если остаются какие-либо вопросы спрашивайте в комментариях. Дальше будет больше, планирую написать череду обучающих материалов, так что [urlspan] не пропустите… [/urlspan]

Желаю вам удачи, успехов и до новых встреч!

Разность Потенциалов.
Электрическое Напряжение. Напряжение Тока.

Тема — Электрическое напряжение. Разность потенциалов. Напряжение тока.

Одним из наиболее употребляемых у электриков выражений является электрическое напряжение. В науке его обычно называют — разность потенциалов, а также ещё незнающие люди говорят — напряжение тока. Общий смысл у этих названий, в принципе, одинаковый. А что обозначает это понятие? Вот распространённая книжная формулировка: Электрическое напряжение — это отношение работы электрического поля зарядов при передачи пробного заряда из точки «1» в точку «2». Ну, а если говорить простыми словами, это будет так:

Прежде всего, стоит вспомнить о том, что электрические заряды существуют 2-х видов — положительные «+» и отрицательные «-». Они обладают одним простым и полезным свойством, отталкивания и притягивания друг друга в зависимости одинаковости и разноимённости своих видов. То есть, если начать приближать друг к другу одни плюсы или только минусы, то они будут взаимно отталкиваться. Если же приблизить плюс и минус, то они попытаются притянуться друг к другу. Помимо этого, сила взаимного притяжения и отталкивания будет напрямую зависеть от количества самих зарядов. Проще говоря, чем больше «плюса» в одном месте и «минуса» в другом, тем сильнее они будут притягиваться друг к другу. Или наоборот, отталкиваться при одинаковом заряде (+ и + либо — и -).

Теперь давайте вообразим, что у нас имеются 2 железных шарика. Каждый из них внутри содержит большое количество элементарных частичек, которые находятся друг от друга на некотором расстоянии и неспособны к свободному перемещению. Это ядра атомов вещества. Вокруг этих частичек с огромной скоростью бегают более мелкие частички — электроны. Они способны оторваться от одних атомов и перейти к другим. Если общее количество электронов будет равно количеству протонов в ядре, шарики нейтральны.

Если отобрать некоторое количество электронов у железного шарика, то он перестанет быть нейтральным. Он будет стремиться притянуть к себе недостающее количество электронов, в результате чего образуя вокруг себя поле со знаком «+». Чем больше электронов не хватает, тем сильней поле. В другом шарике сделаем избыток электронов. В результате образуется электрическое поле, но со знаком «-».

Вот мы и создали 2 разноимённых потенциала, один из которых стремится приобрести электроны, а второй от них избавится. В железном шарике, где избыток электронов имеется теснота и частицы, вокруг которых имеется поле, выталкивают друг друга. А в том шарике, где недостаток электронов, происходит что-то вроде вакуума, который стремится всосать в себя электроны. Это образует разность потенциалов или электрическое напряжение. Но, как только мы эти шары соединим, так сразу произойдёт взаимный обмен, и электрическое напряжение исчезнет из-за скомпенсированности. Упрощённо говоря, разность потенциалов или электрическое напряжение — эта наличие стремления заряженных частиц, находящихся между двумя точками, притянуть или перейти от более заряженных мест к менее заряженным.

Допустим, у нас есть провода подключенные к обычной электрической батарейки. Внутри неё происходит химическая реакция, которая способствует выталкиванию электронов из положительной области батарейки в отрицательную. Избыток электронов находящийся в отрицательной области подходит к отрицательной клемме батарейки. Электроны стремятся вернуться на то место, откуда их вытолкали. Сделать это внутри самой батареи не выходит. Остаётся ждать, когда им проложат мостик в виде металлического электронопроводящего проводника, по которому они перейдут на положительную клемму батареи.

Хотелось бы внести некоторую ясность — люди не особо знающие электрику, весьма часто говорят напряжение тока, что не совсем правильно. Правильнее говорить, всё же — разность потенциалов или электрическое напряжение.

Электрический потенциал

Электрический потенциал и потенциальная энергия

Понятие энергии исключительно полезно для решения задач механики. Прежде всего энергия сохраняется и поэтому служит важной характеристикой явлений природы. Используя представления об энергии, многие задачи удается решить, не имея детальных сведений о силах или в случае, когда применение законов Ньютона потребовало бы сложных вычислений.

Энергетическим подходом можно воспользоваться и при изучении электрических явлений, и здесь он оказывается чрезвычайно полезным: позволяет не только обобщить закон сохранения энергии, но и в новом аспекте увидеть электрические явления, а также служит средством более просто находить решения, чем путем рассмотрения сил и электрических полей.

Потенциальную энергию можно определить лишь для консервативных сил; работа такой силы по перемещению частицы между двумя точками не зависит от выбранного пути.
Легко видеть, что электростатическая сила является консервативной: сила, с которой один точечный заряд действует на другой, определяется законом Кулона: F = kQ1Q2 /r 2 ; здесь та же обратно пропорциональная зависимость от квадрата расстояния, что и в законе всемирного тяготения: F = Gm1m2 /r 2 . Такие силы консервативны. Сила, действующая на выбранный заряд со стороны любого распределения зарядов, может быть записана в виде суммы кулоновских сил; следовательно, и сила, создаваемая произвольным распределением зарядов, консервативна. А это позволяет ввести потенциальную энергию электростатического поля.

Разность потенциальных энергий точечного заряда q в двух различных точках электрического поля можно определить как работу, совершаемую внешними силами по перемещению заряда (против действия электрической силы) из одной точки в другую. Это равносильно определению изменения потенциальной энергии заряда в поле как взятой с обратным знаком работы, совершаемой самим полем по перемещению заряда из одной точки в другую.

Рассмотрим для примера электрическое поле между двумя пластинами с равным по величине и противоположным по знаку зарядом. Пусть размеры пластин велики по сравнению с расстоянием между ними, и поэтому поле между пластинами можно считать однородным (рис. 24.1).
Поместим в точку а вблизи положительно заряженной пластины точечный положительный заряд q. Электрическая сила, действующая на заряд, будет стремиться переместить его к отрицательной пластине (в точку b), совершая работу по переносу заряда. Под действием силы заряд приобретет ускорение и его кинетическая энергия возрастет; при этом потенциальная энергия уменьшится на величину работы, совершенной электрической силой по перемещению заряда из точки a в точку b. Согласно закону сохранения энергии, потенциальная энергия заряда в электрическом поле перейдет в кинетическую энергию, но полная энергия останется неизменной. Заметим, что положительный заряд q обладает наибольшей потенциальной энергией U вблизи положительной пластины (в этой точке его способность совершать работу над другим телом или системой максимальна). Для отрицательного заряда справедливо обратное: его потенциальная энергия будет максимальна вблизи отрицательной пластины.

Напряженность электрического поля мы определяли как силу, действующую на единичный заряд; аналогично удобно ввести электрический потенциал (или просто потенциал, если это не вызывает недоразумений) как потенциальную энергию единичного заряда. Электрический потенциал обозначается символом V; итак, если в некоторой точке a точечный заряд q обладает потенциальной энергией Ua, то электрический потенциал в этой точке равен Va = Ua /q.
Реально мы измеряем только изменение потенциальной энергии. Соответственно фактически можно измерить лишь разность потенциалов между двумя точками (например, точками a и b на рис. 24.1). Если работа электрических сил по перемещению заряда от точки a в точку b есть Wba (а разность потенциальных энергий соответственно равна этой величине с обратным знаком), то для разности потенциалов можно написать

Единицей электрического потенциала (и разности потенциалов) является джоуль на кулон (Дж/Кл); этой единице присвоено наименование вольт (В) в честь Алессандро Вольты (1745-1827) (он известен как изобретатель электрической батареи); 1 В = 1 Дж/Кл. Заметим, что, согласно данному определению, положительно заряженная пластина на рис. 24.1 имеет более высокий потенциал, чем отрицательная. Таким образом, положительно заряженное тело будет стремиться перейти из точки с более высоким потенциалом в точку с более низким потенциалом, отрицательно заряженное тело — наоборот. Разность потенциалов часто называют электрическим напряжением.

Потенциал в данной точке Va зависит от выбора «нуля» потенциала; как и в случае потенциальной энергии, нулевой уровень может выбираться произвольно, поскольку измерить можно лишь изменение потенциальной энергии (разность потенциалов). Часто за нулевой принимают потенциал земли или проводника, соединенного с землей, и остальные значения потенциалов отсчитывают относительно «земли». (Например, говоря, что потенциал в какой-то точке равен 50 В, имеют в виду, что разность потенциалов между этой точкой и землей равна 50 В.) В иных случаях, как мы увидим, удобно считать нулевым потенциал на бесконечности.

Читать еще:  Лучшие кофеварки 2020

Поскольку электрический потенциал определяется как потенциальная энергия единичного заряда, изменение потенциальной энергии заряда q при перемещении его из точки a в точку b равно

Другими словами, когда заряд q перемещается между точками с разностью потенциалов Vba, его потенциальная энергия изменяется на величину qVba. Если, например, разность потенциалов между пластинами на рис. 24.1 составляет 6 В, то заряд 1 Кл, перемещенный (внешней силой) из точки b в точку a, увеличит свою потенциальную энергию на (1 Кл) (6 В) = 6 Дж. (Перемещаясь же из a в b, он потеряет потенциальную энергию 6 Дж.) Аналогично энергия заряда 2 Кл увеличится на 12 Дж и т. п. Таким образом, электрический потенциал служит мерой изменения потенциальной энергии электрического заряда в данной ситуации. А поскольку потенциальная энергия — это способность совершать работу, электрический потенциал служит мерой той работы, которую может совершить данный заряд. Количество работы зависит как от разности потенциалов, так и от величины заряда.

Чтобы лучше понять смысл электрического потенциала, проведем аналогию с гравитационным полем. Пусть камень падает с вершины скалы. Чем выше скала, тем большей потенциальной энергией обладает камень и тем больше будет его кинетическая энергия, когда он долетит до подножия скалы. Величина кинетической энергии и соответственно работа, которую может совершить камень, зависят от высоты скалы и от массы камня. Точно так же и в электрическом поле изменение потенциальной энергии (и работа, которую можно совершить) зависит от разности потенциалов (эквивалентной высоте скалы) и заряда (эквивалентного массе).

Используемые на практике источники электроэнергии — батареи, электрогенераторы — создают определенную разность потенциалов. Количество энергии, отбираемой от источника, зависит от величины переносимого заряда.
Рассмотрим, например, автомобильную фару, соединенную с аккумулятором, разность потенциалов на зажимах которого равна 12 В. Количество энергии, преобразуемой фарой в свет (и, конечно, в тепло), пропорционально заряду, протекшему через фару, что в свою очередь зависит от того, как долго включена фара. Если за некоторое время через фару прошел заряд 5,0 Кл, то преобразованная фарой энергия составит (5,0 Кл)*(12,0 В) = 60 Дж. Если оставить фару включенной вдвое дольше, то через нее пройдет заряд 10,0 Кл, и количество преобразованной энергии составит (10,0 Кл)*(12,0 В) = 120 Дж.
Эффекты, обусловленные тем или иным распределением зарядов, можно описать как с помощью напряженности электрического поля, так и через электрический потенциал. Между напряженностью поля и потенциалом существует тесная связь. Рассмотрим вначале эту связь для случая однородного электрического поля, например поля между пластинами на рис. 24.1 с разностью потенциалов Vba. Работа электрического поля по перемещению положительного заряда q из точки a в точку b равна

Обратим внимание на то, что величина Vba = Vb — Va отрицательна (Vba Vb , т.е. потенциал положительной пластины выше, чем отрицательной, как мы уже говорили. Положительные заряды стремятся двигаться из области с высоким потенциалом в область с низким потенциалом. Отсюда можно найти Е:

Из последнего равенства видно, что напряженность электрического поля можно измерять как в вольтах на метр (В/м), так и в ньютонах на кулон (Н/Кл). Эти единицы эквивалентны между собой: 1 Н/Кл = 1 Н·м/Кл·м = 1 Дж/Кл·м = 1 В/м.

Чтобы перейти к общему случаю неоднородного электрического поля, вспомним соотношение между силой F и потенциальной энергией U, обусловленной этой силой. Разность потенциальных энергий в двух точках пространства a и b определится формулой

где dl — бесконечно малое перемещение, а интеграл берется вдоль произвольной траектории между точками a и b. В случае электрического поля нас больше интересует разность не потенциальных энергий, а потенциалов:

Напряженность электрического поля Е в любой точке пространства определяется отношением силы к заряду: Е = F/q. Подставляя эти два равенства в формулу, получим

Это и есть общее соотношение, связывающее напряженность электрического поля с разностью потенциалов.

Когда поле однородно, например, на рис. 24.1 вдоль траектории, параллельной силовым линиям, от точки a у положительной пластины до точки b у отрицательной пластины (поскольку направления E и dl всюду совпадают) имеем

где d — расстояние вдоль силовой линии между точками a и b. И вновь знак минус в правой части свидетельствует лишь о том, что на рис. 24.1 Va > Vb .

Продолжение следует. Коротко о следующей публикации:

Эквипотенциальные поверхности.
Электрический потенциал можно представить графически, изображая эквипотенциальные линии или в трех измерениях — эквипотенциальные поверхности.

Замечания и предложения принимаются и приветствуются!

Что такое напряжение простыми словами

  1. Электрическое напряжение
  2. Разность потенциалов
  3. Что такое ЭДС
  4. Измерение напряжения на различных участках электрической цепи.
  5. Подводим ИТОГИ:
  6. Зависимость тока от напряжения
  7. Как померить напряжение мультиметром

Электрическое напряжение

Что такое электрическое напряжение – это разность потенциалов между двумя точками электрического поля; это физическая величина, значение которой равно работе электрического поля по перемещению единичного заряда между двумя точками. Всем всё понятно? Думаю нет.

Сейчас я попытаюсь максимально легко рассказать, что такое электрическое напряжение. Надеюсь у меня получится! Итак, поехали…

Обратите внимание на рисунок

В одной бутылке уровень воды составляет 300 мм, в другой 150мм, разница воды в бутылках получается 150мм. В электричестве это называется разностью потенциалов, т.е разность потенциалов в наших бутылках равна 150 мм.

Разность потенциалов

А теперь давайте соединим эти бутылки между собой шлангом и поместим в шланг шарик, что будет?

Вода начнёт перетекать из бутылки, в которой уровень воды больше, в другую бутылку. И соответственно поток воды будет перемещать наш шарик по шлангу. Процесс перетекания воды прекратится тогда, когда уровень в бутылках станет одинаковым (принцип сообщающихся сосудов).

Когда уровень воды в бутылках стал одинаковым, разность потенциалов стала равна нулю, т.е. электродвижущая сила (ЭДС) равна нулю и наш шарик остаётся на месте.

Что такое ЭДС

Что такое ЭДС, думаете Вы? Сейчас расскажу!

Электродвижущая сила (ЭДС) тоже измеряется в Вольтах, как и напряжение.

Давайте возьмём прибор, который измеряет вольты (вольтметр), батарейку и произведём замер.

Прибор показывает 1,5 Вольта и это не напряжение, а электродвижущая сила (ЭДС).

А теперь подключим к батарейке лампочки.

Измерение напряжения на различных участках электрической цепи.

Заметили, что на одной лампочке напряжение (не ЭДС) составляет 1 Вольт, а на другой 0,3 вольта

Напряжение на лампочках зависит от их мощности.Мощность измеряется в Ваттах.

Мощность= Напряжение * ток (P=U*I)

Чем больше мощность лампочки, тем больше будет на ней напряжение.

Если батарейка у нас 1,5 вольта= 1 Вольт +0,3 Вольта= 1,3 Вольта, куда делись 0,2 Вольта? У батарейки есть тоже своё внутреннее сопротивление, вот туда они и ушли.

Подводим ИТОГИ:

Что такое электродвижущая сила (ЭДС)- это физическая величина, которая характеризует работу сторонних сил в источниках тока (батарейки, генераторы и т.д). ЭДС показывает нам работу источника тока по переносу заряду через всю цепь.

А напряжение показывает нам работу по переносу заряда на участке цепи.

Что такое напряжение простыми словами — это внешняя сила, которая перемещает наш с вами шарик в показанном примере выше.

А в электричестве — это сила, которая перемещает электроны от одного атома к другому.

Приведу ещё один пример, что такое электрическое напряжение :

Представьте, что вы можете поднять камень весом 50 кг, т.е Ваша подъёмная сила равна 50 кг (в электричестве это электродвижущая сила). Идетё вы и на пути у вас лежит камень массой 20 кг, вы берёте его и несёте 10 метров. Вы затратили определённую энергию по переносу этого камня (в электричестве это — напряжение). Следующий камень уже весит 40 кг и чтобы его перенести из одной точки в другую вы затратите больше энергии, чем затратили по переносу камня весом 20 кг. Подъёмная сила (в электричестве-это ЭДС) у Вас всегда одна, но в зависимости от веса камня вы всегда тратите разное количество энергии (в электричестве — это напряжение). Т.е. на каждом отрезке пути у Вас разное напряжение.

Надеюсь вы поняли, что такое электрическое напряжение!

Зависимость тока от напряжения

Давайте вспомним закон Ома

Все помнят, что такое ток, если нет, то прочтите вот эту статью http://svoedelo.net/chto-takoe-tok-prostymi-slovami.html

По формуле видно, что ток прямо пропорционален напряжению и обратно пропорционален сопротивлению. Т.е. чем больше ток, тем больше и напряжение и наоборот.

Как померить напряжение мультиметром

В этом видео я рассказываю как померить напряжение мультиметром в розетке.

Потенциал. Разность потенциалов. Напряжение.Эквипотенциальные поверхности

Потенциал. Разность потенциалов. Напряжение.

Потенциал электростатического поля — скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду:

— энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.

Т.к. потенциальная энергия зависит от выбора системы координат, то и потенциал определяется с точностью до постоянной.

За точку отсчета потенциала выбирают в зависимости от задачи: а) потенциал Земли, б) потенциал бесконечно удаленной точки поля, в) потенциал отрицательной пластины конденсатора.

— следствие принци­па суперпозиции полей (потенциалы складываютсяалгебраически).

Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность.

В СИ потенциал измеряется в вольтах:

Разность потенциалов

Напряжение — разность значений потенциала в начальной и конечнойточках траектории.

Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого поля.

Разность потенциалов (напряжение) не зависит от выбора

Единица разности потенциалов

Напряжение равно 1 В, если при перемещении положительного заряда в 1 Кл вдоль силовых линий поле совершает работу в 1 Дж.

Связь между напряженностью и напряжением.

Из доказанного выше:

напряженность равна градиенту потенциала (скорости изменения потенциала вдоль направления d).

Из этого соотношения видно:

Эквипотенциальные поверхности.

ЭПП — поверхности равного потенциала.

— работа при перемещении заряда вдоль эквипотенциальной поверхности не совершается;

— вектор напряженности перпендикулярен к ЭПП в каждой ее точке.

Измерение электрического напряжения (разности потенциалов)

Между стержнем и корпусом — электрическое поле. Измерение потенциала кондуктора Измерение напряжения на гальваническом элементе Электрометр дает большую точность, чем вольтметр.

Потенциальная энергия взаимодействия зарядов.

Потенциал поля точечного заряда

Потенциал заряженного шара

а) Внутри шара Е=0, следовательно, потенциалы во всех точках внутри заряженного металлического шара одинаковы (. ) и равны потенциалу на поверхности шара.

б) Снаружи поле шара убывает обратно пропорционально расстоянию от центра шара, как и в случае точечного заряда.

Перераспределение зарядов при контакте заряженных проводников.

Переход зарядов происходит до тех пор, пока потенциалы контактирующих тел не станут равными.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector