Элемент пельтье принцип работы
Термоэлектрический модуль Пельтье — устройство, принцип действия, характеристики
Явление возникновения термо-ЭДС было открыто немецким физиком Томасом Иоганном Зеебеком в далеком в 1821 году. А заключается это явление в том, что в замкнутой электрической цепи, состоящей из соединенных последовательно разнородных проводников, при условии что их контакты находятся в условиях различных температур, возникает ЭДС.
Данный эффект, названный по имени его первооткрывателя эффектом Зеебека, называют теперь просто термоэлектрическим эффектом.
Если цепь состоит всего из пары разнородных проводников, то такая цепь называется термопарой. В первом приближении можно утверждать, что величина термо-ЭДС зависит лишь от материала проводников и от температур холодного и горячего контактов. Таким образом, в небольшом интервале температур термо-ЭДС пропорциональна разности температур холодного и горячего контактов, а коэффициент пропорциональности в формуле называется коэффициентом термо-ЭДС.
Так например, при разности температур в 100°С, при температуре холодного контакта 0°С, пара медь-константан обладает термо-ЭДС величиной в 4,25мВ.
Между тем, термоэлектрический эффект имеет в своей основе три составляющих:
Первый фактор — различие у разных веществ зависимости средней энергии электронов от температуры. В результате, если при нагреве проводника на одном его конце температура выше, то там электроны приобретают большие скорости, чем электроны на холодном конце проводника.
Кстати, у полупроводников с нагревом растет и концентрация электронов проводимости. Электроны с высокой скоростью устремляются к холодному концу, и там происходит накопление отрицательного заряда, а на горячем конце получается нескомпенсированный положительный заряд. Так возникает составляющая термо-ЭДС, называемая объемной ЭДС.
Второй фактор — у разных веществ контактная разность потенциалов зависит от температуры по-разному. Это связано с различием энергии Ферми у каждого из проводников, сведенных в контакт. Контактная разность потенциалов, возникающая при этом, оказывается пропорциональной разности энергий Ферми.
Получается электрическое поле в тонком приконтактном слое, причем разность потенциалов с каждой стороны (у каждого из сведенных в контакт проводников) будет одинаковой, и при обходе цепи по замкнутому контуру, результирующее электрическое поле будет равно нулю.
Но если температура одного из проводников будет отличаться от температуры другого, то в связи с зависимостью энергии Ферми от температуры, изменится и разность потенциалов. В результате возникнет контактная ЭДС — вторая составляющая термо-ЭДС.
Третий фактор — фононное увеличение ЭДС. При условии, что в твердом теле имеет место температурный градиент, количество фононов (фонон — квант колебательного движения атомов кристалла), движущихся в направлении от горячего конца к холодному будет преобладать, в результате чего вместе с фононами большое количество электронов будет увлекаться в сторону холодного конца, и там станет накапливаться отрицательный заряд, пока процесс не придет в равновесие.
Это дает третью составляющую термо-ЭДС, которая в условиях низких температур может в сотни раз превосходить две упомянутые выше составляющие.
В 1834 году французский физик Жан Шарль Пельтье открыл обратный эффект. Он обнаружил, что при прохождении электрического тока через контакт (спай) двух разнородных проводников выделяется или поглощается тепло.
Количество поглощаемого или выделяемого тепла связано с видом спаянных веществ, а также с направлением и величиной протекающего через спай электрического тока. Коэффициент Пельтье в формуле численно равен коэффициенту термо-ЭДС, умноженному на абсолютную температуру. Это явление известно теперь как эффект Пельтье.
В сути эффекта Пельтье в 1838 году разобрался русский физик Эмилий Христианович Ленц. Он экспериментально проверил эффект Пельтье, поместив каплю воды на место спая образцов сурьмы и висмута. Когда Ленц пропускал через цепь электрический ток, вода превращалась в лед, но когда ученый изменил направление тока на противоположное, лед быстро растаял.
Ученый установил таким образом, что при протекании тока не только выделялось джоулево тепло, но происходило также поглощение или выделение дополнительного тепла. Это дополнительное тепло получило название «тепло Пельтье».
Физическая основа эффекта Пельтье заключается в следующем. Контактное поле в месте спая двух веществ, созданное контактной разностью потенциалов, либо препятствует прохождению пропускаемого через цепь тока, либо способствует ему.
Если ток пропускается против поля, то требуется работа источника, который должен затратить энергию на преодоление контактного поля, в результате чего и происходит нагрев места спая. Ежели ток направлен так, что контактное поле поддерживает его, то работу совершает контактное поле, и энергия отнимается у самого вещества, а не расходуется источником тока. В результате вещество в месте спая охлаждается.
Наиболее выразителен эффект Пельтье у полупроводников, благодаря чему стали возможными модули Пельтье или термоэлектрические преобразователи.
В основе элемента Пельтье два полупроводника, контактирующие между собой. Эти полупроводники отличаются энергией электронов в зоне проводимости, поэтому при протекании тока через место контакта, электроны вынуждены приобретать энергию, чтобы смочь перейти в другую зону проводимости.
Так, при перемещении в более высокоэнергетическую зону проводимости другого полупроводника, электроны поглощают энергию, охлаждая место перехода. При обратном направлении тока электроны отдают энергию, и происходит нагрев дополнительно к джоулеву теплу.
Полупроводниковый модуль Пельтье состоит из нескольких пар полупроводников p и n-типа, имеющих форму маленьких параллелепипедов. Обычно в качестве полупроводников используют теллурид висмута и твердый раствор кремния и германия. Полупроводниковые параллелепипеды соединены между собой попарно медными перемычками. Эти перемычки служат контактами для теплообмена с керамическими пластинками.
Перемычки расположены так, что с одной стороны модуля только перемычки обеспечивающие переход n-p, а с другой стороны — только перемычки обеспечивающие переход p-n. В результате, при подаче тока, одна сторона модуля нагревается, другая — охлаждается, а если полярность питания сменить на противоположную, то сторона нагрева и охлаждения соответственно поменяются местами. Таким образом, при прохождении тока происходит перенос тепла с одной стороны модуля на другую, и возникает разность температур.
Если теперь одну сторону модуля Пельтье нагревать, а другую охлаждать, то в цепи возникнет термо-ЭДС, то есть будет реализован эффект Зеебека. Очевидно, эффект Зеебека (термоэлектрический эффект) и эффект Пельтье — две стороны одной медали.
Сегодня можно легко приобрести модули Пельтье по относительно доступной цене. Наиболее популярны модули Перьтье типа ТЕС1-12706, содержащие 127 термопар, и рассчитанные на питание 12 вольт.
При максимальном потреблении в 6 ампер, достижима разница температур в 60°С, при этом заявляемый производителем безопасный диапазон рабочих температур — от -30°С до +70°С. Размер модуля 40мм х 40мм х 4мм. Модуль может работать как в режиме охлаждения-нагревания, так и в режиме генерации.
Есть и более мощные модули Пельтье, например TEC1-12715, рассчитанный на 165 Вт. При питании напряжением от 0 до 15,2 вольт, с силой тока от 0 до 15 ампер, данный модуль способен развить разность температур в 70 градусов. Размер модуля также 40мм х 40мм х 4мм, однако диапазон безопасных рабочих температур шире — от -40°С до +90°С.
В таблице ниже приведены данные по модулям Пельтье, широко доступным сегодня на рынке:
Элементы Пельтье. Охлаждение и нагрев
Стандартные термоэлектрические модули имеют взаимообратный принцип действия. В этой статье мы расскажем о применении модулей Пельтье-Зеебека в теплообменных устройствах и приведём пример сборки кулера для воды и базовой охлаждающей системы для воздуха с возможностью обратного запуска (нагрева).
Принцип действия термоэлектрических модулей (ТЭМ), используемых для охлаждения, основан на эффекте Зеебека — обратном процессе относительно эффекта Пельтье. Основной элемент — всё тот же ТЭМ, описанный в первой части. При подаче постоянного тока на поле термопар наблюдается разность температур на плоскостях керамической пластины. Это факт, основанный на термодинамическом процессе, который мы описывать не будем (чтобы не утомлять научными выкладками), но покажем, как применить его в быту.
Примечание. Для постройки агрегатов, инструкции к которым приведены ниже, понадобятся базовые практические навыки сборки электрических цепей. Приведённые модели узлов являются примерными и могут быть заменены на аналогичные (или более/менее мощные) по усмотрению мастера.
Как самостоятельно изготовить кулер для охлаждения воды
Догадливый читатель уже понял, что «чудо-ковшик» из первой части можно использовать для охлаждения жидкости, если запустить его «в обратную сторону», подключив постоянный ток.
ТЭМ применены в каждом кулере для воды. Аналог этого заводского прибора вполне можно построить своими руками, при этом работать он будет не хуже. Мы опишем сам принцип работы и схему сборки. Компоновку и варианты исполнения можно подобрать, исходя из собственных потребностей. Например, сделать его переносным или стационарным, интегрированным в кухонную мебель или систему подготовки питьевой воды. Последний вариант оптимален, поскольку охлаждение в системе будет управляемым (по факту подачи питания).
Для этого нам понадобится:
- Прямоугольная плоская герметичная ёмкость из нержавейки с размерами 100х100х30 (фляга-теплообменник) с резьбовыми выходами на ½ дюйма по коротким сторонам. Это единственный элемент, изготовление которого лучше заказать мастеру на заводе.
- Подводка питьевой воды с фитингом на ½ дюйма (из ёмкости или водопровода).
- Блок питания на 10–12 вольт с регулировкой силы тока.
- Термоэлектрические модули TEC1–12705 (40×40) — 2 шт.
- Провода сечением 0,2 мм.
- Термоклей или термопаста.
- Ключ на 2 канала (тумблер, кнопка).
- Кран, паяльник, припой.
При помощи термоклея фиксируем ТЭМ на флягу. Соединяем провода по соответствующим группам (плюс и минус). Определяем удобное место расположения ключа, учитывая возможность замены при ремонте и доступность при использовании. Включаем его в схему. Присоединяем провода к блоку питания. Проводим испытания цепи.
Внимание! При испытаниях ограничьтесь наблюдением самого факта правильной работы, но не пытайтесь дать максимальную нагрузку насухую — это может привести к выходу из строя ТЭМ (ремонту не подлежит).
Затем соединяем входной фитинг фляги-теплообменника с каналом подачи воды, а выходной — с подводкой (гибкой или жёсткой) к крану.
Заполняем систему водой и выставляем оптимальную силу тока при нужном напоре струи. Оптимальный напор — чуть сильнее самотёка. Для забора прохладной питьевой воды этого будет вполне достаточно. Остальные нюансы — крепёж, длина проводов, расположение — сугубо индивидуальны в каждом отдельном случае.
Данную базовую систему можно развивать и совершенствовать. Например, установить термостат в теплообменнике и включить его в цепь вместо ключа (тумблера) — подойдёт там, где постоянно нужна вода определённой температуры. Флягу-теплообменник можно выполнить из серебра для дополнительной ионизации воды. Включив в систему повышающий преобразователь постоянного напряжения ЕК-1674, можно сократить расход электроэнергии до минимума.
Расчёт затрат на построение кулера:
Наименование | Ед. изм. | Кол-во | Цена ед./руб. | Ст-ть, руб. |
Теплообменник из нержавейки (с работой) | шт. | 1 | 1000 | 1000 |
ТЭМ TEC1-12705 (40×40), 53 ватт | шт. | 2 | 300 | 600 |
Блок питания | шт. | 1 | 300 | 300 |
Ключ | шт. | 1 | 50 | 50 |
Провода 0,2 мм | м | 5 | 6 | 30 |
Термоклей (термопаста) Radial 2 мл | шт. | 1 | 150 | 150 |
Трубы, фитинги, подводки | — | — | 300 | 300 |
Итого | 2430 |
В этой системе не задействован ребристый радиатор, т. к. поставленная цель — охлаждение (но не заморозка) небольшого объёма воды (300 мл) — достигается и без него.
Как изготовить мини-холодильник, чиллер или кондиционер на теплоэлектрических модулях своими силами
Более сложная задача — охлаждение воздуха. Если в случае с водой эффективность работы кулера гарантирована разницей плотности сред (вода — воздух), то в случае с однородной средой (воздух — воздух) дело обстоит сложнее. Основная трудность — отвод температуры с горячей стороны поверхности ТЭМ. Точнее — синхронный отвод температуры с обеих поверхностей. Если просто запустить элемент Пельтье-Зеебека, нагретый и охлаждённый воздух смешаются, и температура выровняется.
В замкнутых пространствах малого объёма (до 0,7 м 3 ) вполне применима система охлаждения на основе ТЭМ с двусторонним воздушным отводом. Это позволяет построить новый охлаждающий бокс или дать вторую жизнь старому холодильнику (морозильной камере). Для этого придётся немного усложнить систему, включив в неё пару отводящих вентиляторов обоюдной мощности, реле температуры, ребристый радиатор и использовать более производительные теплоэлектрические модули.
Нам понадобится (для одной базовой точки охлаждения):
- ТЭМ ТЕС1–12712 (40Х40), 106 ватт — 1 шт.
- Вентилятор RQA 12025HSL 110VAC (или мощнее) — 2 шт.
- Радиатор HS 036–100 (100x85x25 мм).
- Термостат ТАМ-133–1м (реле температуры с датчиком).
- Блок питания постоянного тока 12 вольт, 6 ампер (с регулировкой).
- Лист дюралюминия.
- Провода, термопаста, крепёж
В готовом боксе, в верхней части охлаждаемой зоны, делаем прямоугольное окно размерами 100х100 мм. Вырезаем две пластины дюралюминия размерами 130х130 мм и 180х180 мм. Закрепляем вентилятор по центру меньшей пластины таки образом, чтобы оставался продух 1 см. Устанавливаем реле температуры внутри бокса. Монтируем меньшую из пластин изнутри бокса (вентилятором внутрь бокса) на шурупы или клёпки через герметик. Наклеиваем ТЭМы на смонтированную пластину и выводим провода. Вырезаем и выгибаем большую пластину так, чтобы она входила в монтажное отверстие, но при этом оставались бортики для фиксации к стенке бокса снаружи. Закрепляем на неё радиатор и второй вентилятор. Обильно смазываем термопастой ТЭМы и монтируем пластину к стенке бокса через герметик.
Внимание! Обязательно должен быть максимальный контакт площади ТЭМ и пластины!
Собираем электрическую цепь. Рекомендуем включить вентиляторы на постоянную максимальную мощность, а силу тока для ТЭМ — через регулятор. Это обеспечит эффективный съём температуры и перемешивание воздуха при работе в разных режимах (не на полную мощность).
Преимущества данной конструкции:
- бесшумная по сравнению с компрессорными холодильниками работа;
- отсутствие механизмов и движущихся частей, силы трения (нечему ломаться);
- не используются жидкие теплоносители (фреон);
- общая потребляемая мощность около 200 ватт;
- можно модернизировать конструкцию, варьировать производительность;
- доступность и ремонтопригодность отдельных агрегатов.
- возможно появление конденсата на пластинах дюралюминия;
- наружный блок управления;
- многие факторы и нюансы работы выявляются опытным путём при использовании;
- малая область применения.
Расчёт затрат на построение базовой охлаждающей системы холодильника и кондиционера:
Наименование | Ед. изм. | Кол-во | Цена ед./руб. | Ст-ть, руб. |
ТЭМ ТЕС1-12712 (40Х40), 106 ватт | шт. | 1 | 600 | 600 |
Вентилятор RQA 12025HSL 110VAC | шт. | 2 | 150 | 300 |
Дюралюминий 3 мм | шт. | 1 | 300 | 300 |
Блок питания постоянного тока | шт. | 1 | 300 | 300 |
Термостат ТАМ-133-1м | шт. | 1 | 250 | 250 |
Радиатор HS 036-100 | шт. | 1 | 220 | 220 |
Провода, термопаста, крепёж, припой | — | — | 300 | 300 |
Итого | 2270 |
В принципе, данная конструкция — готовый встраиваемый кондиционер, который можно установить в кабине автомобиля, трактора, в закрытом вольере или будке охраны. Следует лишь продумать конструктивную защиту от атмосферных осадков.
Запас мощности модуля ТЕС1–12712 довольно велик. Амплитуда температур на сторонах элемента может достигать 50 градусов. При температуре воздуха в помещении +27 °С и применении системы жидкостного охлаждения (радиатор + вентилятор), можно извлечь на выходе впечатляющие минус 25 °С! Это позволяет создавать бескомпрессорные и тихие морозильные камеры даже в домашних условиях.
Где ещё применяют термоэлектрические модули
Эффект Пельтье-Зеебека известен с 1840-х годов. Его активно используют и по сей день, благодаря устойчивости законов физики. Термоэлектрическому модулю всегда найдётся место там, где есть избыточная энергия или нужно быстро и бесшумно совершить теплообмен.
Основное применения теплоэлектрических модулей:
- Охлаждение микросхем. Вентиляторы, как основной теплообменник, уходят в прошлое. Им на смену идут компактные, бесшумные и практически вечные ТЭМ.
- Машиностроение. Даже самый современный ДВС выделяет отработавшие газы из камеры сгорания. Инженеры используют их высокую температуру для получения дополнительной энергии при помощи элементов Пельтье. Собранная энергия подаётся обратно в системы двигателя, но уже в виде постоянного тока, что позволяет экономить топливо.
- Бытовая техника. Всё, что описано выше плюс большинство бытовых приборов, работающих на охлаждение или подогрев (кроме компрессорных холодильников).
И маленький секрет напоследок. Наш модуль имеет почти чудесное свойство — обратимость. Это значит, что при перемене полярности постоянного тока на проводах модуля (с помощью переключателя) горячая и холодная поверхность меняются местами. Кулер превращается в нагреватель, холодильник в тепловую камеру (инкубатор), а кондиционер — в маломощный тепловентилятор. Для этого не придётся изменять схему устройства. Достаточно просто поменять полярность.
Этот принцип использован в устройстве под названием рекуператор. Он представляет собой бокс, состоящий из двух изолированных камер, которые сообщаются между собой при помощи вентиляторов. При помощи модулей Пельтье холодный воздух с улицы подогревается энергией, извлечённой из нагретого воздуха, который отводится из помещения. Приспособление позволяет экономить на отоплении дома.
Виталий Долбинов, рмнт.ру
Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов
Что такое элемент Пельтье, его устройство, принцип работы и практическое применение
Холодильное оборудование настолько прочно вошло в нашу жизнь, что даже трудно представить, как можно было без него обходиться. Но классические конструкции на хладагентах не подходят для мобильного использования, например, в качестве походной сумки-холодильника.
Сумка-холодильник на элементах Пельтье, нет компрессора, не нуждается во фреоне или других хладагентах
Для этой цели используются установки, в которых принцип работы построен на эффекте Пельтье. Кратко расскажем об этом явлении.
Что это такое?
Под данным термином подразумевают термоэлектрическое явление, открытое в 1834 году французским естествоиспытателем Жаном-Шарлем Пельтье. Суть эффекта заключается в выделении или поглощении тепла в зоне, где контактируют разнородные проводники, по которым проходит электрический ток.
В соответствии с классической теорией существует следующее объяснение явления: электрический ток переносит между металлами электроны, которые могут ускорять или замедлять свое движение, в зависимости от контактной разности потенциалов в проводниках, сделанных из различных материалов. Соответственно, при увеличении кинетической энергии, происходит ее превращение в тепловую.
На втором проводнике наблюдается обратный процесс, требующий пополнения энергии, в соответствии с фундаментальным законом физики. Это происходит за счет теплового колебания, что вызывает охлаждение металла, из которого изготовлен второй проводник.
Современные технологии позволяют изготовить полупроводниковые элементы-модули с максимальным термоэлектрическим эффектом. Имеет смысл кратко рассказать об их конструкции.
Устройство и принцип работы
Современные модули представляет собой конструкцию, состоящую из двух пластин-изоляторов (как правило, керамических), с расположенными между ними последовательно соединенными термопарами. С упрощенной схемой такого элемента можно ознакомиться на представленном ниже рисунке.
Устройство модульного элемента Пельтье
Обозначения:
- А – контакты для подключения к источнику питания;
- B – горячая поверхность элемента;
- С – холодная сторона;
- D – медные проводники;
- E – полупроводник на основе р-перехода;
- F – полупроводник n-типа.
Конструкция выполнена таким образом, что каждая из сторон модуля контактирует либо p-n, либо n-p переходами (в зависимости от полярности). Контакты p-n нагреваются, n-p – охлаждаются (см. рис.3). Соответственно, возникает разность температур (DT) на сторонах элемента. Для наблюдателя этот эффект будет выглядеть, как перенос тепловой энергии между сторонами модуля. Примечательно, что изменение полярности питания приводит к смене горячей и холодной поверхности.
Рис. 3. А – горячая сторона термоэлемента, В – холодная
Технические характеристики
Характеристики термоэлектрических модулей описываются следующими параметрами:
- холодопроизводительностью (Qmax), эта характеристика определяется на основе максимально допустимого тока и разности температуры между сторонами модуля, измеряется в Ваттах;
- максимальным температурным перепадом между сторонами элемента (DTmax), параметр приводится для идеальных условий, единица измерения — градусы;
- допустимая сила тока, необходимая для обеспечения максимального температурного перепада – Imax;
- максимальным напряжением Umax, необходимым для тока Imax, чтобы достигнуть пиковой разницы DTmax;
- внутренним сопротивлением модуля – Resistance, указывается в Омах;
- коэффициентом эффективности – СОР (аббревиатура от английского — coefficient of performance), по сути это КПД устройства, показывающее отношение охлаждающей к потребляемой мощности. У недорогих элементов этот параметр находится в пределах 0,3-0,35, у более дорогих моделей приближается к 0,5.
Маркировка
Рассмотрим, как расшифровывается типовая маркировка модулей на примере рисунка 4.
Рис 4. Модуль Пельтье с маркировкой ТЕС1-12706
Маркировка разбивается на три значащих группы:
- Обозначение элемента. Две первые литеры всегда неизменны (ТЕ), говорят о том, что это термоэлемент. Следующая указывает размер, могут быть литеры «С» (стандартный) и «S» (малый). Последняя цифра указывает, сколько слоев (каскадов) в элементе.
- Количество термопар в модуле, изображенном на фото их 127.
- Величина номинального тока в Амперах, у нас – 6 А.
Таким же образом читается маркировка и других моделей серии ТЕС1, например: 12703, 12705, 12710 и т.д.
Применение
Несмотря на довольно низкий КПД, термоэлектрические элементы нашли широкое применение в измерительной, вычислительной, а также бытовой технике. Модули являются важным рабочим элементом следующих устройств:
- мобильных холодильных установок;
- небольших генераторов для выработки электричества;
- систем охлаждения в персональных компьютерах;
- кулеры для охлаждения и нагрева воды;
- осушители воздуха и т.д.
Приведем детальные примеры использования термоэлектрических модулей.
Холодильник на элементах Пельтье
Термоэлектрические холодильные установки значительно уступают по производительности компрессорным и абсорбционным аналогам. Но они имеют весомые достоинства, что делает целесообразным их использование при определенных условиях. К таким преимуществам можно отнести:
- простота конструкции;
- устойчивость к вибрации;
- отсутствие движущихся элементов (за исключением вентилятора, обдувающего радиатор);
- низкий уровень шума;
- небольшие габариты;
- возможность работы в любом положении;
- длительный срок службы;
- небольшое потребление энергии.
Такие характеристики идеально подходят для мобильных установок.
Термоэлектрический автохолодильник установленный в салоне автомобиля
Элемент Пельтье как генератор электроэнергии
Термоэлектрические модули могут работать в качестве генераторов электроэнергии, если одну из их сторон подвергнуть принудительному нагреву. Чем больше разница температур между сторонами, тем выше сила тока, вырабатываемая источником. К сожалению, максимальная температура для термогенератора ограничена, она не может быть выше точки плавления припоя, используемого в модуле. Нарушение этого условия приведет к выходу элемента из строя.
Для серийного производства термогенераторов используют специальные модули с тугоплавким припоем, их можно нагревать до температуры 300°С. В обычных элементах, например, ТЕС1 12715, ограничение – 150 градусов.
Поскольку КПД таких устройств невысокий, их применяют только в тех случаях, когда нет возможности использовать более эффективный источник электрической энергии. Тем не менее, термогенераторы на 5-10 Вт пользуются спросом у туристов, геологов и жителей отдаленных районов. Большие и мощные стационарные установки, работающие от высокотемпературного топлива, используют для питания приборов газораспределительных узлов, аппаратуры метеорологических станций и т.д.
Термоэлектрический генератор B25-12 (М) на 12 вольт, мощностью 25 ватт
Для охлаждения процессора
Относительно недавно данные модули стали использовать в системах охлаждения CPU персональных компьютеров. Учитывая низкую эффективность термоэлементов, польза от таких конструкций довольно сомнительна. Например, чтобы охладить источник тепла мощностью 100-170 Вт (соответствует большинству современных моделей CPU), потребуется потратить 400-680 Вт, что требует установки мощного блока питания.
Второй подводный камень – незагруженный процессор будет меньше выделять тепловой энергии, и модуль может охладить его меньше точки росы. В результате начнет образовываться конденсат, что, гарантировано, выведет электронику из строя.
Тем, кто решиться создать такую систему самостоятельно, потребуется провести серию расчетов по подбору мощности модуля под определенную модель процессора.
Исходя из выше сказанного, использовать данные модули в качестве системы охлаждения CPU не рентабельно, помимо этого они могут стать причиной выхода компьютерной техники из строя.
Совсем иначе обстоит дело с гибридными устройствами, где термомодули используются совместно с водяным или воздушным охлаждением.
Термоэлектрический кулер Армада
Гибридные системы охлаждения доказали свою эффективность, но высокая стоимость ограничивает круг их почитателей.
Кондиционер на элементах Пельтье
Теоретически такое устройство конструктивно будет значительно проще классических систем климат-контроля, но все упирается в низкую производительность. Одно дело — охладить небольшой объем холодильной камеры, другое — помещение или салон автомобиля. Кондиционеры на термоэлектрических модулях будут больше (в 3-4 раза) потреблять электроэнергии, чем оборудование, работающее на хладагенте.
Что касается использования в качестве автомобильной системы климат-контроля, то для работы такого устройства мощности штатного генератора будет недостаточно. Замена его на более производительное оборудование приведет к существенному расходу топлива, что не рентабельно.
В тематических форумах периодически возникают дискуссии на эту тему и рассматриваются различные самодельные конструкции, но полноценного рабочего прототипа пока не создано (не считая кондиционера для хомячка). Вполне возможно, ситуация измениться, когда появятся в широком доступе модули с более приемлемым КПД.
Для охлаждения воды
Термоэлектрический элемент часто используют как охладитель для кулеров воды. Конструкция включает в себя: охлаждающий модуль, контролер, управляемый термостатом и обогреватель. Такая реализация значительно проще и дешевле компрессорной схемы, помимо этого, она надежней и проще в эксплуатации. Но есть и определенные недостатки:
- вода не охлаждается ниже 10-12°С;
- на охлаждение требуется дольше времени, чем компрессорному аналогу, следовательно, такой кулер не подойдет для офиса с большим количеством работников;
- устройство чувствительно к внешней температуре, в теплом помещении вода не будет охлаждаться до минимальной температуры;
- не рекомендуется установка в запыленных комнатах, поскольку может забиться вентилятор и охлаждающий модуль выйдет из строя.
Настольный кулер для воды с использованием элемента Пельтье
Осушитель воздуха на элементах Пельтье
В отличие от кондиционера, реализация осушителя воздуха на термоэлектрических элементах вполне возможна. Конструкция получается довольно простой и недорогой. Охлаждающий модуль понижает температуру радиатора ниже точки росы, в результате на нем оседает влага, содержащаяся в воздухе, проходящем через устройство. Осевшая вода отводится в специальный накопитель.
Простой и недорогой китайский осушитель воздуха на элементах Пельтье
Несмотря на низкий КПД, в данном случае эффективность устройства вполне удовлетворительная.
Как подключить?
С подключением модуля проблем не возникнет, на провода выходов необходимо подать постоянное напряжение, его величина указанна в даташит элемента. Красный провод необходимо подключить к плюсу, черный — к минусу. Внимание! Смена полярности меняет местами охлаждаемую и нагреваемую поверхности.
Как проверить элемент Пельтье на работоспособность?
Самый простой и надежный способ – тактильный. Необходимо подключить модуль к соответствующему источнику напряжения и дотронуться до его разных сторон. У работоспособного элемента одна из них будет теплее, другая – холоднее.
Если подходящего источника под рукой нет, потребуется мультиметр и зажигалка. Процесс проверки довольно прост:
- подключаем щупы к выводам модуля;
- подносим зажженную зажигалку к одной из сторон;
- наблюдаем за показаниями прибора.
В рабочем модуле при нагреве одной из сторон генерируется электрический ток, что отобразится на табло прибора.
Как сделать элемент Пельтье своими руками?
Сделать самодельный модуль в домашних условиях практически невозможно, тем более в этом нет смысла, учитывая их относительно невысокую стоимость (порядка $4-$10). Но можно собрать устройство, которое будет полезным в походе, например, термоэлектрический генератор.
Схема подключения самодельного термогенератора
Для стабилизации напряжения необходимо собрать простой преобразователь на микросхеме ИМС L6920.
Принципиальная схема преобразователя напряжения
На вход такого преобразователя подается напряжение в диапазоне 0,8-5,5 В, на выходе он будет выдавать стабильные 5 В, что вполне достаточно для подзарядки большинства мобильных устройств. Если используется обычный элемент Пельтье, необходимо ограничить рабочий диапазон температуры нагреваемой стороны 150 °С. Чтобы не утруждать себя отслеживанием, в качестве источника тепла лучше использовать котелок с кипящей водой. В этом случае элемент гарантировано не нагреется выше температуры 100 °С.
Элемент пельтье (Peltier)
Сегодняшняя статья пойдёт об элементе Пельтье — сердце ПЦР-амплификатора (автомобильного холодильника) от 12 V. Странная особенность этих холодильников в том, что они не придерживаются выставленной температуры, а уменьшают температуру внутри на определённое количество градусов, относительно температуры окружающей среды. А все потому, что автохолодильники вместо использования фреона и традиционной циркуляции его по трубкам работает на основе элемента «Пельтье». В основном, эта разница температур в пределах от 15 до 25 градусов цельсия. Поэтому при уличной температуре в 30 °С, в автохолодильнике максимальный минимум можно выжать в 5 — 10 °С выше нуля.
Элемент Пельтье. Что это такое.
Элемент Пельтье или модуль Пельтье это термоэлектрический преобразователь, который при пропускании через него тока, создает разность температур на стенках.
Своими словами: Это, пластина с двумя выводами, толщиной около 4 мм. Если подать ток на выводы (контакты) элемента, то одна его сторона нагревается, а другая охлаждается. Если сменить полярность, то и температуры, на стенках, так же поменяются на противоположные.
Как это работает
Из описания элемента (термоэлектрический преобразователь) понятно, что элементы Пельтье преобразовывают электричество в изменение температуры и наоборот, воздействие на стенки элемента разности температур преобразовывают в электричество, поэтому его ещё называют «термоэлектрический генератор». В основном, каждый из элементов состоит из 127ми полупроводников, соединённых последовательно. Из-за этого стоит помнить, что при выходе из строя одного из них, весь элемент придет в негодность.
При прохождении тока через «внутренности» элемента Пельтье, одна его стенка нагревается а обратная — охлаждается. Такой же принцип работает и в обратном порядке: если принудительно одну стенку элемента нагревать, и вторую охлаждать, то на контактах образуется постоянный ток. Полярность у которого будет зависеть от того, какую именно сторону будут нагревать.
Важно помнить о граничной температуре. Полупроводники, внутри элемента крепятся на припое с температурой плавления, около 140 °C. Это значит, что если температура нагрева приблизится к этому значению, вероятно весь элемент выйдет из строя (расплавится и развалится).
В работе, при охлаждении чего либо с помощью элементов Пельтье, не стоит забывать отводить высокую температуру с обратной стороны элемента. Так как это может привести к разрушению элемента. В автомобильный холодильниках, упоминавшихся ранее, стоит воздухоотвод, который выводит наружу горячий воздух.
Разновидности элементов
На сегодняшний день, проворливые китайцы изготавливают огромное количество вариаций и размеров элементов «Пельтье», что позволяет приобрести их по вполне доступной цене, около $2-3 за штуку.
- Основные встречающиеся размеры это 25х25 мм., 30х30 мм., 40х40 мм., 50х50 мм. и 62х62 мм.
- По напряжению питания различают элементы на 5,9 в., 12 в., 15 вольт.
- Так же существуют и различные мощности элементов. Обычно это от 3,2 до 15 Ампер.
- Ещё один из основных показателей элементов — разность минимальной и максимальной температур(ΔT max) У «китайских» экземпляров это, в основном, : 67°C — 68°C.
Где применяются элементы Пельтье
Элементы Пельтье уже перестали быть экзотическим продуктом из мира фантастики, и стали доступны по цене для всякого рода экспериментаторов, поэтому количество новинок, на его основе заметно возросло.
Из основных применений стоит выделить, все те же:
- портативные холодильники от 12 вольт,
- настольные охладители для пива от usb,
- кулеры для воды,
а так же охлаждение для процессора компьютера.
Но в случае с последним, зачастую элемент не справляется при сильной загрузке компьютера, даже при использовании температурного аккумулятора.
Используя принцип Пельтье в обратном порядке — добывают электричество. Но об этом в следующей статье.
Что такое элемент Пельтье, его устройство, принцип работы и практическое применение
Холодильное оборудование настолько прочно вошло в нашу жизнь, что даже трудно представить, как можно было без него обходиться. Но классические конструкции на хладагентах не подходят для мобильного использования, например, в качестве походной сумки-холодильника.
Сумка-холодильник на элементах Пельтье, нет компрессора, не нуждается во фреоне или других хладагентах
Для этой цели используются установки, в которых принцип работы построен на эффекте Пельтье. Кратко расскажем об этом явлении.
- 1 Что это такое?
- 2 Устройство и принцип работы
- 3 Технические характеристики
- 4 Маркировка
- 5 Применение
- 5.1 Холодильник на элементах Пельтье
- 5.2 Элемент Пельтье как генератор электроэнергии
- 5.3 Для охлаждения процессора
- 5.4 Кондиционер на элементах Пельтье
- 5.5 Для охлаждения воды
- 5.6 Осушитель воздуха на элементах Пельтье
- 6 Как подключить?
- 7 Как проверить элемент Пельтье на работоспособность?
- 8 Как сделать элемент Пельтье своими руками?
Что это такое?
Под данным термином подразумевают термоэлектрическое явление, открытое в 1834 году французским естествоиспытателем Жаном-Шарлем Пельтье. Суть эффекта заключается в выделении или поглощении тепла в зоне, где контактируют разнородные проводники, по которым проходит электрический ток.
В соответствии с классической теорией существует следующее объяснение явления: электрический ток переносит между металлами электроны, которые могут ускорять или замедлять свое движение, в зависимости от контактной разности потенциалов в проводниках, сделанных из различных материалов. Соответственно, при увеличении кинетической энергии, происходит ее превращение в тепловую.
На втором проводнике наблюдается обратный процесс, требующий пополнения энергии, в соответствии с фундаментальным законом физики. Это происходит за счет теплового колебания, что вызывает охлаждение металла, из которого изготовлен второй проводник.
Современные технологии позволяют изготовить полупроводниковые элементы-модули с максимальным термоэлектрическим эффектом. Имеет смысл кратко рассказать об их конструкции.
Устройство и принцип работы
Современные модули представляет собой конструкцию, состоящую из двух пластин-изоляторов (как правило, керамических), с расположенными между ними последовательно соединенными термопарами. С упрощенной схемой такого элемента можно ознакомиться на представленном ниже рисунке.
Устройство модульного элемента Пельтье
- А – контакты для подключения к источнику питания;
- B – горячая поверхность элемента;
- С – холодная сторона;
- D – медные проводники;
- E – полупроводник на основе р-перехода;
- F – полупроводник n-типа.
Конструкция выполнена таким образом, что каждая из сторон модуля контактирует либо p-n, либо n-p переходами (в зависимости от полярности). Контакты p-n нагреваются, n-p – охлаждаются (см. рис.3). Соответственно, возникает разность температур (DT) на сторонах элемента. Для наблюдателя этот эффект будет выглядеть, как перенос тепловой энергии между сторонами модуля. Примечательно, что изменение полярности питания приводит к смене горячей и холодной поверхности.
Рис. 3. А – горячая сторона термоэлемента, В – холодная
Технические характеристики
Характеристики термоэлектрических модулей описываются следующими параметрами:
- холодопроизводительностью (Qmax), эта характеристика определяется на основе максимально допустимого тока и разности температуры между сторонами модуля, измеряется в Ваттах;
- максимальным температурным перепадом между сторонами элемента (DTmax), параметр приводится для идеальных условий, единица измерения – градусы;
- допустимая сила тока, необходимая для обеспечения максимального температурного перепада – Imax;
- максимальным напряжением Umax, необходимым для тока Imax, чтобы достигнуть пиковой разницы DTmax;
- внутренним сопротивлением модуля – Resistance, указывается в Омах;
- коэффициентом эффективности – СОР (аббревиатура от английского – coefficient of performance), по сути это КПД устройства, показывающее отношение охлаждающей к потребляемой мощности. У недорогих элементов этот параметр находится в пределах 0,3-0,35, у более дорогих моделей приближается к 0,5.
Маркировка
Рассмотрим, как расшифровывается типовая маркировка модулей на примере рисунка 4.
Рис 4. Модуль Пельтье с маркировкой ТЕС1-12706
Маркировка разбивается на три значащих группы:
Таким же образом читается маркировка и других моделей серии ТЕС1, например: 12703, 12705, 12710 и т.д.
Применение
Несмотря на довольно низкий КПД, термоэлектрические элементы нашли широкое применение в измерительной, вычислительной, а также бытовой технике. Модули являются важным рабочим элементом следующих устройств:
- мобильных холодильных установок;
- небольших генераторов для выработки электричества;
- систем охлаждения в персональных компьютерах;
- кулеры для охлаждения и нагрева воды;
- осушители воздуха и т.д.
Приведем детальные примеры использования термоэлектрических модулей.
Холодильник на элементах Пельтье
Термоэлектрические холодильные установки значительно уступают по производительности компрессорным и абсорбционным аналогам. Но они имеют весомые достоинства, что делает целесообразным их использование при определенных условиях. К таким преимуществам можно отнести:
- простота конструкции;
- устойчивость к вибрации;
- отсутствие движущихся элементов (за исключением вентилятора, обдувающего радиатор);
- низкий уровень шума;
- небольшие габариты;
- возможность работы в любом положении;
- длительный срок службы;
- небольшое потребление энергии.
Такие характеристики идеально подходят для мобильных установок.
Термоэлектрический автохолодильник установленный в салоне автомобиля
Элемент Пельтье как генератор электроэнергии
Термоэлектрические модули могут работать в качестве генераторов электроэнергии, если одну из их сторон подвергнуть принудительному нагреву. Чем больше разница температур между сторонами, тем выше сила тока, вырабатываемая источником. К сожалению, максимальная температура для термогенератора ограничена, она не может быть выше точки плавления припоя, используемого в модуле. Нарушение этого условия приведет к выходу элемента из строя.
Для серийного производства термогенераторов используют специальные модули с тугоплавким припоем, их можно нагревать до температуры 300°С. В обычных элементах, например, ТЕС1 12715, ограничение – 150 градусов.
Поскольку КПД таких устройств невысокий, их применяют только в тех случаях, когда нет возможности использовать более эффективный источник электрической энергии. Тем не менее, термогенераторы на 5-10 Вт пользуются спросом у туристов, геологов и жителей отдаленных районов. Большие и мощные стационарные установки, работающие от высокотемпературного топлива, используют для питания приборов газораспределительных узлов, аппаратуры метеорологических станций и т.д.
Термоэлектрический генератор B25-12 (М) на 12 вольт, мощностью 25 ватт
Для охлаждения процессора
Относительно недавно данные модули стали использовать в системах охлаждения CPU персональных компьютеров. Учитывая низкую эффективность термоэлементов, польза от таких конструкций довольно сомнительна. Например, чтобы охладить источник тепла мощностью 100-170 Вт (соответствует большинству современных моделей CPU), потребуется потратить 400-680 Вт, что требует установки мощного блока питания.
Второй подводный камень – незагруженный процессор будет меньше выделять тепловой энергии, и модуль может охладить его меньше точки росы. В результате начнет образовываться конденсат, что, гарантировано, выведет электронику из строя.
Тем, кто решиться создать такую систему самостоятельно, потребуется провести серию расчетов по подбору мощности модуля под определенную модель процессора.
Исходя из выше сказанного, использовать данные модули в качестве системы охлаждения CPU не рентабельно, помимо этого они могут стать причиной выхода компьютерной техники из строя.
Совсем иначе обстоит дело с гибридными устройствами, где термомодули используются совместно с водяным или воздушным охлаждением.
Термоэлектрический кулер Армада
Гибридные системы охлаждения доказали свою эффективность, но высокая стоимость ограничивает круг их почитателей.
Кондиционер на элементах Пельтье
Теоретически такое устройство конструктивно будет значительно проще классических систем климат-контроля, но все упирается в низкую производительность. Одно дело – охладить небольшой объем холодильной камеры, другое – помещение или салон автомобиля. Кондиционеры на термоэлектрических модулях будут больше (на 3-4 порядка) потреблять электроэнергии, чем оборудование, работающее на хладагенте.
Что касается использования в качестве автомобильной системы климат-контроля, то для работы такого устройства мощности штатного генератора будет недостаточно. Замена его на более производительное оборудование приведет к существенному расходу топлива, что не рентабельно.
В тематических форумах периодически возникают дискуссии на эту тему и рассматриваются различные самодельные конструкции, но полноценного рабочего прототипа пока не создано (не считая кондиционера для хомячка). Вполне возможно, ситуация измениться, когда появятся в широком доступе модули с более приемлемым КПД.
Для охлаждения воды
Термоэлектрический элемент часто используют как охладитель для кулеров воды. Конструкция включает в себя: охлаждающий модуль, контролер, управляемый термостатом и обогреватель. Такая реализация значительно проще и дешевле компрессорной схемы, помимо этого, она надежней и проще в эксплуатации. Но есть и определенные недостатки:
- вода не охлаждается ниже 10-12°С;
- на охлаждение требуется дольше времени, чем компрессорному аналогу, следовательно, такой кулер не подойдет для офиса с большим количеством работников;
- устройство чувствительно к внешней температуре, в теплом помещении вода не будет охлаждаться до минимальной температуры;
- не рекомендуется установка в запыленных комнатах, поскольку может забиться вентилятор и охлаждающий модуль выйдет из строя.
Настольный кулер для воды с использованием элемента Пельтье
Осушитель воздуха на элементах Пельтье
В отличие от кондиционера, реализация осушителя воздуха на термоэлектрических элементах вполне возможна. Конструкция получается довольно простой и недорогой. Охлаждающий модуль понижает температуру радиатора ниже точки росы, в результате на нем оседает влага, содержащаяся в воздухе, проходящем через устройство. Осевшая вода отводится в специальный накопитель.
Простой и недорогой китайский осушитель воздуха на элементах Пельтье
Несмотря на низкий КПД, в данном случае эффективность устройства вполне удовлетворительная.
Как подключить?
С подключением модуля проблем не возникнет, на провода выходов необходимо подать постоянное напряжение, его величина указанна в даташит элемента. Красный провод необходимо подключить к плюсу, черный – к минусу. Внимание! Смена полярности меняет местами охлаждаемую и нагреваемую поверхности.
Как проверить элемент Пельтье на работоспособность?
Самый простой и надежный способ – тактильный. Необходимо подключить модуль к соответствующему источнику напряжения и дотронуться до его разных сторон. У работоспособного элемента одна из них будет теплее, другая – холоднее.
Если подходящего источника под рукой нет, потребуется мультиметр и зажигалка. Процесс проверки довольно прост:
В рабочем модуле при нагреве одной из сторон генерируется электрический ток, что отобразится на табло прибора.
Как сделать элемент Пельтье своими руками?
Сделать самодельный модуль в домашних условиях практически невозможно, тем более в этом нет смысла, учитывая их относительно невысокую стоимость (порядка $4-$10). Но можно собрать устройство, которое будет полезным в походе, например, термоэлектрический генератор.
Схема подключения самодельного термогенератора
Для стабилизации напряжения необходимо собрать простой преобразователь на микросхеме ИМС L6920.
Принципиальная схема преобразователя напряжения
На вход такого преобразователя подается напряжение в диапазоне 0,8-5,5 В, на выходе он будет выдавать стабильные 5 В, что вполне достаточно для подзарядки большинства мобильных устройств. Если используется обычный элемент Пельтье, необходимо ограничить рабочий диапазон температуры нагреваемой стороны 150 °С. Чтобы не утруждать себя отслеживанием, в качестве источника тепла лучше использовать котелок с кипящей водой. В этом случае элемент гарантировано не нагреется выше температуры 100 °С.
Элементы Пельтье — охлаждение и нагрев
Стандартные термоэлектрические модули имеют взаимообратный принцип действия. В этой статье мы расскажем о применении модулей Пельтье-Зеебека в теплообменных устройствах и приведём пример сборки кулера для воды и базовой охлаждающей системы для воздуха с возможностью обратного запуска (нагрева).
- Как самостоятельно изготовить кулер для охлаждения воды
- Как изготовить мини-холодильник, чиллер или кондиционер на теплоэлектрических модулях своими силами
- Где ещё применяют термоэлектрические модули
Принцип действия термоэлектрических модулей (ТЭМ), используемых для охлаждения, основан на эффекте Зеебека — обратном процессе относительно эффекта Пельтье. Основной элемент — всё тот же ТЭМ, описанный в первой части. При подаче постоянного тока на поле термопар наблюдается разность температур на плоскостях керамической пластины. Это факт, основанный на термодинамическом процессе, который мы описывать не будем (чтобы не утомлять научными выкладками), но покажем, как применить его в быту.
Примечание. Для постройки агрегатов, инструкции к которым приведены ниже, понадобятся базовые практические навыки сборки электрических цепей. Приведённые модели узлов являются примерными и могут быть заменены на аналогичные (или более/менее мощные) по усмотрению мастера.
Как самостоятельно изготовить кулер для охлаждения воды
Догадливый читатель уже понял, что «чудо-ковшик» из первой части можно использовать для охлаждения жидкости, если запустить его «в обратную сторону», подключив постоянный ток.
ТЭМ применены в каждом кулере для воды. Аналог этого заводского прибора вполне можно построить своими руками, при этом работать он будет не хуже. Мы опишем сам принцип работы и схему сборки. Компоновку и варианты исполнения можно подобрать, исходя из собственных потребностей. Например, сделать его переносным или стационарным, интегрированным в кухонную мебель или систему подготовки питьевой воды. Последний вариант оптимален, поскольку охлаждение в системе будет управляемым (по факту подачи питания).
Для этого нам понадобится:
- Прямоугольная плоская герметичная ёмкость из нержавейки с размерами 100х100х30 (фляга-теплообменник) с резьбовыми выходами на ½ дюйма по коротким сторонам. Это единственный элемент, изготовление которого лучше заказать мастеру на заводе.
- Подводка питьевой воды с фитингом на ½ дюйма (из ёмкости или водопровода).
- Блок питания на 10–12 вольт с регулировкой силы тока.
- Термоэлектрические модули TEC1–12705 (40×40) — 2 шт.
- Провода сечением 0,2 мм.
- Термоклей или термопаста.
- Ключ на 2 канала (тумблер, кнопка).
- Кран, паяльник, припой.
При помощи термоклея фиксируем ТЭМ на флягу. Соединяем провода по соответствующим группам (плюс и минус). Определяем удобное место расположения ключа, учитывая возможность замены при ремонте и доступность при использовании. Включаем его в схему. Присоединяем провода к блоку питания. Проводим испытания цепи.
Внимание! При испытаниях ограничьтесь наблюдением самого факта правильной работы, но не пытайтесь дать максимальную нагрузку насухую — это может привести к выходу из строя ТЭМ (ремонту не подлежит).
Затем соединяем входной фитинг фляги-теплообменника с каналом подачи воды, а выходной — с подводкой (гибкой или жёсткой) к крану.
Заполняем систему водой и выставляем оптимальную силу тока при нужном напоре струи. Оптимальный напор — чуть сильнее самотёка. Для забора прохладной питьевой воды этого будет вполне достаточно. Остальные нюансы — крепёж, длина проводов, расположение — сугубо индивидуальны в каждом отдельном случае.
Данную базовую систему можно развивать и совершенствовать. Например, установить термостат в теплообменнике и включить его в цепь вместо ключа (тумблера) — подойдёт там, где постоянно нужна вода определённой температуры. Флягу-теплообменник можно выполнить из серебра для дополнительной ионизации воды. Включив в систему повышающий преобразователь постоянного напряжения ЕК-1674, можно сократить расход электроэнергии до минимума.
Расчёт затрат на построение кулера:
Наименование | Ед. изм. | Кол-во | Цена ед./руб. | Ст-ть, руб. |
Теплообменник из нержавейки (с работой) | шт. | 1 | 1000 | 1000 |
ТЭМ TEC1-12705 (40×40), 53 ватт | шт. | 2 | 300 | 600 |
Блок питания | шт. | 1 | 300 | 300 |
Ключ | шт. | 1 | 50 | 50 |
Провода 0,2 мм | м | 5 | 6 | 30 |
Термоклей (термопаста) Radial 2 мл | шт. | 1 | 150 | 150 |
Трубы, фитинги, подводки | — | — | 300 | 300 |
Итого | 2430 |
В этой системе не задействован ребристый радиатор, т. к. поставленная цель — охлаждение (но не заморозка) небольшого объёма воды (300 мл) — достигается и без него.
Как изготовить мини-холодильник, чиллер или кондиционер на теплоэлектрических модулях своими силами
Более сложная задача — охлаждение воздуха. Если в случае с водой эффективность работы кулера гарантирована разницей плотности сред (вода — воздух), то в случае с однородной средой (воздух — воздух) дело обстоит сложнее. Основная трудность — отвод температуры с горячей стороны поверхности ТЭМ. Точнее — синхронный отвод температуры с обеих поверхностей. Если просто запустить элемент Пельтье-Зеебека, нагретый и охлаждённый воздух смешаются, и температура выровняется.
В замкнутых пространствах малого объёма (до 0,7 м 3 ) вполне применима система охлаждения на основе ТЭМ с двусторонним воздушным отводом. Это позволяет построить новый охлаждающий бокс или дать вторую жизнь старому холодильнику (морозильной камере). Для этого придётся немного усложнить систему, включив в неё пару отводящих вентиляторов обоюдной мощности, реле температуры, ребристый радиатор и использовать более производительные теплоэлектрические модули.
Нам понадобится (для одной базовой точки охлаждения):
- ТЭМ ТЕС1–12712 (40Х40), 106 ватт — 1 шт.
- Вентилятор RQA 12025HSL 110VAC (или мощнее) — 2 шт.
- Радиатор HS 036–100 (100x85x25 мм).
- Термостат ТАМ-133–1м (реле температуры с датчиком).
- Блок питания постоянного тока 12 вольт, 6 ампер (с регулировкой).
- Лист дюралюминия.
- Провода, термопаста, крепёж
В готовом боксе, в верхней части охлаждаемой зоны, делаем прямоугольное окно размерами 100х100 мм. Вырезаем две пластины дюралюминия размерами 130х130 мм и 180х180 мм. Закрепляем вентилятор по центру меньшей пластины таки образом, чтобы оставался продух 1 см. Устанавливаем реле температуры внутри бокса. Монтируем меньшую из пластин изнутри бокса (вентилятором внутрь бокса) на шурупы или клёпки через герметик. Наклеиваем ТЭМы на смонтированную пластину и выводим провода. Вырезаем и выгибаем большую пластину так, чтобы она входила в монтажное отверстие, но при этом оставались бортики для фиксации к стенке бокса снаружи. Закрепляем на неё радиатор и второй вентилятор. Обильно смазываем термопастой ТЭМы и монтируем пластину к стенке бокса через герметик.
Внимание! Обязательно должен быть максимальный контакт площади ТЭМ и пластины!
Собираем электрическую цепь. Рекомендуем включить вентиляторы на постоянную максимальную мощность, а силу тока для ТЭМ — через регулятор. Это обеспечит эффективный съём температуры и перемешивание воздуха при работе в разных режимах (не на полную мощность).
Преимущества данной конструкции:
- бесшумная по сравнению с компрессорными холодильниками работа;
- отсутствие механизмов и движущихся частей, силы трения (нечему ломаться);
- не используются жидкие теплоносители (фреон);
- общая потребляемая мощность около 200 ватт;
- можно модернизировать конструкцию, варьировать производительность;
- доступность и ремонтопригодность отдельных агрегатов.
- возможно появление конденсата на пластинах дюралюминия;
- наружный блок управления;
- многие факторы и нюансы работы выявляются опытным путём при использовании;
- малая область применения.
Расчёт затрат на построение базовой охлаждающей системы холодильника и кондиционера:
Наименование | Ед. изм. | Кол-во | Цена ед./руб. | Ст-ть, руб. |
ТЭМ ТЕС1-12712 (40Х40), 106 ватт | шт. | 1 | 600 | 600 |
Вентилятор RQA 12025HSL 110VAC | шт. | 2 | 150 | 300 |
Дюралюминий 3 мм | шт. | 1 | 300 | 300 |
Блок питания постоянного тока | шт. | 1 | 300 | 300 |
Термостат ТАМ-133-1м | шт. | 1 | 250 | 250 |
Радиатор HS 036-100 | шт. | 1 | 220 | 220 |
Провода, термопаста, крепёж, припой | — | — | 300 | 300 |
Итого | 2270 |
В принципе, данная конструкция — готовый встраиваемый кондиционер, который можно установить в кабине автомобиля, трактора, в закрытом вольере или будке охраны. Следует лишь продумать конструктивную защиту от атмосферных осадков.
Запас мощности модуля ТЕС1–12712 довольно велик. Амплитуда температур на сторонах элемента может достигать 50 градусов. При температуре воздуха в помещении +27 °С и применении системы жидкостного охлаждения (радиатор + вентилятор), можно извлечь на выходе впечатляющие минус 25 °С! Это позволяет создавать бескомпрессорные и тихие морозильные камеры даже в домашних условиях.
Где ещё применяют термоэлектрические модули
Эффект Пельтье-Зеебека известен с 1840-х годов. Его активно используют и по сей день, благодаря устойчивости законов физики. Термоэлектрическому модулю всегда найдётся место там, где есть избыточная энергия или нужно быстро и бесшумно совершить теплообмен.
Основное применения теплоэлектрических модулей:
- Охлаждение микросхем. Вентиляторы, как основной теплообменник, уходят в прошлое. Им на смену идут компактные, бесшумные и практически вечные ТЭМ.
- Машиностроение. Даже самый современный ДВС выделяет отработавшие газы из камеры сгорания. Инженеры используют их высокую температуру для получения дополнительной энергии при помощи элементов Пельтье. Собранная энергия подаётся обратно в системы двигателя, но уже в виде постоянного тока, что позволяет экономить топливо.
- Бытовая техника. Всё, что описано выше плюс большинство бытовых приборов, работающих на охлаждение или подогрев (кроме компрессорных холодильников).
И маленький секрет напоследок. Наш модуль имеет почти чудесное свойство — обратимость. Это значит, что при перемене полярности постоянного тока на проводах модуля (с помощью переключателя) горячая и холодная поверхность меняются местами. Кулер превращается в нагреватель, холодильник в тепловую камеру (инкубатор), а кондиционер — в маломощный тепловентилятор. Для этого не придётся изменять схему устройства. Достаточно просто поменять полярность.
Этот принцип использован в устройстве под названием рекуператор. Он представляет собой бокс, состоящий из двух изолированных камер, которые сообщаются между собой при помощи вентиляторов. При помощи модулей Пельтье холодный воздух с улицы подогревается энергией, извлечённой из нагретого воздуха, который отводится из помещения. Приспособление позволяет экономить на отоплении дома.
Для чего нужны элементы Пельтье? Элементы Пельтье: принцип работы, характеристики, применение
Количество электронных устройств в мире постоянно растет как снежный ком. Все они потребляют электроэнергию, и людям приходится постоянно возить и носить с собой аккумуляторы или вырабатывать ее на громоздких устройствах. В качестве источников тока не так давно стали применяться модули Пельтье — элементы, образующие электрический ток при создании разности температур на их противоположных сторонах.
Эффекты Пельтье и Зеебека
Несмотря на то что почти 2 века назад был создан первый элемент Пельтье, принцип работы нашел применение только сейчас, когда появились подходящие материалы и необходимость в использовании. Он заключается в тепловыделении на контакте разнородных проводников, когда по ним протекает электрический ток. При изменении полярности место контакта начинает охлаждаться. Процесс обратимый: при искусственном поддерживании разности температуры на контактах проводников в их цепи протекает электрический ток (эффект Зеебека).
На базе двух термоэлектрических эффектов создали модуль Пельтье, элементы которого располагаются между двумя параллельными керамическими пластинами в виде разнородных проводников. Проходящий ток через контакт проводников одинаков, а энергетические потоки в каждом из них различаются. Когда энергии в контакт поступает больше, чем вытекает из него, это значит, что электроны затормаживаются в переходной области, вызывая ее разогрев. При изменении полярности электроны ускоряются, забирая энергию у кристаллической решетки, что вызывает ее охлаждение.
Особенно активно эффект Пельтье проявляется на границах полупроводниковых элементов, где наиболее высокие энергетические процессы.
Термоэлектрический модуль
Элементы Пельтье применение нашли в устройстве, состоящем из множества полупроводников p и n типов. В отличие от транзисторов и диодов, переходные области находятся на границе металла с полупроводником. В модуле Пельтье элементы в большом количестве располагаются между керамическими пластинами, что позволяет сделать устройство мощней.
Каждый элемент содержит 4 перехода на контакте полупроводник-металл. Когда электрическая цепь замкнута, электроны перемещаются от минуса батареи питания к плюсу, проходя через все переходы.
На первом переходе термоэлектрического модуля (ТЭМ) между медной шиной и р-полупроводником в последнем выделяется тепло, так как поток зарядов попадает в область с меньшей энергией.
На другом контакте в полупроводнике поглощается энергия, поскольку электроны «высасываются» электрическим полем, совпадающим с направлением их движения. Там происходит процесс охлаждения.
На третьем контакте энергия электронов поглощается, поскольку полупроводник типа n имеет энергию больше, чем металл.
На четвертом переходе выделяется тепло, так как электроны снова тормозятся электрическим полем.
Таким образом, на одной стороне выделяется тепло, а другая — охлаждается. На одном элементе это явление будет незаметно, но модуль Пельтье, элементы которого располагаются между двумя керамическими пластинами, создает значительный температурный перепад.
Модуль можно применять как генератор электроэнергии, если поддерживать разную температуру пластин. При этом каждый термоэлектрический элемент Пельтье последовательно подключается к соседнему через медные перемычки, и токи их суммируются.
Достоинства и недостатки
- небольшие размеры;
- обратимость процесса;
- применение как электрогенератора или холодильника.
К недостаткам ТЭМ относят высокую стоимость, низкий КПД (не более 3 %), высокие энергозатраты и необходимость поддерживания разности температур.
Холодильник из модуля Пельтье
Элемент Пельтье для охлаждения процессора эффективнее стандартных элементов. При этом последние остаются, но применяются только для вывода тепла из замкнутого пространства компьютера.
При их конструировании в качестве охладителя электронных средств нужно учитывать следующие особенности.
- Мощность напрямую связана с размерами модуля. Небольшие устройства не создадут требуемый уровень охлаждения. Например, они не обеспечат нормальный температурный режим процессора. Слишком мощный модуль вызывает появление влаги, являющейся причиной коротких замыканий в электронике, поскольку расстояния между токопроводящими элементами на печатных платах незначительны.
- Модули Пельтье сами нуждаются в охлаждении с помощью вентиляторов и радиаторов, поскольку они выделяют много тепла. Это необходимо для снижения температуры в замкнутом пространстве компьютера и нормализации условий работы других элементов.
- Модуль Пельтье является дополнительной нагрузкой в блоке питания.
- Холодильник после выхода из строя является изолятором между радиатором и охлаждаемым элементом, что может привести к быстрому выходу последнего из строя от перегрева.
- Современные процессоры могут изменять потребление энергии при работе, что благоприятно влияет на тепловой баланс, но не всегда при применении модулей Пельтье. Простейшие холодильники рассчитаны на непрерывную работу, и их не рекомендуется использовать вместе с программами охлаждения.
Выделение тепла
Холодильный эффект у ТЭМ небольшой, а тепла он выделяет много. Когда его применяют в системном блоке, внутри значительно повышается температура, влияющая на работу остального оборудования. Дополнительными средствами для ее снижения служат вентиляторы и радиаторы, создающие тепловой выхлоп.
Тепловой режим модуля нужно правильно рассчитать, чтобы не было перегрева и не образовывался конденсат на электронных платах. Кулер Пельтье выбирается с оптимальной мощностью, где важно обеспечить правильное соотношение температуры внутри корпуса, объекта охлаждения и влажностью воздуха.
Элемент Пельтье: характеристики
ТЭМ выбирается по термоэлектрическим параметрам.
Расчет мощности состоит в следующем.
- Выбирается максимально допустимое напряжение Umax(V) и по графику зависимости U(I) находят максимальную силу тока Imax(A), который протекает через модуль Пельтье. Здесь важно, чтобы его значение находилось в пределах роста зависимости температурного перепада от тока dT(I) = Th— Tс.
- По установленной величине I выбирается характеристика dT(Q), где Q — тепловая мощность охлаждаемого элемента.
- По известным значениям dT и Th определяется Tс = Th— dT.
Характеристики dT(Q) показывают, что с ростом выделяемой тепловой мощности снижается разность dT. Ее можно сделать больше, если увеличить силу тока через модуль, которая, в свою очередь, должна быть ограничена.
Пример расчета
Исходные данные: U = 12 В, Qс = 60 Вт и Th = 50 °C.
При напряжении 12 В по характеристике U(I) находим ток I = 5 А.
Для силы тока 5 А разница температур dT = 4 К. Тогда Tс = Th — dT = 50 — 4 = 46 °C.
Взяв более мощный модуль, можно увеличить dT. Для модуля на 131 Вт, где Imax = 8,5 А, Umax = 28,8 В и объекта с мощностью теплообразования 60 Вт разность температур составит 40 °C. Тогда Tс = 50 — 40 = 10 °C.
Выбирая по мощности ТЭМ, не следует забывать о том, сколько тепла он будет выделять. Этот тепловой поток следует удалять подходящими охлаждающими средствами. Когда традиционные средства не справляются с тепловыделением, применяют водяное охлаждение.
Кондиционер
Кондиционер на элементах Пельтье по эффективности пропорционален своим размерам. Его принцип действия и преимущества те же самые, что и у холодильника. Проблемой является отвод тепла за пределы охлаждаемого пространства.
Для кондиционера требуются 2 кулера, где один из них отводит холодный воздух, а другой — горячий. Источником питания в автомобиле служит аккумулятор, а для комнаты подойдет старый БП от персонального компьютера.
Одного модуля для работы устройства будет мало. Обычно применяются несколько элементов, склеенных между собой термопастой.
Холодильник своими руками
Эффект Пельтье применяется при создании портативных холодильников. Модуль можно купить за 300-500 руб., а радиатор с вентилятором берется от старого компьютера. В качестве контейнера можно использовать любую пластиковую, фанерную или металлическую емкости, оклеенные снаружи и изнутри теплоизолирующими пластинами (пенопласт, пеноплекс и т. п.) с отражающими слоями из алюминиевой фольги.
Модуль Пельтье удобней встраивать в крышку, но можно и в стенку корпуса. Если он располагается в верхней части емкости, холод перемещается вниз, обеспечивая равномерную температуру внутри.
Изнутри к модулю приклеивается на термопасту радиатор, который также крепится к крышке. Можно приклеить два модуля друг к другу, но при этом нельзя путать полярность. Горячая сторона нижнего элемента должна контактировать с холодной верхнего. Эффективность охлаждения при этом увеличится.
Снаружи к модулю приклеивается радиатор с вентилятором от кулера компьютера, а также дополнительно крепится к крышке саморезами или винтами. Крепеж с горячей и холодной сторон должен быть друг от друга изолирован, а шляпки залиты термоклеем.
Важно! Затяжку крепежа радиаторов нужно делать аккуратно, чтобы не треснули керамические пластины модулей.
Изнутри на крышку устанавливается теплоизолирующая прокладка. Чтобы улучшить теплоизоляцию, элементы с торцов закрываются рамкой из теплоизола.
Электрика подключается к блоку питания.
Электрогенераторы из модулей Пельтье
Элемент Пельтье, принцип работы которого обратим, применяется для создания миниэлектростанций в условиях отсутствия источников электроэнергии. Для сборки ТЭГ нужны элементы:
- Модуль Пельтье, способный выдержать температуру от 300 °C. Распространены модели ТЕС-12712 с размерами сторон квадратных пластин 40, 50 и 60 мм. Если выбрать изделие максимального размера, достаточно одного элемента для подзарядки мобильного телефона. Максимальный ток показывают две последние цифры маркировки — 12 а.
- Повышающий преобразователь. Генератор может не обеспечить нужное напряжение, и его следует увеличить. Чтобы заряжать гаджеты, следует подобрать устройство с разъемом USB.
- Нагреватель и охладитель. Для походных условий или дачи подходит источник огневого подогрева: самодельная печка, лампа, свеча, костер. Современным решением является каталитический нагреватель, что позволяет производить подзарядку мобильника на ходу. Для охлаждения можно использовать воздух или воду.
- Конструкция. Самодельный элемент Пельтье состоит из емкости, в которой разводится огонь, а снаружи на термопасту крепится модуль. Через провода он подключается к преобразователю напряжения. Здесь важно не перегреть устройство. Для этого на холодную сторону модуля приклеивается радиатор.
Заключение
Модули Пельтье — элементы, которые широко применяются для охлаждения современной электронной техники. Особенно они необходимы для нормализации теплового режима мощных процессоров. Из них изготавливают своими руками небольшие холодильники для авто или дачи.
Поскольку процесс обратимый, элементы применяют в качестве портативных мини-электростанций в местах, где нет источников электроэнергии.