Astro-nn.ru

Стройка и ремонт
300 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет габаритной мощности тороидального трансформатора

Расчет габаритной мощности тороидального трансформатора

Расчет тороидальных трансформаторов

Инж. Г. Мартынихин

Перед конструкторами радиоэлектронной аппаратуры часто ставитсяя задача создания устройств с небольшими размерами и минимальным весом. Практика показала, что лучше всего применять трансформаторы с тороидальным магнитопроводом. В сравнении с броневыми сердечниками из Ш-образных пластин они имеют меньший вес и габариты, а также отличаются лучшими условиями охлаждения обмотки и повышенным к.п.д. Кроме того, при равномерном распределении обмоток по периметру сердечника практически отсутствует поле рассеяния и в большинстве случаев отпадает необходимость в экранировании трансформаторов.

В связи с тем, что полный расчет силовых трансформаторов на тороидальных сердечниках слишком громоздок и сложен, приводим таблицу, с помощью которой легче произвести расчет тороидального трансформатора мощностью до 120 Вт. Точность расчета вполне достаточна для любительских целей. Расчет параметров тороидального трансформатора, не вошедших в таблицу, аналогичен расчету трансформаторов на Ш-образном сердечнике.

Таблицей можно пользоваться при расчетах трансформаторов на сердечниках из холоднокатанной стали Э310, Э320, Э330 с толщиной ленты 0,35-0,5 мм и стали Э340, Э350, Э360 с толщиной ленты 0,05-0,1 мм при частоте питающей сети 50 Гц.

При намотке трансформаторов допустимо применять лишь межобмоточную и наружную изоляции: хотя межслоевая изоляция и позволяет добиться более ровной укладки провода обмоток, из-за различия наружного и внутреннего диаметров сердечника при ее применении неизбежно увеличивается толщина намотки по внутреннему диаметру.

Для намотки тороидальных трансформаторов необходимо применять обмоточные провода с повышенной механической и электрической прочностью изоляции. При намотке вручную следует пользоваться проводами ПЭЛШО, ПЭШО. В крайнем случае можно применить провод ПЭВ-2. В качестве межобмоточной и внешней изоляции пригодны фторопластовая пленка ПЭТФ толщиной 0,01-0,02 мм, лакоткань ЛШСС толщиной 0,06-0,12 мм или батистовая лента.

Пример расчета трансформатора

  • Напряжение сети Uc = 220 В
  • Выходное напряжение Uн = 24 В
  • Ток нагрузки Iн = 1,8 А.

1. Определяют мощность вторичной обмотки: P = Uн х Iн = 24 х 1,8 = 43,2 Вт

2. Определяют габаритную мощность трансформатора :

Величину к.п.д. и другие необходимые для расчета данные выбирают по таблице из нужной графы ряда габаритных мощностей.

3. Находят площадь сечения сердечника :

4. Подбирают размеры сердечника Dc, dc и hc :

Ближайший стандартный тип сердечника — ОЛ-50/80-40, площадь сечения которого равна S = 6 см 2 (не менее расчетной).

5. При определении внутреннего диаметра сердечника должно быть выполнено условие: dc должно быть больше или равно dc`:

6. Предположим, что выбран сердечник из стали Э320, тогда число витков на вольт определяют по формуле:

7. Находят расчетные числа витков первичной и вторичной обмоток:

Так как в тороидальных трансформаторах магнитный поток рассеяния весьма мал, то падение напряжения в обмотках определяется практически лишь их активным сопротивлением, вследствие чего относительная величина падения напряжения в обмотках тороидального трансформатора значительно меньше, чем в трансформаторах стержневого и броневого типов. Поэтому для компенсации потерь на сопротивлении вторичной обмотки необходимо увеличить количество ее витков лишь на 3% : W1-2 = 133 х 1,03 = 137 витков

8. Определяют диаметры проводов обмоток:

, где I1 — ток первичной обмотки трансформатора, определяемый из формулы :

I1 = 1,1 (Pг / Uc) = 1,1 (48 / 220) = 0,24 A

Выбирают ближайший диаметр провода в сторону увеличения — 0,31 мм;

Трансформаторы, расчитанные с помощью приводимой таблицы, после изготовления подвергались испытаниям под постоянной максимальной нагрузкой в течение нескольких часов и показали хорошие результаты.

«Радио» №3/1972 год

Расчет трансформатора на стержневом сердечнике в онлайн

Конструкция трансформатора

Этот замечательный трансформатор был изготовлен еще Фарадеем. Тороидальный автотрансформатор – это специальный прибор, который предназначен для преобразования переменного тока. Использовать их можно в разнообразных линейных установках. Это электромагнитное устройство может быть однофазным и трехфазным.

На этом фото вы сможете увидеть, что конструкция состоит из следующих элементов:

  1. Металлический диск, который изготовлен из рулонной магнитной стали.
  2. Специальные резиновые прокладки.
  3. Выводы первичной обмотки.
  4. Вторичная обмотка.
  5. Изоляция, которая располагается между обмотками.
  6. Экранирующая обмотка.
  7. Дополнительный слой, который располагается между первичной и экранирующей обмоткой.
  8. Первичная обмотка.
  9. Изоляционное покрытие сердечника.
  10. Тороидальный сердечник.
  11. Предохранитель.
  12. Крепежные элементы.
  13. Слой покрывной изоляции.

Чтобы соединить обмотки производитель использует магнитопровод. Этот тип преобразователя квалифицируется по: назначению, охлаждению и типу магнитопровода. По назначению можно разделить на импульсный, силовой и частотный преобразователь. По охлаждению трансформаторы воздушными или масляными. Если вам будет интересно, тогда можете прочесть про тороидальный трансформатор.

Устройство этого типа может использоваться в стабилизаторах или системах охлаждения. Главным отличием конструкции будет считаться количество обмоток, которое содержит трансформатор. Кольцевая форма считается наиболее распространенной. В этом случае намотка тороидального преобразователя выполняется равномерно. Благодаря этому расположению катушек преобразователь охлаждается быстро и не будет нуждаться в использовании кулеров.

Программы для расчета

Известно много программ, которые предлагают онлайн расчет параметров любого трансформатора на броневом или стержневом сердечнике. Одной из таких может стать сервис на сайте «skrutka». Для определения характеристик потребуется указать ряд следующих данных:

  • входное напряжение — U1;
  • выходное напряжение — U2;
  • ширину пластины — а;
  • толщину стопки — b ;
  • частоту сети — Гц;
  • габаритная мощность — В*А;
  • КПД;
  • магнитную индуктивность магнитопровода — Тл;
  • плотность тока в обмотках — А/мм кв.

Последние 4 величины являются табличными, поэтому потребуется воспользоваться справочником.

Необходимо грамотно и ответственно отнестись к расчету параметров трансформатора, потому что от качества выполненной работы будет зависеть и качество функционирования вашего блока питания. Не всегда стоит надеяться на программы, в них могут быть ошибки. Выберите один или несколько параметров и пересчитайте их вручную по ранее приведенным формулам. Если получится примерно равное значение, то результат можно считать правильным.

Достоинства тороидального трансформатора

Если вы планируете использовать тороидальный трансформатор, тогда помните, что он может иметь ряд преимуществ:

  1. Конструкция имеет небольшие габариты.
  2. Сигнал на торе считается достаточно сильным.
  3. Обмотки могут иметь небольшую длину. Но из-за этого при работе вы сможете услышать определенный фон.
  4. Простота в самостоятельной установке.

Преобразователь может использоваться, как сетевой трансформатор, зарядное устройство или блок для галогенных ламп. При необходимости вы можете прочесть про принцип действия трансформатора тока.

Если вы желаете получить детальную информацию о том, как выполнить намотку тороидального трансформатора своими руками, тогда необходимо посмотреть видео, которое расположено ниже:

Возможные схематические решения

Обычно используются трансформаторы вида с немагнитным зазором. Проблема использования заключается в зависимости сердечника от внешнего поля, показателей индуктивности первички.

Однотактный

Кривая намагничивания зависит пропорционально от проницаемости сердечника. Это можно увидеть на схеме зависимости напряженности внешнего поля от величины намагничивания.

Если растет показатель тока на первичной обмотке, то проницаемость будет уменьшаться, а намагниченность увеличиваться. Индуктивность внутреннего слоя понизиться. Это способствует тому, что оборудование начинает работать в режиме насыщения.

Однотактные ламповые усилители дают возможность через тс протекать току, который вызывает намагничивание. Крепеж более мягкого материала невозможен, кроме того, не поможет решить проблему и увеличение витков первички — насыщение сердечника продолжится. Нужные показатели индуктивности достигаются путем смены количества витков и увеличения ширины зазора.

Двухтактный

Проблема создания двухтактного трансформатора идентичная — получить необходимые показатели индуктивности обмотки, но не допустить входа в режим пресыщения.

Намотка тороидального трансформатора

Изготовление тороидального трансформатора может выполнить, даже молодой электрик. Намотка не представляет ничего сложного. Вот инструкция, которая поможет узнать, как правильно мотать тороидальный магнитопровод для полуавтомата:

  • Для намотки трансформатора на ферритовом сердечнике, вам необходимо использовать специальный станок. Он позволяет значительно ускорить работу и при этом вы легко сможете уменьшить вероятность соскока железа. Его можно выполнить по типу зажима для накрутки провода.
  • Латры, которые нужны для намотки должны иметь одинаковые размеры. При наматывании вам необходимо следить, чтобы между витками не было свободного места. Если силовой трансформатор будет иметь небольшие щели, тогда их можно заполнить железными листами от другого трансформатора.

  • После намотки железа необходимо приварить специальные выводы. Чтобы приварить изделие будет достаточно 2 или 3 сварочных точки.
  • Теперь вам необходимо промазать торцы магнитопровода с помощью эпоксидного клея. При необходимости кромки можно округлить.
  • Поверх усилителя вам следует намотать изоляцию. Чтобы выполнить намотку можно использовать лист картона. Присоединить его можно с помощью малярного скотча. Повторить это действие необходимо по всей площади картона.
  • Теперь вы можете намотать изоленту, которая выполнена из текстиля. Поверх слоя также можно использовать малярный скотч.
  • К последнему этапу относится намотка провода выбранного сечения. Рассчитать количество витков вы сможете с помощью специальной программы. После накрутки изделие необходимо покрыть лаком NC.

  • Изоляция для тороидального трансформатора должна быть выполнена из лакоткани или текстильной изоленты. Эта обмотка называется вторичной и ее также следует покрыть лаком. Это действие следует продолжать до появления необходимого уровня витков.

  • Провод для вторичной обмотки обычно имеет большое сечение. Если сетевой трансформатор нужен для дуговой сварки, тогда в конце следует добавить необходимое количество витков.
Читать еще:  Теплица из профиля для гипсокартона: пошаговая инструкция по возведению каркаса

Один виток способен переносить 0,84 Вольт. Схема намотки тороидального трансформатора выполняется следующим образом:

Так вы сможете легко самостоятельно сделать тороидальный трансформатор 220 на 24 вольта. Эту схему вы легко сможете подключить, как для дуговой, так и для полуавтоматической сварки. Все параметры необходимо рассчитывать исходя из сечения провода. Характеристики устройства также позволяют производить ступенчатую регулировку. Среди его достоинств можно встретить достаточно высокую производительность и доступность.

Необходимые сведения

Для изготовления намоточного изделия необходимо руководствоваться множеством сведений. От этого напрямую будет зависеть качество, срок службы готового блока питания. Следует грамотно подойти к процессу расчета, учесть такие показатели, как магнитную индуктивность, КПД и плотность тока. Иначе изделие получится ненадежным и скоро выйдет из строя. К основным характеристикам следует отнести:

  • Входное напряжение сети. Оно зависит от источника, к которому будет подключен трансформатор. Стандартными являются: 110 В, 220 В, 380 В, 660 В. На практике оно может быть любым, что зависит от характеристик промежуточных цепей.
  • Выходное напряжение трансформатора — величина, требуемая для обеспечения стабильной работы потребителя. Часто требуется изготовить изделие с несколькими номиналами или с регулируемым напряжением. Тогда необходимо учитывать максимальную его величину.
  • Ток в нагрузке. При фиксированном значении рассчитываются жесткие характеристики устройства, но часто требуется обеспечить регулируемую величину, тогда потребуется учесть максимальную его величину.
  • Частота сети. У нас применяется европейский стандарт, то есть 50 Гц.
  • Мощность нагрузки. Это не основной параметр, потому что ее можно определить по напряжению и току.
  • Количество выходных обмоток. В некоторых электронных приборах используются блоки питания с несколькими выходными напряжениями. Для изготовления силовой электроники используется в основном один номинал, например, для сварочных трансформаторов.

Также потребуется учесть тип сердечника, потому что от его конструкции напрямую зависит принцип расчета показателей изделия. Существует много разновидностей как конструкций, так и материалов. Если учитывать последние нет смысла из-за незначительных погрешностей, то форма и размеры имеют большое значение. Поэтому необходимы разные алгоритмы расчета, что зависит от этого критерия. Начнем с самого простого и распространенного.

Не всегда требуется расчет вести с требуемых данных. Нередко в наличии есть какое-то железо, тогда потребуется определить мощность трансформатора по сечению магнитопровода. Программы онлайн, имеющиеся в интернете, позволяют определять параметры любым порядком.

Обзор цен

Купить тороидальный трансформатор HBL-200 можно практически в любом городе. На фото ниже вы сможете увидеть стоимость преобразователя:

Надеемся, что наша информация будет полезной и вы сможете правильно выполнить намотку тороидального трансформатора. Как видите, намотка тороидального трансформатора не занимает много времени.

Расчет габаритной мощности тороидального трансформатора

Упрощенный расчет тороидального ленточного сердечника для автотрансформатора

1. Расчет габаритной мощности сердечника по размерам готового сердечника.

Р габ = B max * K ок * K ст * J * S серд * S ок / 0,901 где:

B max — магнитная индукция [ Тл ]

K ок — коэффициент заполнения окна обмоткой,

Кст — коэффициент заполнения магнитопровода сталью,

J — допустимая плотность тока в обмотках [A] ,

S серд — площадь сечения магнитопровода [ см.кв ] ,

S ок — площадь окна магнитопровода [ см.кв ] ,

Площадь сечения сердечника S серд рассчитывается по формуле:

S серд = ( D внеш — D внутр)/2 * h где:

D внеш — внешний диаметр сердечника,

D внут — внутренний диаметр сердечника,

h — высота сердечника.

Площадь сечения окна сердечника S ок рассчитывается по формуле:

S ок = D внутр* D внутр * 3,1415 / 4 где:

D внут — внутренний диаметр сердечника.

Максимальная мощность нагрузки P нагр. max рассчитывается по формуле:

P нагр. max = I вх * U вх. min * КПД

2. Расчет габаритной мощности сердечника для автотрансформатора

Поскольку автотрансформатор имеет часть обмотки, которая имеет электрическую связь и часть обмотки, которая имеет электро-магнитную связь, то и сердечник для автотрансформатора можно использовать меньшей габаритной мощности чем у классического трансформатора.

Р габ.авт = P нагр. max * (1 — N перв./ N вых) * 1, 4 где:

Р нагр.мах — ма к симальная мощность нагрузки стабилизатора,

N перв. — число витков первичной обмотки,

N вых. — число витков выходной обмотки.

1, 4 — коэффициент запаса.

Пример расчета (подбора) сердечника

Необходимо рассчитать сердечник автотрансформатора для стабилизатора 6 кВт.

Требуемая габаритная мощность сердечника для автотрансформатора на 6 кВт:

(количество витков первичной и выходной обмотки взято из статьи )

Р габ.авт = P нагр. max * (1 — N перв./ N вых) = 6000 * (1-130/223) * 1,4 = 3503 Вт.

Допустим есть в наличии ленточный тороидальный сердечник с размерами: D внеш. = 22 см, D внут. = 12 см, h = 8 см.

S ок = D внутр* D внутр * 3,1415 / 4 = 12*12* 3,1415 / 4 = 113,1 кв.см

S серд = ( D внеш — D внутр)/2 * h = (22 — 12)/2 * 8 = 40 кв.см

Габаритная мощность сердечника:

Р габ = B max * K ок * K ст * J * S серд * S ок / 0,901 = 1,2 * 0,25 * 0,95 * 2,5 * 40 * 113,1 / 0,901 = 3577 Вт.

Вывод: Так как 3577 больше 3503 , то габаритная мощность готового сердечника подходит для изготовления автотрансформатора для стабилизатора 6 Квт.

Кроме того, i 1 = i 1.1 + i 1. 2 , или i 1. 2 = i 1 — i 1.1 ( 2 )

Обмотка 0-1 является первичной, 1-2, 2-3, 3-4, 4-5 повышающие, 5-6 понижающая. (смотрите рисунок справа)

1. Расчет производится исходя из самого тяжелого режима для автотрансформатора, когда в сети 120 Вольт

Рвх = Р 2 = 3 кВА; U вх = 120 В; U 2 = 205 В

i 1 = 3000/120 = 25 А; i 1. 2 = 3000/205 = 14,6 А

отсюда i 1. 1 = 25 — 14,6 = 10,4 А;

2. Необходимые сечения провода S для обмоток найдем из выражения: S = i / 2,5где 2,5 — максимально-допустимая плотность тока в обмотках (А).

S 0-1 = 10,4 / 2,5 = 4, 1 6 мм.кв

S 1 — 2, 2-3, 3-4, 4-5 = 25 / 2,5 = 10 мм.кв

3. Диаметр провода для обмотки находим из выражения:

D = √ 4S / 3,14 ( 3 )

Для обмотки 0. 1 D=2,3 мм

Для обмотки 1..2, 2. 3, 3. 4, 4. 5 D = 3 , 6 мм (или шина 2 х 5 мм)

4. Сечение провода для обмотки 5-6 выбираем с учетом нижнего напряжения диапазона 235-270 В. т.е 235 В.

S 5-6 = Рвх /(235 x 2,5) = 3000/587,5 = 5,1 мм.кв

Диаметр провода для обмотки 5-6 исходя из ( 3 ) D=2,6 мм.

Пример рассчета для варианта на 2,2 кВт c коммутацией по выходу:

Обмотка 0-1 является первичной, 1-2 понижающая, 2-3, 3-4, 4-5, 5-6 повышающие. (смотрите рисунок справа).

Автомат QF2 ограничивает ток выходной обмотки на уровне 10А. Отсюда и выходная мощность 2,2 кВт.

1. Расчет также производится исходя из самого тяжелого режима для автотрансформатора, когда в сети 120 Вольт

Рвх = Р 2 = 2,2 кВА; U вх = 120 В; U 2 = 205 В

i 1 = 2200/120 = 18,3 А; i 1. 2 = 2200/205 = 10,7 А

отсюда i 1. 1 = 18,3 — 1 0 , 7 = 7 , 6 А;

2. Необходимые сечения провода S для обмоток найдем из выражения: S = i / 2,5где 2,5 — максимально-допустимая плотность тока в обмотках (А).

S 0-1 , 1-2 = 7,6 / 2,5 = 3 мм.кв

S 2-3, 3-4, 4-5, 5-6 = 18,3 / 2,5 = 7,3 мм.кв

3. Диаметр провода для обмотки находим из выражения:

D = √ 4S / 3,14 ( 3 )

Д ля обмотки 0. 1, 1. 2 D = 2,0 мм;

Для обмоток 2. 3, 3. 4, 4. 5, 5. 6 D = 3 ,0 мм

Расчёт и изготовление трансформатора для импульсного блока питания
на тороидальном (кольцевом) ферритовом сердечнике. Онлайн калькулятор обмоток.

«Как-то лет в 12 нашёл я старый трансформатор, слегка перемотал его и включил.
Энергосистема опознала нового радиотехника и приветливо моргнула всем домом.
Вот так я и начал изучать силовую электронику».

А тем временем традиционные линейные источники питания на силовых трансформаторах всё чаще стали вытесняться своими импульсными коллегами.
При этом, что бы там не говорили авторитетные товарищи про многочисленные технические достоинства импульсных преобразователей, плюс у них только один — массогабаритные показатели. Всё остальное — сплошной минус.
Однако этот единственный плюс оказался настолько жирным, что заслонил собой все многочисленные минусы, особенно в тех замесах, когда к электроустройствам не предъявляется каких-либо жёстких требований.

Наиболее популярными среди радиолюбителей стали сетевые источники питания, собранные на микросхемах IR2153 и IR2155, которые представляют из себя самотактируемые высоковольтные драйверы, позволяющие получать полумостовые импульсные блоки питания мощностью до 1,5 кВт с минимальной обвязкой.
И если сердце импульсного блока питания колотится внутри готовой буржуйской микросхемы, то главным, ответственным за электрохозяйство среди остальных наружных образований, безусловно, является правильно выполненный трансформатор.

Для наших высокотоковых дел лучше всего применять трансформаторы с тороидальным магнитопроводом. В сравнении с другими сердечниками они имеют меньший вес и габариты, а также отличаются лучшими условиями охлаждения обмоток и повышенным КПД.
Но самое главное — при равномерном распределении обмоток по периметру сердечника практически отсутствует магнитное поле рассеяния, что в большинстве случаев отметает потребность в тщательном экранировании трансформаторов.

По сути дела, умных статей в сети на предмет расчёта импульсных трансформаторов великое множество, с картинками, формулами, таблицами и прочими авторитетными причиндалами. Наблюдаются в свободном доступе и многочисленные онлайн-калькуляторы на интересующую нас тематику.

И снизошла б на нас благодать неземная, кабы вся полученная информация сложилась в наших любознательных головах в единое большое целое.
Да вот, что-то не получается. Ништяк обламывается из-за того, что следуя этими различным компетентным источникам, мы устойчиво получаем на выходе и различные результаты.

Читать еще:  Кто отвечает за уличное освещение в поселках и как правильно его организовать

Вот и гуляют по сети идентичные радиолюбительские схемы импульсных блоков питания на IR2153 с идентичными заявленными характеристиками, трансформаторами на одних и тех же кольцах, но радикально не идентичным количеством витков первичных обмоток трансформаторов.
А когда эти различия выражаются многими разами, то возникает желание «что-то подправить в консерватории». Объясняется это желание просто — существенной зависимостью КПД устройства от значения индуктивности, на которую нагружены ключевые транзисторы преобразователя. А в качестве этой индуктивности как раз и выступает первичная обмотка импульсного трансформатора.

А для лучшего восприятия сказанного, приведу типовую схему источника питания на IR2153, не обременённую ни устройством защиты, ни какими-либо другими излишествами.


Рис.1

Схема проверена временем и многочисленными опытами изрядно пощипанных током, неустрашимых радиолюбителей, так что не работать в ней — просто нечему.

Ну и наконец, переходим к расчёту импульсного трансформатора.

Мотать его будем на бюджетных низкочастотных ферритовых кольцах отечественного производителя 2000НМ или импортных — EPCOS N87, а для начала определимся с габаритной мощностью тороидального ферритового магнитопровода.

Концепция выбора габаритной мощности с запасом в 10% от максимальной мощности в нагрузке, заложенная в режимы автоматического подбора сердечника в большинстве калькуляторов, хотя и не противоречит теоретическим расчётам, учитывающим высокий КПД импульсного трансформатора, но всё же наводит на грустную мысль о ненадлежащей надёжности и возможной скорой кончине полученного моточного изделия.
Куда мне ближе трактовка этого параметра, описанная в литературе: Pгаб>1,25×Рн .

Расчёты поведём исходя из частоты работы преобразователя IR2153, равной 50 кГц. Почему именно такой?
Не ниже, потому что такой выбор частоты позволяет нам уложиться в достаточно компактные размеры ферритового сердечника, и при этом гарантирует полное отсутствие сигналов комбинационных частот ниже 30 кГц при работе девайса в составе качественной звуковоспроизводящей аппаратуры.
А не выше, потому что мы пилоты. А феррит у нас низкочастотный и может почахнуть и ответить значительным снижением магнитной проницаемости при частотах свыше 60-70 кГц. Не забываем, что сигнал, на выходах ключей имеет форму меандра и совокупная амплитуда гармоник, с частотами в 3-9 раз превышающими основную, имеет весьма ощутимую величину.

Параметры первичной обмотки трансформатора рассчитаем при помощи программы Lite-CalcIT, позволяющей, на мой взгляд, вполне адекватно оценить как размер сердечника, так и количество витков первичной обмотки.
Результаты сведём в таблицу.

Простой расчет трансформатора с тороидальным магнитопроводом

Перед конструкторами радиоэлектронной аппаратуры часто ставится задача создания таких устройств, которые отличались бы небольшими размерами и минимальным весом.

Практика показала, что лучше всего применять силовые трансформаторы с тороидальным магнитопроводом. В сравнении с броневыми сердечниками из Ш-образных пластин они имеют меньший вес и габариты, а также отличаются лучшими условиями охлаждения обмотки и повышенным к.п.д. Кроме того, при равномерном распределении обмоток по периметру сердечника практически отсутствует поле рассеяния и в большинстве случаев отпадает необходимость в экранировании трансформаторов,

В связи с тем, что полный расчет тороидального трансформатора по сечению сердечника сложен, приводим таблицу, с помощью которой радиолюбителю будет легче произвести расчет тороидального трансформатора мощностью до 120 вт.

Точность расчета вполне достаточна для любительских целей.

Расчет параметров тороидального трансформатора, не вошедших в таблицу, аналогичен расчету трансформаторов на Ш-образном сердечнике.

Таблицей можно пользоваться при расчете трансформаторов на сердечниках из холоднокатаной стали Э310, Э320, Э380 с толщиной ленты 0,35—0, 5 мм. и стали Э340, Э350, Э360 с толщиной ленты 0*05—0,1 мм. при частоте питающей сети 50 Гц.

При намотке трансформаторов допустимо применять лишь меж обмоточную и наружную изоляции: хотя межслоевая изоляция и позволяет добиться более ровной укладки провода обмоток, из-за различия наружного и внутреннего диаметров сердечника при ее применении неизбежно увеличивается толщина намотки по внутреннему диаметру.

Для намотки тороидальных трансформаторов необходимо применять обмоточные провода с повышенной механической и электрической прочностью изоляции. При намотке вручную следует пользоваться проводами ПЭЛШО, ПЭШО. В крайнем случае можно применить провод ПЭВ-2. В качестве межобмоточной и внешней изоляции пригодны фторопластовая пленка ПЭТФ толщиной 0,01— 0,02 мм. лакоткань ЛШСС толщиной 0,06—0,12 мм. или батистовая лента.

Дано: напряжение питающей сети Uc = 220 в,

выходное напряжение Uн = 24 в,

  1. Расчет мощности тороидального трансформатора. Определяют мощность вторичной обмотки P = Uн*Iн = 24*1,8 = 43,2 вт.
  2. определяют габаритную мощность трансформатора Pг = p/η = 43,2 / 0,92 = 48 вт. Величину к. п. д. и другие необходимые для расчета данные выбирают по таблице из нужной графы ряда габаритных мощностей.
  3. Определяют площадь сечения сердечника тороидальной катушки

Sрасч.= (Pг / 1,2) = 5,8 см 2 .

Pг Вт.W1W2Sсм 2Δ А/мм 2η
до 1041/S38/SPг4,50,8
10-3036/S32/SPг/1,14,00,9
30-5033,3/S29/SPг/1,23,50,92
50-12032/S28/SPг/1,253,00,95

Примечание. Рг, — габаритная мощность трансформатора, w1, — число витков на вольт для стали Э310, Э320, Э330, w2— число витков на вольт для стали Э340, Э359, ЭЗ60, S — площадь сечения сердечника см 2 , Δ — допустимая плотность тока в обмотках, η — к. п. д. трансформатора.

4. Подбирают размеры сердечника Dc, dc и hc

Ближайший стандартный тип сердечника — ОЛ 50/80-40, площадь сечения которого равна 6 см 2 (не менее расчетной).

5. При определении внутреннего диаметра сердечника должно быть выполнено условие: dc ≥ d`c,то есть 5 ≥3,8.

6. Предположим, что выбран сердечник из стали Э320, тогда число витков на вольт определяют по формуле;

w1 = 33,3 / S = 33,3 / 6 = 5,55 витков / вольт.

7. Находят расчетные числа витков первичной и вторичной обмоток W1-1 =w1* Uc = 5,55 * 220 = 1221 виток. W1-2= w2 * Uc = 5,55*24 = 133 витка.

Так как в тороидальных трансформаторах магнитный поток рассеяния весьма мал, то падение напряжения в обмотках определяется практически лишь их активным сопротивлением, вследствие чего относительная величина падения напряжения в обмотках тороидального трансформатора значительно меньше* чем в трансформаторах стержневого и броневого типов. Поэтому для компенсации потерь на сопротивлении вторичной обметки необходимо увеличить количество ее витков лишь на 3%.

W1-2 = 133 * 1,03 = 137 витков.

8. Определяют диаметры проводов обмоток d1 = 1,13 * √(I1 / Δ) , где I1 ток первичной обмотки трансформатора, определяемый иэ формулы:

d1 =1,13 * √(0,24 / 3,5) = 0,299 мм.

Выбирают ближайший диаметр провода в сторону увеличения (0*31 мм)

d2 = 1,13 * √(I2 / Δ) = 1,13 * √(1,8 / 3,5) = 0,8 мм.

Трансформаторы, рассчитанные с помощью приводимой таблицы, после изготовления подвергались испытаниям под постоянной максимальной нагрузкой в течение нескольких часов и показали хорошие результаты.

Видео: Расчет тороидального трансформатора

Видео посвящено вопросу расчета тороидального трансформатора. При расчете используется классическая методика определения количества витков для первичной и вторичной катушек трансформатора.

Простой расчет тороидальных трансформаторов (по таблице)

При изготовлении малогабаритной радиоэлектронной аппаратуры лучше всего использовать трансформаторы с тороидальным магнитопроводом.
В сравнении с броневыми сердечниками из Ш-образных пластин они имеют меньший вес и габариты, обладают повышенным КПД, а их обмотка лучше охлаждается.
Кроме того, при равномерном распределении обмоток по периметру сердечника практически отсутствует поле рассеяния и в большинстве случаев отпадает необходимость в экранировании трансформаторов.

В связи с тем, что полный расчет силовых трансформаторов на тороидальных сердечниках слишком громоздок и сложен, приводим таблицу, с помощью которой легко рассчитать тороидальный трансформатор мощностью до 120 Вт. Точность расчета вполне достаточна для любительской практики. Расчет параметров тороидального трансформатора, не вошедших в таблицу, аналогичен расчету трансформаторов на Ш-образном сердечнике.

Таблицей можно пользоваться при расчете трансформаторов на сердечниках из холоднокатаной стали Э310, Э320, Э330 с толщиной ленты 0,35—0,5 мм и стали Э340, Э350, Э360 с толщиной ленты 0,05—0,1 мм при частоте питающей сети 50 Гц. .При намотке трансформаторов допустимо применять лишь межобмоточную и наружную изоляции: хотя межслоевая изоляция и позволяет добиться более ровной укладки провода обмоток, из-за различия наружного и внутреннего диаметров сердечника при ее применении неизбежно увеличивается толщина намотки по внутреннему диаметру.

Для намотки тороидальных трансформаторов необходимо применять обмоточные провода с повышенной механической и электрической прочностью изоляции. При намотке вручную следует пользоваться проводами ПЭЛШО, ПЭШО. В крайнем случае можно применить провод ПЭВ-2. В качестве межобмоточной и внешней изоляции пригодны фторопластовая пленка ПЭТФ толщиной 0,01—0,02 мм, лакоткань ЛШСС толщиной 0,06—0,012 мм или батистовая лента.

Пример расчета трансформатора.

Дано: напряжение питающей сети Uc = 220 В, выходное напряжение UH = 12 В, ток нагрузки Iн = 3,6 А.

1. Определяют мощность вторичной обмотки:

P=Uн х Iн=12х3,6=43,2 Вт.

2. Определяют габаритную мощность трансформатора:

Величину КПД и другие необходимые для расчета данные выбирают по таблице из нужной графы ряда габаритных мощностей.

3. Находят площадь сечения сердечника:

4. Подбирают размеры сердечника Dc,dc и hc :

Ближайший стандартный тип сердечника — ОЛ50/80- 40, площадь сечения которого равна

Читать еще:  Где и сколько размещать розеток в спальне

(не менее расчетной).

5. При определении внутреннего диаметра сердечника должно быть выполнено условие: dc>d’c

то есть 5 > 3,8.

6. Предположим, выбран сердечник из стали Э320, тогда число витков на вольт определяют по формуле

7. Находят расчетные числа витков первичной и вторичной обмоток:

Так как в тороидальных трансформаторах магнитный поток рассеяния весьма мал, то падение напряжения в обмотках определяется практически лишь их активным сопротивлением, вследствие чего относительная величина падения напряжения в обмотках тороидального трансформатора значительно меньше, чем в трансформаторах стержневого и броневого типов. Поэтому для компенсации потерь на сопротивлении вторичной обмотки необходимо увеличить количество ее витков лишь на 3%.

W1-2=66X1,03=68 витков.

8. Определяют диаметры проводов обмоток:

где I1 — ток первичной обмотки трансформатора, определяемый из формулы

Выбирают ближайший диаметр провода в сторону увеличения (0,31 мм):

Таблица для расчета тороидальных трансформаторов

Намотка тороидального трансформатора — разбираем развернуто

Преобразование тока или напряжения применяется практически в каждом электроприборе. Для чего нужен трансформатор? Более практичного и универсального прибора для преобразования напряжения еще не придумали.

Подготовка к проведению намотки

  • В первую очередь нужно провести правильный расчет тороидального трансформатора по сечению сердечника. Вычисляется нагрузка, для этого суммируют все подключенные устройства (двигатели, передатчики и т. п. ), питание которых будет обеспечиваться. К примеру, радиостанция имеет 3 канала, мощность которых по 15, 10 и 15 Ватт. Суммарно это 40 Ватт.
  • Далее следует поправка на КПД схемы (в большинстве передатчиков около 70%). У трансформатора также имеется собственный КПД, составляющий 95%, но нужно сделать поправку на самоделку и выставить уровень КПД не более 90%. Значит, требуемая мощность возрастет до 63,5 Вт. Стандартный вес устройств с такой мощностью — до 1,5 кг.
  • Следующий шаг — определяют входное и выходное напряжение. Если 220 В — входное, а 12 В — выходное со стандартной частотой 50 Гц, количество витков составит на одну обмотку 220*0,73=161 виток (округляют до целых чисел), а снизу получится 12*0,73=9 витков.
  • Затем — определение диаметра провода. Для этого необходимо обладать информацией относительно плотности и протекания тока, на 1 кВт выставляют значение до 3 А/мм2.

Конструкция

Первый двухполярный трансформатор был изготовлен еще Фарадеем, и согласно данным, это было именно тороидальное устройство. Тороидальный автотрансформатор (марка Штиль, ТМ2, ТТС4)– это прибор, предназначенный для преобразования переменного тока одного напряжения в другое. Они используется в различных линейных установках. Этот электромагнитный прибор может быть однофазным и трехфазным. Конструктивно состоит из:

  1. Металлического диска, изготовленного из рулонной магнитной стали для трансформаторов;
  2. Резиновой прокладки;
  3. Выводов первичной обмотки;
  4. Вторичной обмотки;
  5. Изоляции между обмотками;
  6. Экранирующей обмотки;
  7. Дополнительным слоем между первичной обмоткой и экранирующей;
  8. Первичной обмотки;
  9. Изоляционного покрытия сердечника;
  10. Тороидального сердечника;
  11. Предохранителя;
  12. Крепежных элементов;
  13. Покрывной изоляции.

Для соединения обмоток используется магнитопровод.

Этот тип преобразователей может классифицироваться по назначению, охлаждению, типу магнитопровода, обмоткам. По назначению бывает импульсный, силовой, частотный преобразователь (ТСТ, ТНТ, ТТС, ТТ-3). По охлаждению – воздушный и масляный (ОСТ, ОСМ, ТМ). По количеству обмоток – двухобмоточный и более.

Фото – принцип работы трансформатора

Устройство этого типа используется в различных аудио- и видеоустановках, стабилизаторах, системах освещения. Главным отличием этой конструкции от других устройств является количество обмоток и форма сердечника. Физиками считается, что кольцевая форма – это идеальное исполнения якоря. В таком случае, намотка тороидального преобразователя выполняется равномерно, как и распределение тепла. Благодаря такому расположению катушек, преобразователь быстро охлаждается и даже при интенсивной работе не нуждается в использовании кулеров.

Фото – тороидальный кольцевой преобразователь

Достоинства тороидального трансформатора:

  1. Небольшие габариты;
  2. Выходной сигнал на торе очень сильный;
  3. Обмотки имеют небольшую длину, и как результат уменьшенное сопротивление и повышенный КПД. Но также из-за этого при работе слышен определенный звуковой фон;
  4. Отличные характеристики энергосбережения;
  5. Простота в самостоятельной установке.

Преобразователь используется как сетевой стабилизатор, зарядное устройство, в качестве блока питания галогенных ламп, лампового усилителя УНЧ.

Фото – готовый ТПН25

Видео: назначение тороидальных трансформаторов

Трансформатор тока

Кроме стандартного типа трансформаторов напряжения существует особый вид, называемый трансформатором тока. Основное его назначение — изменять значение тока относительно своего входа. Другое название такого вида устройства — токовый.

Токовый трансформатор — измерительный прибор, предназначенный для измерения силы переменного тока. Применяются токовые устройства тогда, когда нужно измерить ток большой силы или для защиты полупроводниковых приборов от возникших на линии нештатных его значений.

Токовое устройство по виду ничем не отличается от трансформатора напряжения, его отличия — в подключении и количестве витков в обмотке. Первичка выполняется с помощью одного или пары витков. Эти витки пропускаются через тороидальный магнитопровод, и именно через них измеряется ток. Токовые устройства выполняются не только тороидального типа, но и могут быть выполнены и на других видах сердечниках. Главным условием является то, чтобы измеряемый провод совершил полный виток.

Вторичная обмотка при таком исполнении шунтируется низкоомным сопротивлением. При этом величина напряжения на этой обмотке не должна быть большого значения, так как во время прохождения наибольших токов сердечник будет находиться в режиме насыщения.

В некоторых случаях измерения проводятся на нескольких проводниках которые пропущены через тор. Тогда величина тока будет пропорциональна силе суммы токов.

Тороидальный трансформатор, как сделать своими руками?

Первое, что приходит в голову – взять готовый тор от сломанной бытовой техники, и попробовать изменить параметры вторичной обмотки под ваши расчеты. Как перемотать трансформатор своими руками, знают все радиолюбители.

Но тороидальный сердечник не разбирается, если пропускать через «бублик» пару тысяч (или даже сотен) витков, на перемотку уйдут месяцы. Да и вероятность повредить оболочку проволоки при таком способе довольно высока.

Важно! Намоточная медная проволока имеет защитное лаковое покрытие. Иногда тряпичное, для мощных обмоток. Дополнительная изоляция увеличивает сечение, соответственно объем обмотки вырастает втрое. Поэтому при наматывании, витки укладываются без продольного перемещения (протяжки), чтобы не повреждать изоляцию.

Чтобы не задаваться вопросами типа: «Что можно сделать из трансформатора от микроволновки?» (из него делают споттеры для точечной сварки), логичнее будет подбирать трансформатор под конкретную задачу, а не наоборот.

Если ваш электроприбор компактный, ищите тороидальный преобразователь. Кстати, в микроволновых печах применяются бронированные трансформаторы, достаточно крупного размера.

Имея представление о характеристиках собираемого блока питания, вы должны знать, как рассчитать мощность трансформатора. Получив эту важную характеристику, начинаете поиски донора. Если приобретенный трансформатор имеет заводскую этикетку, или еще лучше, паспорт изделия – вы пользуетесь этой информацией. А если у вас в руках безымянное изделие?

Первый вопрос, который возникнет: «Как определить выводы трансформатора?» Необходимо произвести замеры сопротивления между контактами с помощью мультиметра. Надо найти первичную обмотку. Как правило, контакты первички не соединены с вторичными обмотками.

То есть, если прозвонка показала гарантировано обособленную обмотку, это первичка. По результатам замеров рисуем схему, и приступаем к определению коэффициентов понижения напряжения.

Важно! Вы должны точно быть уверенными в том, что перед вами именно трансформатор напряжения на 220 вольт, а не дроссель или прибор, рассчитанный на иное входное напряжение.

На контакты первичной обмотки подводим напряжение 220 вольт. Для безопасности можно ограничить ток какой-нибудь нагрузкой. Например, последовательно включить лампу накаливания мощностью 40-60 Вт. Лампа шунтируется обычным тумблером. Подключение производится через предохранитель, или бытовой удлинитель с защитным автоматом (на случай короткого замыкания).

Необходимо дать поработать тору несколько минут «в холостую» с включенной лампой. Затем отключите питание, и оцените температуру устройства. Если избыточного нагрева нет – шунтируйте лампу выключателем и снова дайте время на проверку нагрева.

После этого можно приступать к составлению диаграммы напряжения на вторичных обмотках. Произведите замеры на контактах во всех возможных комбинациях. Результаты отобразите на схеме. Получив полную картину, подайте на обмотки нагрузку, соответствующую напряжению. Лучший способ – та же лампа накаливания.

Внимание! Проверка вторичных обмоток под нагрузкой – косвенный способ, как узнать мощность трансформатора.

Оценить возможности прибора можно по степени нагрева под нагрузкой. Нормальная температура – не более 45°С. То есть, сразу после отключения от сети, трансформатор можно трогать рукой без температурного дискомфорта.

Как ускорить рабочий процесс

У многих радиолюбителей в арсенале имеются простые специальные агрегаты, с помощью которых делается обмотка. Во многих случаях речь идет о несложных конструкциях в виде небольшого столика либо подставки на стол, на которых установлено несколько брусков с вращающейся продольной осью. Длина самой оси должна превышать длину каркаса намотки в 2 раза. На одном из выходов из брусков крепится ручка, позволяющая вращать устройство.

На оси надеваются катушечные каркасы, которые стопорятся с двух сторон шпильками-ограничителями (они препятствуют перемещениям каркаса вдоль оси).

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector