Почему конденсатор пропускает переменный ток
Ток через конденсатор
Время на чтение:
Конденсаторы — это приборы, накапливающие электрическую энергию в виде зарядов. Аппараты не могут пропускать через себя постоянный ток. Будучи включёнными в цепь с переменным током, он уподобляется пружине, подвергающейся внешнему воздействию. Примечательно, что они не будет пропускать и ток, однако при его прохождении случится перезарядка накопителя, из-за чего покажется, что он проходит через обкладки. Если к ним в разряженном состоянии приложить постоянное напряжение, то по цепи пойдет ток, который снижается по мере зарядки накопителя. Когда достигается паритет значений напряжения на источнике питания и пластинах, он прекращает протекать, что приводит к разрыву.
Что такое конденсатор
Конденсаторы — это пассивные элементы, используемые при формировании разнообразных электротехнических схем, блокирующих и защитных устройств. Будучи включённым в переменную цепь накопитель аккумулирует и возвращает энергию. Если подключается переменный, то энергия возвращается в систему, при этом поддерживается периодичность, которая соответствует рабочей частоте.
Что собой представляют конденсаторы
К сведению! Когда через конденсатор протекает переменный ток, то он непрерывно оказывает ему сопротивление, величина которого обратно пропорционально зависит от частоты.
Уменьшение частоты приводит к повышению сопротивления. Когда источник, генерирующий такой ток, подключается к накопителю, то максимальное напряжение определяется силой.
Чтобы на примере убедиться в возможности проведения переменного тока, формируют простую электрическую цепь, включающую следующие компоненты:
- переменные источники;
- конденсатор;
- потребитель — обычно это лампочка.
Цепь с конденсатором
Будучи включённым в переменную конденсатор время от времени перезаряжается, приобретая и отдавая заряды. Следовательно, происходит обмен электричеством между источником и двухполюсником, что приводит к формированию реактивной энергии.
Обратите внимание! Прибор не допускает пропускание по постоянной сети, поскольку в этом случае имеющееся сопротивление будет равно бесконечности. Если проходит переменный, то у сопротивления будет конечное значение.
Принцип работы конденсатора
Подключение прибора к постоянному источнику приводит к тому, что в начальный момент происходит аккумуляция в обкладках из-за электростатической индукции, а сопротивление в этот момент приравнивается нулю. Электрическая индукция провоцирует поле к притяжению разноимённых зарядов на разные обкладки, расположенные друг напротив друга.
Такое свойство получило название ёмкость, которая характерна для всех типов материалов, в том числе и диэлектриков, однако в случае с проводниками она существенно больше. Именно поэтому обкладки изготавливаются из проводника. Увеличение ёмкости способствует накоплению большего количества зарядок на обкладках.
Важно! Когда аккумулируются заряды, происходят ослабление поля и наращивание двухполюсника.
Происходит это из-за уменьшения места в обкладках, воздействия одноимённых зарядов друг на друга. Одновременно с этим напряжение приравнивается к источнику тока. Прекращение электричества в цепи происходит после того, когда обкладки полностью заполнятся электричеством. Из-за этого пропадает индукция и остаётся только поле, удерживающее и не пропускающее заряды.
Диэлектрик между обкладками
Электротоку будет некуда деться, а на двухполюснике напряжение приравнивается к ЭДС. Когда ЭДС повышается, поле сильнее воздействует на диэлектрик из-за отсутствия места в обкладках. Если внутреннее конденсаторное напряжение будет выше предельных значений, тогда пробьёт диэлектрик.
Конденсатор преобразуется в проводник, и происходит освобождение зарядов, из-за чего электроток начинает идти. Чтобы применять двухполюсник при высоком напряжении повышают размер диэлектрика и наращивают расстояние, имеющееся между обкладками на фоне снижения ёмкости. Диэлектрик располагается между обкладками и не даёт проходить постоянному, выполняя в отношении него барьерную функцию.
Электрическая индукция
Обратите внимание! Именно постоянное напряжение способно формировать электростатическую индукцию, но только в случае замыкания в момент зарядки конденсатора. Благодаря этому механизму сохраняется энергия до момента подсоединения к нему потребителю.
Конденсатор в цепи постоянного тока
Чтобы понять, как работает накопитель в цепи постоянного тока, надо добавить в схему лампочку, которая станет загораться только при зарядке, в процессе которой от электротока остаётся напряжение, как бы догоняющее его из-за плавного нарастания. Заряды электричества затрачивают какое-то время для перемещения к обкладкам, именно это и есть время зарядки, продолжительность которого определяется частотой и ёмкостью напряжения. Когда зарядка завершается, лампочка тухнет, и постоянный электроток перестаёт проходить через пассивный электронный компонент.
Конденсатор в цепи переменного тока
Если у источника изменить полярность, то это приведёт к разрядке конденсатора в цепи переменного тока и его повторной зарядке. Формируется постоянная электростатическая индукция при переменном. Всегда при изменении электричеством своего направления запускается механизм зарядки и разрядки, из-за чего он и пропускает переменный. Увеличение частоты приводит к снижению ёмкостного сопротивления двухполюсника.
Почему идет переменный ток через конденсатор
Конденсатор — это разрыв, поскольку его прокладки не касаются друг друга из-за нахождения между ними диэлектрика, не проводящего постоянный электроток. Однако будучи подключённым к постоянной цепи, он всё же может его проводить в момент подсоединения, поскольку происходит зарядка или перезарядка.
Когда завершается переходный процесс, ток перестаёт проходить через пассивный электронный компонент из-за разделения его обкладок диэлектриком. Будучи подключённым к такой цепи он проводит его колебания вследствие циклической перезарядки. Здесь прибор входит в колебательный контур и вместе с катушкой выполняет функцию накопителя энергии.
Такой симбиоз способствует преобразованию электричества в магнитную энергию или, наоборот, с равной их собственной частотной скоростью, которая рассчитывается по формуле: omega = 1 / sqrt(C × L).
Почему идёт переменный ток
Действительность такова, что конденсатор не способен пропускать через себя переменный ток. Сначала он его аккумулирует на обкладках. Возникает ситуация, в которой на одной из них имеет место переизбыток электронов, а на другой их, напротив, мало. В результате конденсатор отдаёт эти заряды, из-за чего электроны, находящиеся во внешней цепи, перемещаются в одну и в другую сторону от одной обкладки к другой.
К сведению! Результат выражается в том, что электроны перемещаются внутри внешней цепи, но не в самом пассивном компоненте. Энергия перераспределяется внутри поля между конденсаторными пластинками, что называют токами смещения, отличающимися от электротоков проводимости.
Формулы вычисления тока в конденсаторе
Ёмкость конденсатора, включенного в цепь переменного тока, рассчитывается по формуле: C = q / U, где:
- С — ёмкость;
- q — заряд одной из пластин;
- U — напряжение внутри.
Ёмкость
Конденсаторы бывают разной формы, поэтому и их расчёт осуществляется по нескольким формулам:
- плоский — C = E × E0 × S / d;
- цилиндрический — С=2 π × E × E0 × l / ln(R2 / R1);
- сферический — C = 4 π ×E × E0 × R1 × R2 / R2 — R.
Обратите внимание! Сопротивление в переменной цепи, которое может оказывать резистор, включённый в электрическую цепь, вычислить нельзя, так как она считается бесконечно большим. Однако в данном случае, это можно сделать по формуле: Хс = 1 / 2πvC = 1 / wC.
Напряжение конденсатора в цепи переменного тока вычисляется по следующей формуле: Wp = qd E / 2.
Напряжение рассчитывается по определенной формуле
Чтобы рассчитать напряжение на конденсаторе в цепи переменного тока, необходимо воспользоваться актуальными формулами.
Где и зачем применяются конденсаторы
Где и почему используются эти приборы, которые могут работать в радиотехнических, электронных и электротехнических устройствах? Накопители используются в электротехнике при включении асинхронных моторов для сдвига фаз, без чего двигатель в составе однофазной цепи не будет функционировать. Если ёмкость составляет несколько фарад, то их применяют в электромобилях для питания мотора.
Применение возможно в разных сферах
Правильное использование этих приборов позволит получить лучший результат. Понимание основных принципов физики упрощает эксплуатацию оборудования. Неправильное применение чревато негативными последствиями, вызванными несоблюдением техники безопасности.
Особенности конденсатора переменного и постоянного тока
Конденсатор в цепи переменного тока или постоянного, который нередко называется попросту кондёром, состоит из пары обкладок, покрытых слоем изоляции. Если на это устройство будет подаваться ток, оно будет получать заряд и сохранять его в себе некоторое время. Емкость его во многом зависит от промежутка между обкладками.
- Принцип работы
- Описание конденсатора постоянного тока
- Особенности устройства с переменным электротоком
Принцип работы
Конденсатор может быть выполнен по-разному, но суть работы и основные его элементы остаются неизменными в любом случае. Чтобы понять принцип работы, необходимо рассмотреть самую простую его модель.
У простейшего устройства имеются две обкладки: одна из них заряжена положительно, другая — наоборот, отрицательно. Заряды эти хоть и противоположны, но равны. Они притягиваются с определенной силой, которая зависит от расстояния. Чем ближе друг к другу располагаются обкладки, тем больше между ними сила притяжения. Благодаря этому притяжению заряженное устройство не разряжается.
Однако достаточно проложить какой-либо проводник между двумя обкладками и устройство мгновенно разрядится. Все электроны от отрицательно заряженной обкладки сразу же перейдут на положительно заряженную, в результате чего заряд уравняется. Иными словами, чтобы снять заряд с конденсатора, необходимо лишь замкнуть две его обкладки.
Описание конденсатора постоянного тока
Электрические цепи бывают двух видов — постоянными или переменными. Все зависит от того, как в них протекает электроток. Устройства в этих цепях ведут себя по-разному.
Чтобы рассмотреть, как будет вести себя конденсатор в цепи постоянного тока, нужно:
- Взять блок питания постоянного напряжения и определить значение напряжения. Например, «12 Вольт».
- Установить лампочку, рассчитанную на такое же напряжение.
- В сеть установить конденсатор.
Никакого эффекта не будет: лампочка так и не засветится, а если убрать из цепи конденсатор, то свет появится. Если устройство будет включено в сеть переменного тока, то она попросту не будет замыкаться, поэтому и никакой электроток здесь пройти не сможет. Постоянный — не способен проходить по сети, в которую включен конденсатор. Всему виной обкладки этого устройства, а точнее, диэлектрик, который разделяет эти обкладки.
Убедиться в отсутствии напряжения в сети постоянного электротока можно и другими способами. Подключать к сети можно, что угодно, главное, чтобы в цепь был включен источник постоянного электротока. Элементом же, который будет сигнализировать об отсутствии напряжения в сети или, наоборот, о его присутствии, также может быть любой электроприбор. Лучше всего для этих целей использовать лампочку: она будет светиться, если электроток есть, и не будет гореть при отсутствии напряжения в сети.
Можно сделать вывод, что конденсатор не способен проводить через себя постоянный ток, однако это заключение неправильное. На самом деле электроток сразу после подачи напряжения появляется, но мгновенно и исчезает. В этом случае он проходит в течение лишь нескольких долей секунды. Точная продолжительность зависит от того, насколько емким является устройство, но это, как правило, в расчет не берется.
Особенности устройства с переменным электротоком
Чтобы определить, будет ли проходить переменный электроток, необходимо устройство подключить в соответствующую цепь. Основным источником электроэнергии в таком случае должно являться устройство, генерирующее именно переменный электроток.
Постоянный электрический ток не идет через конденсатор, а вот переменный, наоборот, протекает, причем устройство постоянно оказывает сопротивление проходящему через него электротоку. Величина этого сопротивления связана с частотой. Зависимость здесь обратно пропорциональная: чем ниже частота, тем выше сопротивление. Если к источнику переменного электротока подключить кондер, то наибольшее значение напряжения здесь будет зависеть от силы тока.
Убедиться в том, что конденсатор может проводить переменный электроток, наглядно поможет простейшая цепь, составленная из:
- Источника тока. Он должен быть переменным.
- Конденсатора.
- Потребителя электротока. Лучше всего использовать лампу.
Однако стоит помнить об одном: лампа загорится лишь в том случае, если устройство имеет довольно большую емкость. Переменный ток оказывает на конденсатор такое влияние, что устройство начинает заряжаться и разряжаться. А ток, который проходит по сети во время перезарядки, повышает температуру нити накаливания лампы. В результате она и светится.
От емкости устройства, подключенного к сети переменного тока, во многом зависит электроток перезарядки. Зависимость прямо пропорциональная: чем большей емкостью обладает, тем больше величина, характеризующая силу тока перезарядки. Чтобы в этом убедиться, достаточно лишь повысить емкость. Сразу после этого лампа начнет светиться ярче, так как нити ее будут больше накалены. Как видно, конденсатор, который выступает в качестве одного из элементов цепи переменного тока, ведет себя иначе, нежели постоянный резистор.
При подключении конденсатора переменного тока начинают происходить более сложные процессы. Лучше их понять поможет такой инструмент, как вектор. Главная идея вектора в этом случае будет заключаться в том, что можно представить значение изменяющегося во времени сигнала как произведение комплексного сигнала, который является функцией оси, отображающей время и комплексного числа, которое, наоборот, не связано со временем.
Поскольку векторы представляются некоторой величиной и некоторым углом, начертить их можно в виде стрелки, которая вращается в координатной плоскости. Напряжение на устройстве немного отстает от тока, а оба вектора, которыми они обозначаются, вращаются на плоскости против часовых стрелок.
Конденсатор в сети переменного тока может периодически перезаряжаться: он то приобретает какой-то заряд, то, наоборот, отдает его. Это означает, что кондер и источник переменного электротока в сети постоянно обмениваются друг с другом электрической энергией. Такой вид электроэнергии в электротехнике носит название реактивной.
Конденсатор не позволяет проходить по сети постоянному электротоку. В таком случае он будет иметь сопротивление, приравнивающееся к бесконечности. Переменный же электроток способен проходить через это устройство. В этом случае сопротивление имеет конечное значение.
Шаг за шагом
Поведение конденсатора в цепи переменного тока
Если говорить строго, то через конденсатор не проходит ни постоянный, ни переменный ток, так как между обкладками находится изолятор, в котором свободные электрические заряды двигаться не могут.
Включение конденсатора в цепь постоянного тока равносильно разрыву этой цепи. Что же касается переменного тока, то он будет протекать по цепи, в которую включен конденсатор, благодаря периодическому заряду и разряду этого конденсатора. Действительно, когда происходит заряд конденсатора, то электрические заряды, например электроны, на одной обкладке накапливаются, а с другой обкладки уходят. При этом они, конечно, двигаются по соединительным проводам, подключенным к обкладкам конденсатора. Такое же движение зарядов, только в противоположном направлении, происходит и при разряде конденсатора.
Если включить конденсатор в цепь переменного тока, то он будет периодически заряжаться то в одной полярности, то в противоположной. Это значит, что электроны будут накапливаться то на одной, то на другой обкладке, и каждый раз при заряде и разряде свободные электроны будут двигаться по цепи, в которую включен конденсатор, не попадая, однако, в изолятор, включенный между обкладками. А поскольку под действием переменного напряжения в цепи конденсатора двигаются заряды, то мы считаем, что конденсатор пропускает переменный ток, хотя и в этом случае заряды не проходят через изолятор.
Конденсатор влияет на величину переменного тока в цепи, и поэтому (по аналогии с законом Ома) его часто рассматривают как сопротивление. Это так называемое емкостное сопротивление обозначается буквой хс и так же, как и обычное сопротивление, измеряется в омах. Величина хс зависит от частоты переменного тока и от емкости С конденсатора: с уменьшением емкости конденсатора, так же как и с уменьшением частоты переменного тока, емкостное сопротивление конденсатора увеличивается (рис. 80, 81, лист 87). Эту зависимость удобно записать в виде простой формулы:
Смысл этой формулы весьма прост: чем меньше емкость С, тем меньше зарядов будет двигаться к обкладкам при каждом заряде и разряде конденсатора; чем меньше частота переменного тока, тем реже будет заряжаться и разряжаться конденсатор. Отсюда следует, что с уменьшением f и С уменьшается ток в цепи, или, иными словами, растет сопротивление конденсатора.
Этот вывод имеет огромное практическое значение. Так, например, если нам понадобится включить в цепь конденсатор с очень маленьким емкостным сопротивлением, то емкость этого конденсатора нужно будет выбирать с учетом частоты переменного тока в цепи. Для высоких частот можно будет взять конденсатор небольшой емкости, а вот для низких частот емкость конденсатора придется взять большой. Это хорошо иллюстрируется простым примером. На частоте 100 кгц конденсатор емкостью 100 пф обладает емкостным сопротивлением хс=16 ком. При уменьшении частоты в 1000 раз, то есть на частоте 100 гц, сопротивление конденсатора возрастет в 1000 раз и станет равным 16 000 ком (16 Мом). Для того чтобы при уменьшении частоты емкостное сопротивление не изменилось, нужно увеличить емкость конденсатора. Сопротивление 16 ком на частоте 100 гц будет иметь конденсатор емкостью 100 000 пф (0,1 мкф).
Из приведенной выше формулы следует также, что уменьшение емкости конденсатора связи Ссв (лист 85) приведет к росту сопротивления этого конденсатора, а следовательно, к уменьшению тока в цепи антенны. Поэтому емкость Ссв нельзя брать слишком малой.
Сказанное можно пояснить еще иначе. Конденсатор связи и колебательный контур Lк Ск можно рассматривать как делитель напряжения, к которому приложена э. д. с, действующая между зажимами А («антенна») и З («земля»). Мы не будем пока говорить о том, чему равно сопротивление колебательного контура — даже без этого ясно: чем больше емкостное сопротивление конденсатора связи, тем меньшая часть э. д. с. будет действовать на нижней части делителя — на контуре и подключенной к нему цепи детектор — телефон.
Что такое конденсатор и для чего он нужен в схемах
Общая концепция
Конденсатор состоит из двух проводящих обкладок и диэлектрика между ними. И все, больше ничего. С виду простая радиодеталь, но работает на высоких и низких частотах по-разному.
Обозначается на схеме двумя параллельными линиями.
Принцип работы
Эта радиодеталь хорошо демонстрирует явление электростатической индукции. Разберем на примере.
Если подключить к конденсатору постоянный источник тока, то в начальный момент времени ток начнет скапливаться на обкладках конденсатора. Это происходит за счет электростатической индукции. Сопротивление практически равно нулю.
Электрическое поле за счет электростатической индукции притягивает разноименные заряды на две противоположные обкладки. Это свойство материи называется емкостью. Емкость есть у всех материалов. И даже у диэлектриков, но у проводников она значительно больше. Поэтому обкладки конденсатора выполнены из проводника.
Чем больше емкость — тем больше может накопиться зарядов на обкладках конденсатора, т.е. электрического тока.
Основное свойство конденсатора — это емкость. Она зависит от площади пластин, расстояния между ними и материала диэлектрика, которым заполняют пространство между обкладками.
По мере накопления зарядов, поле начинает ослабевать, а сопротивление нарастает. Почему так происходит? Места на обкладках все меньше, одноименные заряды на них действуют друг на друга, а напряжение на конденсаторе становится равным источнику тока. Такое сопротивление называется реактивным, или емкостным. Оно зависит от частоты тока, емкости радиодеталей и проводов.
Когда на обкладках не останется места для электрического тока, то и ток в цепи прекратится. Электростатическая индукция пропадает. Теперь остается электрическое поле, которое держит заряды на своих обкладках и не отпускает их. А электрическому току некуда деваться. Напряжение на конденсаторе станет равным ЭДС (напряжению) источнику тока.
А что будет, если повысить ЭДС (напряжение) источника тока? Электрическое поле начнет все сильнее давить на диэлектрик, поскольку места на обкладках уже нет. Но если напряжение на конденсаторе превысит допустимые знания, то диэлектрик пробьет. И конденсатор станет проводником, заряды освободятся, и ток пойдет по цепи. Как тогда использовать конденсатор для высоких напряжений? Можно увеличить размер диэлектрика и расстояние между обкладками, но при этом уменьшается емкость детали.
Между обкладками находится диэлектрик, который препятствует прохождению постоянного тока. Это именно барьер для постоянного тока. Потому, что постоянный ток создает и постоянное напряжение. А постоянное напряжение может создавать электростатическую индукцию только при замыкании цепи, то есть, когда конденсатор заряжается.
Так конденсатор может сохранять энергию до тех пор, пока к нему не подключится потребитель.
Конденсатор и цепь постоянного тока
Добавим в схему лампочку. Она загорится только во время зарядки.
Еще одна важная особенность — когда происходит процесс зарядки током, то напряжение отстает от тока. Напряжение как бы догоняет ток, поскольку сопротивление нарастает плавно, по мере зарядки. Электрические зарядам нужно время, чтобы переместиться к обкладкам конденсатора. Так называется время зарядки. Оно зависит от емкости, частоты и напряжения.
По мере зарядки, лампочка начинает тусклее светиться.
Лампочка затухает при полной зарядке.
Постоянный электрический ток не проходит через конденсатор только после его зарядки.
Цепь с переменным током
А что если поменять полярность на источнике тока? Тогда конденсатор начнет разряжаться, и снова заряжаться, поскольку меняется полярность источника.
Электростатическая индукция возникает постоянно, если электрический ток переменный. Каждый раз, когда ток начинает менять свое направление, начинается процесс зарядки и разрядки.
Поэтому, конденсатор пропускает переменный электрический ток.
Чем выше частота — тем меньше реактивное (емкостное) сопротивление конденсатора.
Назначение и функции конденсаторов
Конденсатор играет огромную роль как в аналоговой, так и цифровой технике. Они бывают электролитическими и керамическими, и отличаются своими свойствами, но не общей концепцией. Примеры использования:
- Фильтрует высокочастотные помехи;
- Уменьшает и сглаживает пульсации;
- Разделяет сигнал на постоянные и переменные составляющие;
- Накапливает энергию;
- Может использоваться как источник опорного напряжения;
- Создает резонанс с катушкой индуктивности для усиления сигнала.
Примеры использования
В усилителях обычно используются для защиты сабвуферов, фильтрации питания, термостабилизации и разделение постоянной составляющей от переменной. А электролитические в автономных схемах с микроконтроллерами могут долго обеспечивать питание за счет большой емкости.
В данной схеме транзистор VT1 постоянно открыт, чтобы усиливать звук без искажений. Но если вход замнется или на него поступи постоянный ток, то транзистор откроется, перейдет в насыщение и перегреется. Чтобы этого не допустить, нужен конденсатор. С1 позволяет отделить постоянную оставляющую от переменной. Переменный сигнал легко проходит на базу транзистора, а постоянный сигнал не проходит.
С2 совместно с резистором R3 выполняет функцию термостабилизации. Когда усилитель работает, транзистор нагревается. Это может внести искажения в сигнал. Поэтому, резистор R3 помогает удержать рабочую точку при нагреве. Но когда транзистор холодный и стабилизации не требуется резистор может уменьшить мощность усилителя. Поэтому, в дело вступает С2. Он проводит через себя усиленный сигнал шунтируя резистор, тем самым, не снижая номинальную мощность схемы. Если его емкость будет ниже расчетной, он начнет вносить фазовые искажения в выходной сигнал.
Чтобы схема качественно работала, обязательно хорошее питание. Когда схема в пиковые значения потребляет больше тока, то это всегда сильная нагрузка на источник питания. С3 фильтрует помехи по питанию и помогает снизить нагрузку. Чем больше емкость — тем лучше звук, но до определенных значений, все зависит от схемы.
А в блоках питания используется тот же принцип, как и в предыдущей схеме по питанию, но здесь емкость нужна гораздо больше. На этой схеме емкость элеткролита может быть как 1000 мкФ, так и 10 000 мкФ.
Еще на диодный мост можно параллельно включить керамические конденсаторы, которые будут шунтировать схему от высокочастотных наводок и шума сети 220 В.
Фазовые искажения
Конденсатор может искажать переменный сигнал по фазе. Это происходит из-за неверного расчета емкости, общего сопротивления и взаимодействия с другими радиодеталями. Не стоит забывать и о том, что любая радиодеталь имеет как реактивное, так и активное сопротивление.
Конденсаторы в цепи переменного тока
Из этой большой темы мы здесь рассмотрим только самое необходимое. В дальнейшем мы будем иметь дело в основном с цепями постоянного тока или низкой частоты, и углубленное изучение поведения компонентов при высокой частоте нам не потребуется. В предыдущей фразе слова «низкой частоты» нужно понимать условно, и вот почему: любой перепад напряжения (например, при включении или выключении питания) есть импульс высокой частоты, и тем она выше, чем быстрее происходит сам процесс снижения или повышения напряжения. Если представить себе фронт импульса постоянного тока как сумму гармонических (то есть синусоидальных) колебаний*, то импульс этот предстанет перед нами, как сумма колебаний, начиная сверху с той частоты, при которой происходило бы наблюдающееся нами на деле нарастание (или спад) напряжения импульса, если бы сигнал был чисто гармонический. То есть если импульс строго прямоугольный, то эта самая верхняя частота должна быть равна бесконечности, чего на деле, конечно, не бывает, поэтому реальные импульсы всегда не строго прямоугольны. Прохождение прямоугольных импульсов через конденсаторы и резисторы мы рассмотрим далее, а пока изучим поведение конденсаторов в цепях с обычным синусоидальным переменным током.
Постоянный ток конденсатор не пропускает по определению — так как представляет собой разрыв в цепи. Однако переменный ток через него протекает — при этом происходит постоянный перезаряд конденсатора, так как напряжение все время изменяется по величине и полярности. Поэтому конденсатор в цепи переменного тока можно представить себе, как некое сопротивление— чем ниже емкость конденсатора, и чем ниже частота, тем выше величина этого условного сопротивления, которую можно подсчитать по формуле R = l2nfC (если емкость С выражена в фарадах, а частота/в герцах, то сопротивление получится в омах). В пределе конденсаторы очень малой емкости (которые представляют собой, как мы выяснили, почти все пары проводников на свете) будут выглядеть, как полные разрывы в цепи и ток в этой цепи будет исчезающе мал.
Сам по себе конденсатор в такой цепи энергии не потребляет (в отличие от обычного резистора), потому его сопротивление переменному току называют еще реактивным — в то время, как обычное резистивное сопротивление называют активным (не путать с активными и пассивными компонентами схем, о которых шла речь в начале главы). Понять, почему так происходит, можно, если нарисовать графики тока и напряжения в цепи с конденсатором — ток опережает напряжение по фазе ровно на 90* 2 , поэтому их произведение, которое и есть потребляемая мощность по закону Джоуля-Ленца, в среднем равно нулю — можете проверить! Однако если в цепи присутствуют еще и обычные резисторы (а, как мы знаем, они всегда присутствуют — взять хотя бы сопротивление проводов), то этот реактивный ток приведет ко вполне материальным потерям на их нагревание — именно поэтому, как мы упоминали в главе 4, линии электропередач выгоднее делать на постоянном токе.
Дифференцирующие и интегрирующие цепи
Если подать на вход цепи, состоящей из резистора R и конденсатора С, прямоугольный импульс напряжения, то результат будет различным в зависимости от включения R и С. Переходные процессы в таких цепях подчиняются основным закономерностям, представленным на рис. 5.7, но имеют и свою специфику. На рис. 5.9 показаны два способа включения RC-цепочки в цепь с прямоугольными импульсами на входе (здесь они не такие, как на рис. 4.6, б, а однополярные, то есть напряжение меняется по величине, но от потенциала «земли» до напряжения источника питания).
Такое включение называется дифференцирующей цепочкой или фильтром высоких частот— потому что оно пропускает высокочастотные составляющие, полностью отрезая постоянный ток. Чем больше постоянная времени RC в этой схеме, тем ниже частота, которая может быть пропущена без изменений — в пределе импульсы высокой частоты пройдут почти неизмененными. Наоборот, если постоянную времени уменьшать, то пики на графике будут все больше утончаться. Этим эффектом широко пользуются для выделения фронтов и спадов прямоугольных импульсов (см. главу 16),
Рис. 5.9. Дифференцирующие цепочки: а — при подключении резистора к нулевому потенциалу; б— к потенциалу источника питания
Этим широко пользуются при необходимости формирования двуполярного напряжения из имеющегрся однополярного или для умножения напряжения — если выходное напряжение на рис. 5.9, б пропустить через выпрямитель и сглаживающий фильтр низкой частоты (см. далее, а также главу 9), то на выходе получится напряжение выше, чем напряжение питания, причем в отсутствие нагрузки оно будет в точности вдвое превышать исходное напряжение («удвоитель напряжения»). Иногда этот эффект вреден — подачей отрицательного или превышающего потенциал источника питания напряжения можно вывести из строя компоненты схемы (о защите от этого см. главы 11 и 16),
А интегрирующая цепочка (фильтр нижних частот) получается из схем рис. 5.9, если в них R и С поменять местами. График выходного напряжения будет соответствовать рис. 5.10. Такие цепочки, наоборот, пропускают постоянную составляющую, в то время как высокие частоты будут отрезаться. Если в такой цепочке увеличивать постоянную времени RC, то график будет становиться все более плоским — в пределе пройдет только постоянная составляющая (которая для случая рис. 5.10 равна среднему значению исходного напряжения, то есть ровно половине его амплитуды). Этим широко пользуются при конструировании вторичных источников питания, в которых нужно отфильтровать переменную составляющую сетевого напряжения (см. главу 9), Интегрирующими свойствами обладает и обычный кабель из пары
Рис. S.10. Интегрирующая цепочка и ее график выходного напряжения в одном масштабе с входным
проводов, о котором мы упоминали ранее, потому-то и теряются высокие частоты при прохождении сигнала через него.
Почему через конденсатор не течет постоянный ток. Доказать на примере (на схеме). То есть, что будет если подать переменное напряжение.
u041fu0440u0438 u043fu043eu0434u0430u0447u0435 u043fu0435u0440u0435u043cu0435u043du043du043eu0433u043e u043du0430u043fu0440u044fu0436u0435u043du0438u044f u0442u043eu043a u0432 u0446u0435u043fu0438 u0431u0443u0434u0435u0442 u043eu0433u0440u0430u043du0438u0447u0435u043d u0440u0435u0430u043au0442u0438u0432u043du044bu043c u0441u043eu043fu0440u043eu0442u0438u0432u043bu0435u043du0438u0435u043c u043au043eu043du0434u0435u043du0441u0430u0442u043eu0440u0430.u041eu0431u043au043bu0430u0434u043au0438 u043au043eu043du0434u0435u043du0441u0430u0442u043eu0440u0430 u0431u0443u0434u0443u0442 u043fu043eu043eu0447u0435u0440u0435u0434u043du043e u0437u0430u0440u044fu0436u0430u0442u044cu0441u044f/u0440u0430u0437u0440u044fu0436u0430u0442u044cu0441u044f, u043fu043eu044du0442u043eu043cu0443 u0442u043eu043a u0432 u0446u0435u043fu0438 u0431u0443u0434u0435u0442. u041fu0440u0438 u043fu043eu0441u0442u043eu044fu043du043du043eu043c u043du0430u043fu0440u044fu0436u0435u043du0438u0438 u043au043eu043du0434u0435u043du0441u0430u0442u043eu0440 u0437u0430u0440u044fu0436u0430u0435u0442u0441u044f u0438 u043fu043eu0442u043eu043c u0442u043eu043au0430 u0432 u0446u0435u043fu0438 u043du0435u0442.
При постоянном напряжении ток в цепи есть только в моменте включения конденсатора в цепь, т.е. в тот момент, когда конденсатор заряжается.
При подаче переменного напряжения ток в цепи будет ограничен реактивным сопротивлением конденсатора.Обкладки конденсатора будут поочередно заряжаться/разряжаться, поэтому ток в цепи будет. При постоянном напряжении конденсатор заряжается и потом тока в цепи нет.
Digitrode
цифровая электроника вычислительная техника встраиваемые системы
- Вычислительная техника
- Микроконтроллеры микропроцессоры
- ПЛИС
- Мини-ПК
- Силовая электроника
- Датчики
- Интерфейсы
- Теория
- Программирование
- ТАУ и ЦОС
- Перспективные технологии
- 3D печать
- Робототехника
- Искусственный интеллект
- Криптовалюты
Чтение RSS
Что случится, если полярный конденсатор подключить неправильно
Что произойдет, если неправильно подключить электролитический конденсатор
В мире электроники существуют различные типы конденсаторов, в том числе и полярные (например электролитические, ELD и суперконденсаторы) и неполярные конденсаторы (керамические, слюдяные, пленочные, бумажные и переменные конденсаторы). Конденсаторы играют активную и важную роль как в цепях переменного, так и постоянного тока (то есть в фильтрах, RC-цепях, улучшении коэффициента мощности, генераторах, демпферах и пускателях двигателей и т. д.). Но давайте поговорим конкретнее о полярных электролитических конденсаторах.
Электролитический полярный конденсатор представляет собой тип полярного конденсатора, полярность которого на клеммах обозначена катодом и анодом (положительная и отрицательная клеммы).
В электролитическом конденсаторе между двумя электродами расположен изолирующий слой, используемый в качестве диэлектрика (твердый, жидкий или газообразный материал). Существуют две металлические пластины, где первая пластина выступает в качестве положительного «анода» и покрыта изолирующим оксидным слоем посредством анодирования, и в качестве второго вывода, известного как «катод», используется электролит. Существует три типа электролитических конденсаторов, а именно алюминиевые, танталовые и ниобиевые конденсаторы.
В алюминиевых электролитических конденсаторах электроды изготовлены из чистого алюминия, однако анодный (положительный) электрод изготовлен путем формирования изолирующего слоя оксида алюминия (Al2O3) посредством анодирования. Электролит (твердый или не твердый) помещается на изолирующую поверхность анода. Этот электролит технически действует как катод. Второй алюминиевый электрод расположен сверху электролита, который действует как его электрическое соединение с отрицательным выводом конденсатора.
Алюминиевая фольга и бумажная прокладка намотаны вместе. Они пропитаны электролитом, а затем покрыты алюминиевым корпусом. В плане строения конденсаторов этого достаточно, давайте сосредоточимся непосредственно на теме вопроса.
Мы знаем, что конденсатор блокирует постоянный ток и пропускает переменный ток. Полярный, т.е. электролитический конденсатор, должен быть подключен к правым клеммам источника постоянного тока для правильной работы при использовании в цепях постоянного тока. Другими словами, положительный и отрицательный источник постоянного тока должны быть подключены к положительной и отрицательной клеммам конденсатора соответственно.
Несчастные случаи реальны, и они часто происходят преднамеренно или случайно. Теперь давайте посмотрим, что произойдет, если полярный или электролитический конденсатор подключен к обратной клемме источника питания постоянного тока, т. е. отрицательный вывод к положительному и наоборот.
В случае обратного подключения конденсатор не будет работать вообще, и если приложенное напряжение выше, чем значение номинальной емкости конденсатора, больший ток утечки начнет протекать и нагревать конденсатор, что приведет к повреждению диэлектрической пленки (слой алюминия очень тонкий и легко ломается) по сравнению с приложенным напряжением постоянного тока, конденсатор даже может взорваться.
Необходимо соблюдать осторожность при подключении полярного конденсатора к источнику постоянного тока с соответствующими клеммами. В противном случае обратное напряжение может повредить конденсатор с треском за очень короткое время (несколько секунд). Это может привести к серьезным травмам или опасному пожару (танталовые конденсаторы могут легко воспламенеть).
Слои алюминия в электролитическом конденсаторе несут только прямое напряжение постоянного тока (так же, как прямой диод смещения). Обратное напряжение постоянного тока на полярном конденсаторе приведет к выходу из строя конденсатора из-за короткого замыкания между его двумя клеммами через диэлектрический материал (аналогично диоду с обратным смещением, работающему в области пробоя). Это явление известно как эффект клапана.
Имейте в виду, что электролит, используемый в фольге и электролитическом конденсаторе, может зажить и вернуть конденсатор в его нормальное положение, если в конденсаторе прошло очень низкое обратное напряжение. Поэтому, если вы приложили обратное напряжение к полярному конденсатору и используете его только для проектов, связанных с хобби, вы должны проверить конденсатор перед установкой в цепь или заменить его новым в случае коммерческого и промышленного использования.
В случае обратного напряжения (отрицательный источник к положительной клемме и наоборот) с большей вероятностью приведет к взрыву алюминиевого электролитического конденсатора из-за ионов водорода. В этом неправильном проводном соединении на электролитическом катоде имеется положительное напряжение, а на оксидном слое появляется отрицательное напряжение. В этой ситуации ионы водорода (Н2), собранные в оксидном слое, будут проходить через диэлектрическую среду между двумя пластинами и достигать металлического слоя, где все превращается в газообразный водород. Давление, создаваемое водородным газом, является достаточным для разрушения конденсатора, и корпус может взорваться с испарением.
Когда положительные и отрицательные клеммы подключены обратно. Водород будет генерироваться без образования оксидной пленки, которая необходима для диэлектрической среды. По этой причине удельное сопротивление электролитического конденсатора с обратной связью меньше по сравнению с надлежащим соединением, т.е. положительным и отрицательным источником к положительной и отрицательной клеммам соответственно. Весь этот процесс потерпит неудачу и повредит конденсатор.
Диэлектрическая среда, используемая между двумя электродами электролитического конденсатора, является однонаправленной, то есть она пропускает ток только и только в одном направлении, как диод с PN-переходом. В случае обратного соединения диэлектрическая среда не будет действовать как сопротивление или изоляционный материал. Газообразный водород будет генерироваться в течение очень нескольких секунд, и конденсатор будет действовать как короткое замыкание для источника постоянного тока, что приводит к выходу конденсатора из строя (с выпуклой верхней частью или общим износом).
Всегда проверяйте положительную и отрицательную клеммы электролитического и полярного конденсаторов. Тот вывод, на котором напечатана метка «-» (отрицательная полоска или полоска со стрелкой) или короткая ножка, известен как «катод» или отрицательный конец, а другой с длинной ножкой известен как «анод» или положительный вывод.