Astro-nn.ru

Стройка и ремонт
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Защита от постоянных электрических и магнитных полей

Защита от постоянных электрических и магнитных полей, лазерного, инфракрасного, ультрафиолетового излучений

ЭМП

Электромагнитное поле сверхвысоких напряжений отрицательно воздействует на организм человека. Медицинское обследование персонала, длительно работающего вблизи ВЛ сверхвысокого напряжения, показало, что электромагнитное поле промышленной частоты вызывает у человека повышенную утомляемость, понижение артериального давления, падение частоты пульса; в сердце возникают резкие боли, сопровождающиеся сердцебиением и аритмией.

Основные меры защиты от воздействия электромагнитных излучений: уменьшение излучения непосредственно у источника (достигается увеличением расстояния между источником направленного действия и рабочим местом, уменьшением мощности излучения генератора); рациональное размещение СВЧ и УВЧ установок (действующие установки мощностью более 10 Вт следует размещать в помещениях с капитальными стенами и перекрытиями, покрытыми радиопоглощающими материалами — кирпичом, шлакобетоном, а также материалами, обладающими отражающей способностью —-масляными красками и др.); дистанционный контроль и управление передатчиками в экранированном помещении (для визуального наблюдения за передатчиками оборудуются смотровые окна, защищенные металлической сеткой); экранирование источников излучения и рабочих мест (применение отражающих заземленных экранов в виде листа или сетки из металла, обладающего высокой электропроводностью — алюминия, меди, латуни, стали); организационные меры (проведение дозиметрического контроля интенсивности электромагнитных излучений — не реже одного раза в 6 месяцев; медосмотр — не реже одного раза в год; дополнительный отпуск, сокращенный рабочий день, допуск лиц не моложе 18 лет и не имеющих заболеваний центральной нервной системы, сердца, глаз); применение средств индивидуальной защиты (спецодежда, защитные очки и др.).

У индукционных плавильных печей и нагревательных индукторов (высокие частоты) допускается напряженность поля до 20 В/м. Предел для магнитной составляющей напряженности поля должен быть 5 А/м. Напряженность ультравысокочастотных электромагнитных полей (средние и длинные волны) на рабочих местах не должна превышать 5 В/м. Каждая промышленная установка снабжается техническим паспортом, в котором указаны электрическая схема, защитные приспособления, место применения, диапазон волн, допустимая мощность и т. д. По каждой установке ведут эксплуатационный журнал, в котором фиксируют состояние установки, режим работы, исправления, замену деталей, изменения напряженности поля. Пребывание персонала в зоне воздействия электромагнитных полей ограничивается минимально необходимым для проведения операций временем. Новые установки вводят в эксплуатацию после приемки их, при которой устанавливают выполнение требований и норм охраны труда, норм по ограничению полей и радиопомех, а также регистрации их в государственных контролирующих органах..

Экранирование — наиболее эффективный способ защиты. Электромагнитное поле ослабляется экраном вследствие создания в толще его поля противоположного направления. Степень ослабления электромагнитного поля зависит от глубины проникновения высокочастотного тока в толщу экрана. Чем больше магнитная проницаемость экрана и выше частота экранируемого поля, тем меньше глубина проникновения и необходимая толщина экрана. Экранируют либо источник излучений, либо рабочее место. Экраны бывают отражающие и поглощающие. Для защиты работающих от электромагнитных излучений применяют заземленные экраны, кожухи, защитные козырьки, устанавливаемые на пути излучения.

Средства защиты (экраны, кожухи) из радиопоглоща-ющих материалов выполняют в виде тонких резиновых ковриков, гибких или жестких листов поролона, ферромагнитных пластин. Для защиты от электрических полей сверхвысокого напряжения (50 Гц)необходимо увеличивать высоту подвеса фазных проводов ЛЭП. Для открытых распределительных устройств рекомендуются заземленные экраны (стационарные или временные) в виде козырьков, навесов и перегородок из металлической сетки возле коммутационных аппаратов, шкафов управления и контроля. К средствам индивидуальной защиты от электромагнитных излучений относят переносные зонты, комбинезоны и халаты из металлизированной ткани, осуществляющие защиту организма человека по принципу заземленного сетчатого экрана.

Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)

Защита от постоянных электрических и магнитных полей.

Источником электрических по­лей промышленной частоты яв­ляются токоведущие части дей­ствующих электроустановок (линии электропередач, индукторы, конден­саторы термических установок, фидерные линии, генераторы, трансформаторы, электромагниты, соленоиды, импульсные установки полупериодного или конденсатор­ного типа, литые и металлокерамические магниты и др.).

Длительное воздействие электрического поля на организм человека может выз­вать нарушение функционального состояния нервной и сердечно-со­судистой систем. Это выражается в повышенной утомляемости, сниже­нии качества выполнения рабочих операций, болях в области сердца, изменении кровяного давления и пульса.

Основными видами средств кол­лективной защиты от воздействия электрического поля токов промыш­ленной частоты являются экраниру­ющие устройства — составная часть электрической установки, предназ­наченная для защиты персонала в открытых распределительных уст­ройствах и на воздушных линиях электропередач.

Экранирующее устройство необ­ходимо при осмотре оборудования и при оперативном переключении, наблюдении за производством ра­бот. Конструктивно экранирующие устройства оформляются в виде козырьков, навесов или перегоро­док из металлических канатов, прут­ков, сеток.

Переносные экраны также исполь­зуются при работах по обслужива­нию электроустановок в виде съем­ных козырьков, навесов, перегоро­док, палаток и щитов.

Экранирующие устройства долж­ны иметь антикоррозионное покры­тие и заземлены.

Источником электромагнитных полей радиочастот являются:

в диапазоне 60 кГц — 3 МГц — не­экранированные элементы обору­дования для индукционной обра­ботки металла(закалка, отжиг, плав­ка, пайка, сварка и т.д.) и других материалов, а также оборудования и приборов, применяемых в радио­связи и радиовещании;

в диапазоне 3 МГц — 300 МГц -неэкранированные элементы обо­рудования и приборов, применяе­мых в радиосвязи, радиовещании, телевидении, медицине, а также оборудования для нагрева диэлек­триков (сварка пластикатов, нагрев пластмасс, склейка деревянных изделий и др.);

в диапазоне 300 МГц — 300 ГГц -неэкранированные элементы обо­рудования и приборов, применяе­мых в радиолокации, радиоастро­номии, радиоспектроскопии, физи­отерапии и т.п.

Длительное воздействие радио­волн на различные системы орга­низма человека по последствиям имеют многообразные проявления.

Наиболее характерными при воз­действии радиоволн всех диапазо­нов являются отклонения от нор­мального состояния центральной нервной системы и сердечно-сосу­дистой системы человека. Субъек­тивными ощущениями облучаемого персонала являются жалобы на ча­стую головную боль, сонливость или общую бессонницу, утомляемость, слабость, повышенную потливость, снижение памяти, рассеянность, го­ловокружение, потемнение в гла­зах, беспричинное чувство тревоги, страха и др.

Для обеспечения безопасности работ с источниками электромаг­нитных волн производится систе­матический контроль фактических нормируемых параметров на рабо­чих местах и в местах возможного нахождения персонала. Контроль осуществляется измерением напря­женности электрического и магнит­ного поля, а также измерением плот­ности потока энергии по утверж­денным методикам Министерства здравоохранения.

Защита персонала от воздей­ствия радиоволн применяется при всех видах работ, если усло­вия работы не удовлетворяют требованиям норм. Эта защита осуществляется следующими способами и средствами:

согласованных нагрузок и погло­тителей мощности, снижающих на­пряженность и плотность поля пото­ка энергии электромагнитных волн;

экранированием рабочего места и источника излучения;

рациональным размещением обо­рудования в рабочем помещении;

подбором рациональных режимов работы оборудования и режима тру­да персонала;

применением средств предупре­дительной защиты.

Эффективным средством защиты от воздействия электромагнитных излучений является экранирование источников излучения и рабочего места с помощью экранов, погло­щающих или отражающих электро­магнитную энергию. Отражающие экраны используют в основном для защиты от паразит­ных излучений (утечки из цепей в линиях передачи СВЧ-волн, из ка­тодных выводов магнетронов и дру­гих. В остальных слу­чаях, как правило, применяются по­глощающие экраны.

Для изготовления отражающих экранов используются материалы с высокой электропроводностью, на­пример металлы (в виде сплошных стенок) или хлопчатобумажные тка­ни с металлической основой. Сплош­ные металлические экраны наибо­лее эффективны и уже при толщине 0,01 мм обеспечивают ослабление электромагнитного поля примерно на 50 дБ (в 100 000 раз).

Для изготовления поглощающих экранов применяются материалы с плохой электропроводностью. По­глощающие экраны изготавливают­ся в виде прессованных листов ре­зины специального состава с кони­ческими сплошными или полыми шипами, а также в виде пластин из пористой резины, наполненной кар­бонильным железом, с впрессован­ной металлической сеткой. Эти ма­териалы приклеиваются на каркас или на поверхность излучающего оборудовани

3.5.Защита от лазерного излучения.
Лазер или оптический квантовый генератор — это генератор электромагнитного излучения оптического диапазона, основанный на использовании вынужденного (стимулированного) излучения. Благодаря своим уникальным свойствам (высокая направленность луча, когерентность) находят исключительно широкое применение в различных областях промышленности, науки, техники, связи, сельском хозяйстве, медицине, биологии и др.
В основу классификации лазеров положена степень опасности лазерного излучения для обслуживающего персонала. По этой классификации лазеры разделены на 4 класса:
класс 1 (безопасные) — выходное излучение не опасно для глаз;

класс II (малоопасные) — опасно для глаз прямое или зеркально отраженное излучение;
класс III (среднеопасные) — опасно для глаз прямое, зеркально, а также диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности и (или) для кожи прямое или зеркально отраженное излучение;
класс IV (высокоопасные)- опасно для кожи диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности.
В качестве ведущих критериев при оценке степени опасности генерируемого лазерного излучения приняты величина мощности (энергии), длина волны, длительность импульса и экспозиция облучения.
Предельно допустимые уровни, требования к устройству, размещению и безопасной эксплуатации лазеров регламентированы «Санитарными нормами и правилами устройства и эксплуатации лазеров» № 2392-81, которые позволяют разрабатывать мероприятия по обеспечению безопасных условий труда при работе с лазерами. Санитарные нормы и правила позволяют определить величины ПДУ для каждого режима работы, участка оптического диапазона по специальным формулам и таблицам. Предельно допустимые уровни облучения дифференцированы с учетом режима работы лазеров -непрерывный режим, моноимпульсный, импульсно-периодический.
В зависимости от специфики технологического процесса работа с лазерным оборудованием может сопровождаться воздействием на персонал главным образом отраженного и рассеянного излучения. Энергия излучения лазеров в биологических объектах (ткань, орган) может претерпевать различные превращения и вызывать органические изменения в облучаемых тканях (первичные эффекты) и неспецифические изменения функционального характера (вторичные эффекты), возникающие в организме в ответ на облучение.
Влияние излучения лазера на орган зрения (от небольших функциональных нарушений до полной потери зрения) зависит в основном от длины волны и локализации воздействия.
При применении лазеров большой мощности и расширении их практического использования возросла опасность случайного повреждения не только органа зрения, но и кожных покровов и даже внутренних органов с дальнейшими изменениями в центральной нервной и эндокринной системах.
Предупреждение поражений лазерным излучением включает систему мер инженерно-технического, планировочного, организационного, санитарно-гигиенического характера.
При использовании лазеров II-III классов в целях исключения облучения персонала необходимо либо ограждение лазерной зоны, либо экранирование пучка излучения. Экраны и ограждения должны изготавливаться из материалов с наименьшим коэффициентом отражения, быть огнестойкими и не выделять токсических веществ при воздействии на них лазерного излучения.
Лазеры IV класса опасности размещаются в отдельных изолированных помещениях и обеспечиваются дистанционным управлением их работой.
При размещении в одном помещении нескольких лазеров следует исключить возможность взаимного облучения операторов, работающих на различных установках. Не допускаются в помещения, где размещены лазеры, лица, не имеющие отношения к их эксплуатации. Запрещается визуальная юстировка лазеров без средств защиты.
Для защиты от шума принимаются соответствующие меры звукоизоляции установок, звукопоглощения и др.
К индивидуальным средствам защиты, обеспечивающим безопасные условия труда при работе с лазерами, относятся специальные очки, щитки, маски, обеспечивающие снижение облучения глаз до ПДУ.
Средства индивидуальной защиты применяются только в том случае, когда коллективные средства защиты не позволяют обеспечить требования санитарных правил.

Читать еще:  Что такое система классификации термоиндикаторов по классу защиты IP? IP63-IP66

Электронная библиотека

При несоответствии требованиям норм (в зависимости от характера выполняе­мых работ и уровня напряженности магнитного поля) для защиты от воздействия магнитных полей применяют практически такие же мероприятия, способы и средства, как и при защите от воздействия электрических полей:

– защита временем и рассто­янием;

– уменьшение параметров излучения непосред­ственно в самом источнике излучения;

– экранирование источника излучения;

– экранирование рабочего места;

– рациональное размещение установок в рабочем помеще­нии;

– установление рациональных режимов эксплуата­ции установок и работы обслуживающего персонала;

– применение предупреждающей сигнализации;

– выделение зон излучения;

– применение средств индивидуальной защиты.

Кратко остановимся на характеристике некоторых способов защиты. Так, в качестве организационных мероприятий, позволяющих уменьшить неблагоприятное действие постоянного магнитного поля, можно считать выполнение следующих требований:

– ограничение непосредственного контакта рук персонала с намагниченными изделиями путем использования манипуляторов, щипцов, прокладок из немагнитных материалов;

– введение и выведение изделий из электромагнитов следует осуществлять при обесточенном электромагните либо с использованием указанных приспособлений;

– осуществление намагничивания изделий на последней стадии технологического процесса;

– хранение и перенос магнитных изделий в толстостенной таре из немагнитных материалов или приспособлениях и устройствах, замыкающих магнитный поток;

– использование на участках технических испытаний изделий автоматических устройств для измерения физических параметров магнитов и магнитных материалов.

При разработке и эксплуатации технологических установок постоянного тока, создающих постоянное магнитное поле в большом объеме рабочего пространства, необходимо обеспечивать дистанционное управление технологическим процессом. Пульты управления установками должны быть вынесены за пределы зоны, в которой уровни магнитного поля превышают ПДУ с учетом времени действия.

Участки производственной среды с уровнями МП, превышающими ПДУ, следует обозначить специальными предупреждающими знаками, выполненными в соответствии с ГОСТ Р 12.4.026-2001 «ССБТ. Цвета сигнальные и знаки безопасности», с поясняющей надписью: «Осторожно! Магнитные поля» [16].

Для предупреждения неблагоприятного действия постоянного магнитного поля (ПМП) на руки работающих в производстве изделий электронной техники требуется осуществление следующих мероприятий:

– увеличить габариты кожухов на магнитных установках, предотвращающих контакты рук работающих с ПМП;

– внедрить сквозные технологические кассеты на участках сборки, исключающие воздействие ПМП на руки работающих;

– внедрить специальные приспособления дистанционного принципа действия для захвата приборов в магнитном поле и манипуляций.

Технологические установки постоянного тока следует размещать на таком расстоянии друг от друга, чтобы персонал, занятый на одном рабочем месте, не попадал в зону действия ПМП от другого источника.

При организации рабочих мест (рабочих зон) следует осуществлять и такие организационные мероприятия по снижению воздействия ПМП на организм человека, как выбор рационального режима труда и отдыха, сокращение времени нахождения в условиях действия ПМП, определение маршрута движения в рабочей зоне, ограничивающего контакт с ПМП.

Заметим, что кроме защиты временем, расстоянием и указанных выше мероприятий, наиболее действенной технической мерой для защиты от магнитного поля является экранирование. Экранирование от постоянных магнитных полей осуществляется посредством того, что для защиты человека или какого-либо оборудования от влияния посторонних магнитных полей их окружают массивными замкнутыми оболочками из ферромагнитного материала. Такие оболочки и называют магнитными экранами. Поле внутри экрана оказывается ослабленным по сравнению с внешним полем.

Например, для экрана в форме полого шара с радиусами R1 и R2 (рис. 3.22) и с абсолютной магнитной проницаемостью стенок m, помещенного во внешнее однородное поле с индукцией В, магнитная индукция В в полости экрана равна [45]:

Например, если R1 = 0.8R2 и m = 400, то В = 0.023В. Следовательно, напряженность поля внутри экрана составляет 2 % от напряженности внешнего поля.

В случае экрана, выполненного в форме цилиндра с радиусами R1 и R2, значение магнитной индукции в средней части экрана при больших значениях магнитной проницаемости стали, из которой изготовлен экран (m >> m), можно определить с помощью следующего выражения:

Здесь d – толщина стенки экрана (d = R2 – R1).

Экранирующее действие экранов из ферромагнитного вещества определяется тем, что линии магнитной индукции внешнего поля, стремясь пройти по пути с наименьшим магнитным сопротивлением, сгущаются внутри стенок экрана, почти не проникая в его полость. Точно также можно защитить внешнее пространство от воздействия магнитного поля, если

источник поля окружить массивной замкнутой оболочкой из ферромагнитного материала Нередко применяют многоступенчатые экраны в виде нескольких полых ферромагнитных тел, расположенных одно внутри другого.

Принцип действия экранов, которые применяются для защиты от воздействия магнитных полей промышленной частоты, будет рассмотрен ниже. Здесь только отметим, что физически экранирующее действие таких экранов объясняется не только тем, что магнитное сопротивление стенок экрана много меньше магнитного сопротивление воздуха, но и возникновением вихревых токов в стенках экрана, которые создают свое магнитное поле, направленное навстречу внешнему полю, и тем самым ослабляют его. Поэтому в данном случае важна не только величина магнитной проницаемости материала, из которого изготовлен экран, но и его удельная проводимость.

Отметим, что экранирующие устройства, предназначенные для защиты от магнитных полей, являются также хорошими защитными средствами (при их заземлении) и от электрических полей. Однако те экранирующие устройства, которые предназначены для защиты от электрических полей и толщина стенок которых определяется в основном из соображений механической прочности, могут оказаться малоэффективными при защите от магнитных полей, особенно, если эти поля являются постоянными.

Срочно?
Закажи у профессионала, через форму заявки
8 (800) 100-77-13 с 7.00 до 22.00

Охрана Труда

Защита от воздействия электромагнитных полей

Источником излучения электромагнитных полей являются различные электроустановки – воздушные линии электропередачи и открытые распределительные устройства при промышленной частоте 50 Гц, производственные технологические высокочастотные установки, различные электровакуумные высокочастотные приборы (магнетроны, клистроны и др.), применяемые в научных исследованиях, радиолокации и т.п.

Медицинскими исследованиями установлено, что длительное воздействие переменного электромагнитного поля на организм человека вызывает нарушение функций его нервной и сердечно-сосудистой систем. Оно проявляется быстром утомлении человека, снижении точности движений в процессе работы, головой боли и болевых ощущениях в области сердца, повышении кровяного давления. Электромагнитные поля, особенно высоких и сверхвысоких частот (ВЧ и СВЧ), могут быть причиной профессионального заболевания.

При кратковременном воздействии электромагнитного поля эти нарушения деятельности организма оказываются нестойкими, но при длительном воздействии могут быть причиной заболевания. Помимо вредного теплового действии на живую ткань, энергия электромагнитного поля вызывает биологические изменения в клетках ткани, что и приводит к серьезным изменениям жизненных функций –торможение рефлексов, ослабление сердечной деятельности, изменение состава крови, помутнение хрусталиков глаза и др.

Наблюдениями установлено, что степень воздействия электромагнитного поля на организм человека зависит от частоты его колебаний и величины напряженностей магнитной и электрической составляющих этого поля. Большее влияние на организм человека оказывает электрическая составляющая напряженность поля.

В производственных условиях при использовании высокочестотных установок нагрева металла или диэлектрических материалов могут иметь место излучения в окружающее пространство некоторой части генерируемого электромагнитного поля воздействующего на обслуживающих установку операторов в зоне обслуживания.

Защита от действия электромагнитных полей высоких, ультравысоких (УВЧ) и сверхвысоких частот осуществляется в соответствии с требованиями «Санитарных норм и правил при работе с источниками электромагнитных полей ВЧ, УВЧ и СВЧ». Эти правила распространяются на установки, излучающие электромагнитные поля с частотами 100 кГц – 30 МГц (ВЧ), 30-300 МГц (УВЧ) и 300-300 000 МГц (СВЧ). Для индукционного нагрева материалов применяются установки ВЧ.

Источниками электромагнитных полей, распространяющихся в окружающую среду вокруг этих установок, могут явится неэкранированные элементы: индукторы, трансформаторы, конденсаторы, отходящие линии.

Степень облучения работающих зависит от мощности установки и наличия экранирования ВЧ элементов, а также от положения рабочего места относительно источника излучения.

Интенсивность элетромагнитного поля определяется прибором ИЭМП-1, который имеет пределы измерения электрической составляющей 4-2000 В/м в диапазоне частот 100 кГц -30 МГц и 1-600 В/м в диапазоне частот 20-300 МГц и магнитной составляющей 0,5-300 А/м.

Согласно правил интенсивность электромагнитных полей не должна превышать:

А) по электрической составляющей в диапазоне частот от 100 кГц до 30 МГц -20 В/м, а диапазоне частот 30-300 МГц – 5 В/м;

Б) по магнитной составляющей в диапазоне частот от 100 кГц до 1,5 МГц -5 А/м.

Действующие генераторы ВЧ, УВЧ и СВЧ должны размещаться в специальных помещениях. Разрешается размещение ВЧ установок для нагрева металлов и диэлектриков в общих помещениях при условии обеспечения на рабочих местах предельно допустимых уровней обслуживания и при условии исключения облучения лиц, не обслуживающих данные установки.

При термической обработке металлов и диэлектриков у рабочих элементов (индуктор, плавильная печь, пластины рабочего конденсатора) должна быть оборудована местная вытяжная вентиляция. Во избежание нагрева ВЧ полем воздухоприемники изготовляются из немагнитных материалов.

Защита персонала, обслуживающего установки ВЧ, УВЧ и СВЧ, достигается:

А) непосредственно уменьшением излучения самого источника электромагнитного поля;

Б) экранированием рабочего места от источника излучений или удавлением от него рабочего места с помощью дистанционного управления;

Г) применением средств индивидуальной защиты.

В установках для индукционного нагрева металла обычно применяется общее экранирование установки, причем за экран выносятся пульт управления и закалочный индуктор, или выполняется поблочное экранирование.

При блочном экранировании экран конденсатора выполняется в виде замкнутой металлической камеры или сетки, экран ВЧ трансформатора — в виде стального кожуха, экран плавильного индуктора – в виде подвижной металлической камеры, опускающейся во время нагрева и поднимающейся после его окончания , или в виде неподвижной камеры с дверей.

Методы защиты от электромагнитного излучения

Все жители земли находятся в зоне действия различных излучений. К естественным источникам (солнечное излучение, радиационный фон земли, электромагнитные волны атмосферных явлений), организм человека адаптирован, это нормальная среда обитания. А вот искусственные генераторы излучения — это проблема для организма.

Какие источники электромагнитного поля (ЭМП) имеются вокруг

  • Электропроводка: создает вокруг себя электромагнитное поле, величина которого прямо пропорционально нагрузке на линию. То есть, при включении бойлера или электрической духовки, интенсивность излучения многократно возрастает.
  • Любой электроприбор, имеющий в своем составе проводники (обмотки трансформаторов, нити накаливания фена или калориферного нагревателя — являются источником излучения). Даже если нет явных узлов, генерирующих излучение.
  • Устройства отображения информации: экраны телевизоров, мониторов, планшетов, ноутбуков, игровых приставок.
  • Акустические системы.
  • Электродвигатели (стиральная машина, холодильник, пылесос, вентилятор, тот же фен).
  • Электронные измерительные приборы: счетчики электроэнергии.
  • Места концентрации электропроводки: электрические щитки, узлы коммутации телевизионного или интернет кабеля.
  • Электроприборы, имеющие в своем составе импульсные блоки питания (начиная от зарядного устройства для смартфона, заканчивая компьютером и музыкальным центром).
  • Система «теплый пол», работающая от электрического тока.
  • Электрические системы центрального отопления.
  • Современные экономные приборы освещения (имеют в своем составе блоки питания, работающие на высокой частоте).
  • Микроволновые (СВЧ) печи, или электродуховки с высокочастотным узлом нагрева. Это бич современной цивилизации: подобное устройство имеется практически в каждом доме.
Читать еще:  ОСНОВНЫЕ МЕРЫ ЗАЩИТЫ ОТ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ

Отдельно перечислим источники прямого излучения для передачи информации

  • Мобильные телефоны, смартфоны, планшеты с беспроводным подключением к сети.
  • Радиотелефоны городской сети связи.
  • Портативные радиостанции.
  • Всевозможные беспроводные устройства: наушники, компьютерные мыши, клавиатуры.
  • Радиоуправляемые игрушки.
  • Wi-Fi роутеры.

И это лишь приборы, окружающие нас в помещении. То есть, расположенные в непосредственной близости. На эту опасность мы можем как-то повлиять, оптимизируя режимы использования. В данном случае – защита от электромагнитных волн находится в пределах ответственности собственника здания.

Уличные источники излучения

Мы не будем говорить о радиации: (атомные станции, корабли, подводные лодки с ядерным реактором). А также места добычи, переработки и утилизации ядерного топлива и вооружения. В этих регионах уровень радиоактивного облучения контролируется специальными службами. От нас с вами зависит лишь выбор: находиться в этом месте или нет (проживание, служба, работа).

Такие зоны имеют характер точечного размещения, в отличие от источников электромагнитных волн.

  • Трансформаторные подстанции.
  • Линии электропередач (воздушные и подземные). Так же, как в комнатной электропроводке — уровень электрического поля зависит от нагрузки на линии.
  • Передающие антенны: телевышки, радио трансляторы, ведомственные передающие центры (военного назначения, порты, авиа-диспетчерские).
  • Крупные предприятия, в которых используется масштабное электрооборудование.
  • Троллейбусные линии (в отличие от ЛЭП, они расположены близко к местам проживания).
  • Собственно, городской транспорт на электротяге (в тот момент, когда мы им непосредственно пользуемся).
  • Уличное освещение, рекламные светодиодные экраны.

Все вышеперечисленное не означает, что каждый из нас ежесекундно подвергается смертельной опасности. Однако мы должны знать, как защититься от ЭМП. Или как минимум, минимизировать его воздействие на организм. Для этого вовсе не обязательно применять специальные средства защиты от электромагнитного излучения.

Как защититься от электромагнитного поля в быту

Почему именно в быту? На предприятиях, где персонал подвергается воздействию электромагнитного поля, работают специальные службы. В зону их ответственности входит:

  • Произведение замеров уровня ЭМП в местах присутствия людей.
  • Обеспечение безопасного уровня излучения источников, которые невозможно выключать на время нахождения персонала в непосредственной близости.
  • Контроль за временем пребывания работников в зонах с опасным уровнем излучения.
  • Разработка методических рекомендаций и требований при работе в зоне воздействия ЭМП.

Деятельность таких служб контролируют надзорные органы. А для нас вами существуют лишь нормы СЭС, и здравый смысл при использовании домашних электроприборов.

Какие способы защиты от электромагнитного излучения можно применить в домашних условиях? Существует три основных направления защиты:

Защита временем

Многие помнят, как устранялись последствия аварии на Чернобыльской АЭС. Спасатели работали по строго контролируемому графику: организм относительно безопасно может перенести определенную дозу излучения. Это как загар на пляже: время принятия солнечных ванн регламентировано врачами. Иначе последствия могут быть печальными.

То же самое касается излучения от электроприборов. Общий принцип такой:

  • Если электроприбор не используется — его следует выключить.
  • Если прибор выключить нельзя — сократите время пребывания в зоне излучения.

Практически это выглядит так:

  • Для защиты от излучения компьютера, не сидите перед экраном круглые сутки.
  • Не следует держать компьютер (планшет, телевизор) включенным постоянно. Если вы отошли от экрана, излучение все равно есть. Лучше подождать 10–20 секунд, пока операционная система вновь загрузится, чем несколько часов подряд находиться рядом с включенным источником ЭМП.
  • Минимизируйте время разговора по мобильному и радиотелефону. Потратьте больше времени на живое общение: излучение от мобилки воздействует непосредственно на мозг.
  • Определите для себя (и своих детей) максимальное время ежедневного просмотра телепередач и нахождения возле компьютера. Старайтесь придерживаться этого интервала.
  • Отключайте Wi-Fi роутер, когда никто не пользуется интернетом. Особенно на ночь. Максимально сократите время пребывания в зоне действия его антенны.
  • Если вам приходится проходить вблизи явных источников излучения — делайте это максимально быстро.
  • Не задерживайтесь надолго в крупных торговых центрах: эти помещения буквально напичканы источниками электромагнитных волн.
  • Старайтесь пользоваться феном, утюгом, пылесосом, по возможности недолго.
  • Не оставляйте включенными на долгое время, излучатели от насекомых: это довольно мощный источник ультразвуковых волн.

Защита расстоянием и направлением

Соблюдать этот метод и просто, и сложно. Если вы точно знаете, где расположен активный источник излучения, находитесь от него как можно дальше. В глобальном понимании проблемы — не следует приобретать жилье в зоне действия линий электропередач, на первой линии от городских улиц (с троллейбусными проводами), в непосредственной близости от промышленных объектов или трансформаторных подстанций.

  • По возможности контролируйте размещение на крыше вашего многоквартирного дома антенн мобильной связи.
  • Добивайтесь, чтобы активная световая реклама располагалась как можно дальше от вашего дома.
  • Не стойте рядом с микроволновкой во время ее работы. Лучше вообще покинуть помещение. Вы услышите звонок об окончании процесса, и вернетесь к разогретому блюду.
  • Используйте проводные гарнитуры при разговоре по мобильному телефону. Всевозможные Bluetooth приспособления, постоянно висящие у вас на ушах — это не решение проблемы. Должно быть так: наушники — провод — телефон в сумке.
  • Не стойте рядом с человеком, разговаривающим по мобильному телефону. Излучение от трубки в режиме передачи, опасно в радиусе минимум 1 метра.
  • Располагайте базовые станции радиотелефонов, Wi-Fi точки доступа и роутеры таким образом, чтобы расстояние до мест сосредоточения людей было минимальным.
  • Если вы знаете диаграмму направленности источника излучения, разместите прибор таким образом, чтобы активная зона была выше человеческого роста.

Дополнительные средства защиты от электромагнитного излучения

Разумеется, мы не будем обсуждать металлизированные сетки для ношения мобильного телефона в кармане, или мифические нейтрализаторы излучения в виде нефритовых пирамидок. Эти «средства защиты» были популярны в эпоху дикого рынка 90-х годов. Различные активные «постановщики помех» — также не более, чем эффективное средство для извлечения денег у клиента. Кроме того, любой электроприбор, а тем более с излучателем — это еще один источник электромагнитных волн.

Важно!
С точки зрения теории и практики распространения радиоволн (а также любого другого электромагнитного излучения), единственный способ защиты — это токопроводящий экран, заземленный согласно Правилам устройства электроустановок.

Как применить метод на практике

  • Уложенная под штукатурку металлическая арматура — идеальный экран от стороннего излучения. Разумеется, при условии, что сетка заземлена. Пусть это не вызывает ассоциаций с сюжетами из фильмов про агента 007 – материал продается в любом строительном магазине.
  • Металлизированные пленки на окна — интересное решение, только при условии наличия контакта для заземляющего проводника. Такой метод был популярен в эпоху компьютерных мониторов с электронно-лучевой трубкой (кинескопом).
  • Металлизированные занавески с декоративными нитями (опять же, при условии заземления).
  • Алюминиевая фольга за батареями отопления будет выполнять не только функции отражателя тепла, но и защиты от электромагнитных излучений.
  • Стальные входные двери (они также должны быть соединены с «землей», как минимум в рамках системы выравнивания потенциалов).

Правда у этих средств защиты есть побочный эффект: сквозь такие стены и окна не пробивается сигнал сотовой связи. Радио и телепередачи также будут приниматься лишь на внешнюю антенну. С учетом пользы для здоровья, это не проблема.

  • А бытовые приборы, расположенные внутри, необходимо подключать к шине заземления. Большинство электрооборудования имеет металлический корпус (даже пластиковые на первый взгляд телевизоры и музыкальные центры, имеют внутри токопроводящий каркас). Уровень излучение у заземленной техники приближается к нулю.

Как понять, подвергаетесь ли вы опасности излучения ЭМП

Предупрежден — значит вооружен. Постарайтесь максимально точно узнать все о ваших электроприборах в плане воздействия электромагнитного поля. Возможно, понадобится пригласить специалистов СЭС. Затраты на выявление вредоносных приборов окупятся сохранением здоровья.

Это касается вашего жилища. На территории общего пользования, а также на предприятиях (в конторах), действуют санитарные нормы. Если у вас есть подозрение, что эти нормы нарушаются (немотивированное ухудшение состояния, помехи на телевизоре, музыкальном проигрывателе) — обратитесь в подразделение СЭС. Либо вы получите утешительный ответ, что вашему здоровью ничего не угрожает, либо ответственный орган примет меры по устранению опасности.

Видео по теме

ЗАЩИТА ОТ ВОЗДЕЙСТВИЯ МАГНИТНЫХ ПОЛЕЙ ПРОМЫШЛЕННОЙ ЧАСТОТЫ

Величко Дмитрий Анатольевич,

к.т.н., ведущий инженер ЗАО Тестприбор

Аннотация. Рассмотрены влияния магнитных полей промышленной частоты на физиологию человека и электромагнитную совместимость радиотехнических средств, современные материалы и методы ослабления вредного влияния магнитных полей промышленной частоты, проведен сравнительный анализ применяемых ранее листовых и плитных кристаллических сплавов с современными аморфными и нанокристаллическими сплавами. Сделаны выводы о существенном превосходстве экранов из современных материалов.

Развитие электротехники и радиотехники, использование высоковольтных линий электропередач, широкое распространение средств связи и радиоэлектронных устройств вызвало существенный рост уровней электромагнитных полей (ЭМП). Установлено, что ЭМП, которые содержат как электрическую так и магнитную составляющую, вызывают помехи радиоэлектронным устройствам, сильно влияют на здоровье человека, во многих случаях опасны для жизни. В настоящее время области влияний ЭМП уже учитывают отдельно, разделяя их по ряду характеристик: по частотному диапазону электромагнитных волн – от сверхнизкочастотного (СНЧ) до сверхвысокочастотного (СВЧ), по компонентам поля – электрическая (ЭП) и магнитная (МП) компоненты ЭМП, по источникам излучения – линии электропередачи (ЛЭП), радиотехнические системы различного назначения, например, системы связи, радиолокационные, технологические и др., по уровню напряжения источника излучения – сверхвысокое напряжение (СВН) и по другим признакам. Можно отметить также, что средства массовой информации уделяют много внимания влиянию ЭМП на человека, например «магнитным бурям», которые по интенсивности воздействия часто уступают влиянию ЭМП промышленного города.

Читать еще:  Защита проводов от кошек и котов

Методы и средства борьбы с вредным влиянием ЭМП на различные объекты естественного и антропогенного происхождения сильно отличаются. В России и во многих развитых странах эти методы и средства стандартизируются с учетом отличия физических свойств ЭМП. Введение стандартов свидетельствует о том огромном внимании, которое уделяет современное общество данному направлению научно-технического прогресса. В статье рассматривается и анализируется только небольшая область этого направления – современные способы защиты от МП промышленной частоты (ПЧ), сравниваются защитные свойства различных материалов, которые используются для ослабления воздействия ЭМП на объекты, многие из которых предназначены для работы или проживания человека.

Защита человека, его здоровье являются приоритетными темами современных исследований. Научное объяснение воздействия ЭМП на организм человека, на биообъекты, приведенное в [1,2], позволяет не только ознакомиться с современными взглядами на зависимости влияния магнитных полей на биомолекулы, но и получить оценки уровней МП, которые могут влиять на состояние живого организма. Следует отметить, что подобные исследования ведутся давно, первые обобщения влияния ЭМП на физиологию были сделаны в монографии [3], изданной еще в начале прошлого века. Исследования биологических воздействий постоянного МП, либо совместного действия МП и ЭМП продолжаются (см., например, [4]) и будут продолжаться, так как технические средства на основе ЭМП непрерывно совершенствуются. Результаты подобных исследований, проверенные практикой, лежат в основе современных стандартов, в которых обобщена информация о воздействии ЭМП.

В качестве примера в таблице 1 приведены ориентировочные данные по эффектам воздействия МП на здоровье человека в зависимости от плотностей тока.

Эффекты воздействия магнитного поля на здоровье человека

Эффекты воздействия магнитного поля

Минимальные эффекты, не представляющие опасности для человека

Выраженные эффекты – зрительные и со стороны нервной системы

Стимуляция возбудимых структур, возможно неблагоприятное влияние на здоровье

Возможны экстрасистолия, фибрилляция желудочков сердца (острое поражение)

Как видно из приведенных данных, диапазон воздействий магнитного поля на человека весьма широк. Следует отметить, что уровни воздействия поля необходимо правильно измерить, иначе легко выйти за пределы, которые определены нормативными документами и, ошибиться в необходимом уровне подавления поля. Согласно «Санитарно-эпидемиологическим требованиям» (СанПиН) допустимые уровни электромагнитного излучения промышленной частоты 50 Гц в жилых помещениях измеряются на расстоянии от 0,2 м от стен и окон, на высоте 0,5-1,8 м от пола и не должны превышать: для электрического поля 0,5 кВ/м, для магнитного 5 мкТл (4 А/м).

Анализ литературных данных, краткое перечисление и цитирование полученных результатов позволяют определить следующие задачи и условия проектирования. Защита от воздействия МП промышленной частоты должна работать при весьма отличающихся параметрах поля, при разных условиях, в которых находятся защищаемые объекты, при различных режимах воздействий и т.д. Это означает, что единый проект защиты на все существующие объекты реализовать невозможно, даже подбор требований и ограничений на защитные устройства является слишком сложной задачей, которая должна решаться для конкретных условий, в ряде случаев и с помощью компьютерного моделирования.

Рассмотрим результаты исследований по глубокому подавлению МП промышленной частоты за счет применения новых материалов и технологий. В последних работах, как правило, используется метод шунтирования. Экран выполняется из ферромагнитного материала с высокой магнитной проницаемостью, при этом линии магнитного поля концентрируются в стенках экрана, как показано на рис.1.

Как видно из принципа экранирования за счет шунтирования, основная функция – глубокое экранирование, обеспечивается качеством материала экрана, его конструкцией и технологией, которая обеспечивает шунтирование не только в цельных частях экрана, но и в местах соединения отдельных частей.

До недавнего времени в нашей стране для создания систем электромагнитной защиты с высоким коэффициентом экранирования применялись листовые (сталь) и плитные (пермаллой) кристаллические сплавы. При частотах МП менее 10 кГц обычные материалы не обеспечивали необходимую степень экранирования при приемлемых соотношениях толщины стенок к характерному размеру защищенной области. Поэтому использовались магнитомягкие сплавы, обладающие повышенной магнитной проницаемостью μ, которая прямо пропорциональна коэффициенту экранирования – степени подавления МП в защищенной области [5].

Необходимо подчеркнуть, что высокое значение магнитной проницаемости должно сохраняться и при механических воздействиях, неизбежно возникающих при монтаже экрана.

Рисунок 1 Шунтирование магнитного поля экраном

Такому требованию удовлетворяют только аморфные магнитомягкие сплавы [6]. Это подтверждается работами зарубежных исследователей, которые провели сравнение эффективностей экранирования, выполненного с помощью аморфных и кристаллических магнитомягких сплавов.

Толщина стального листа, обеспечивающего необходимую эффективность экранирования обычно более 3-х мм. Конструкция швов такого экрана должна обеспечивать надежный электрический контакт с низким переходным сопротивлением высокочастотным токам по периметру соединяемых деталей экрана. Для обеспечения этого требования соединение листов экрана производится герметичным швом электродуговой сварки в среде защитного газа (по ГОСТ 14771-76). При этом проводится обязательный контроль качества каждого шва, что делает довольно сложным изготовление входов в помещения, вентиляции и вводов коммуникаций. Кроме этого, например, магнитные свойства пермаллоя марки 79НМ после деформации на 10% снижаются почти в 18 раз.

В настоящее время при создании материалов для электромагнитной защиты от МП наибольшую ценность представляют быстрозакаленные металлические сплавы (аморфные и нанокристаллические).

Магнитные аморфные сплавы (ферромагнитные сплавы с узкой петлёй гистерезиса), наряду с высокой механической прочностью и коррозионной стойкостью характеризуются исключительной «мягкостью» магнитных свойств (низкая коэрцитивная сила, высокая магнитная проницаемость) – они могут легко намагничиваться и размагничиваться в слабых полях. В сочетании с высоким электрическим сопротивлением это приводит к низким значениям как магнитных, так и электрических потерь.

Магнитные аморфные сплавы позволяют, например, при экранировании силового кабеля снизить уровень магнитного поля в 10–500 раз, а при проведении сварочных работ ослабить внешнее магнитное поле внутри защитной одежды в 10-20 раз при внешнем поле до 1000 мкТл. Это позволяет обеспечивать выполнение требований СанПиН к снижению уровней электромагнитных полей в производственных условиях.

Аморфный сплав – это определенный вид прецизионного сплава. Он обладает целым комплексом физических и химических свойств, полезных для эффективного снижения МП. Одно из основных отличий аморфного сплава от электротехнической стали – отсутствие периодичности в расположении атомов. Эти сплавы отличаются от кристаллических сплавов большей устойчивостью к коррозии, они прочнее в несколько раз и имеют улучшенную электромагнитную характеристику. Путем химического подбора компонентов сплава и отладки метода его охлаждения достигается аморфное состояние металла. Скорость охлаждения превышает скорость кристаллизации за счет того, что готовый расплав выливается на диск, который вращается с большой скоростью. Как только расплав попадает на вращающийся диск, он резко охлаждается, имеет схожесть с аморфной структурой стекла и принимает форму ленты толщиной от 15 до 60 мкм. Магнитные и экранирующие свойства ленточных аморфных ферромагнитных материалов изучены в [7].

Рассматриваемым сплавам путем термомагнитной обработки придают специальные свойства: можно получить петлю гистерезиса определенной формы, сделать структуру частично кристаллизованной, аморфной или нанокристаллической.

В 1988 году инженерами фирмы Hitachi Metals впервые был разработан так называемый, нанокристаллический сплав. Наибольшую магнитную проницаемость и наименьшую коэрцитивную силу полоса с нанокристаллической структурой получает благодаря расположению кристаллитов диаметром от 10 до 20 нм по всей магнитопроводной ленте. Из-за относительно высокого удельного сопротивления (от 110 мкОм/см до 120 мкОм/см), и незначительной толщины ленты, появилась возможность добиться наименьшей коэрцитивной силы и наибольшей магнитной проницаемости. В таблице 2 приведены характеристики различных материалов [8,9] с целью сравнения.

Сравнительные характеристики аморфных и нанокристаллических магнитомягких материалов относительно традиционных

Защита от электромагнитных полей и излучений

Следует различать особенности защиты от:

· переменных электромагнитных полей ;

· постоянных электрических и магнитных полей;

· инфракрасных (тепловых) излучений;

Общими методами защиты от электромагнитных полей и излучений являются следующие:

· уменьшение мощности генерирования поля и излучения непосредственно в его источнике, в частотности за счет применения поглотителей электромагнитной энергии (этот метод применим, если генерируется энергия, избыточная для реализации технологического процесса или устройства);

· увеличение расстояния от источника излучения;

· уменьшение времени пребывания в поле и под воздействием излучения;

· применение средств индивидуальной защиты.

Защита от переменных электромагнитных полей и излучений

Уменьшение мощности излучения обеспечивается правильным выбором генератора (мощность генератора целесообразно выбирать не более той, которая необходима для реализации технологического процесса и работы устройства).

Поглотители мощности бывают коаксиальные и волноводные. Поглотителем энергии служат специальные вставки из графита или материалов углеродистого состава, а так же специальные диэлектрики.

Увеличение расстояния от источника излучения. В дальней зоне излучения, т.е. на расстояниях примерно больших 1/6 длины волны излучения, плотность потока энергии (ППЭ) уменьшается обратно пропорционально квадрату расстояния, а напряженности электрического и магнитного полей — обратно пропорционально расстоянию. Т.е. при увеличении расстояния от источника в 2 раза ППЭ уменьшается в 4 раза, а напряженности (Е и Н) в 2 раза.

Уменьшение времени пребывания в поле и под воздействием излучения. Определяющим последствия облучения для человека, является энергетическая нагрузка, которая зависит от времени воздействия облучения.

Подъем излучателей и диаграмм направленности излучения, блокирование излучения. Излучающие антенны необходимо поднимать на максимально возможную высоту и не допускать направления луча ‘ на рабочие места и территорию предприятия.

Экранирование излучений. Экранируют либо источники излуче­ния, либо зоны, где может находиться человек.

Отражающие экраны выполняют из хорошо проводящих материалов, например, стали, меди, алюминия толщиной не менее 0,5 мм из конструктивных и прочностных соображений.

Поглощающие экраны выполняют из радиопоглощающих материалов. Естественных материалов с хорошей радиопоглощающей способностью нет, поэтому их выполняют с помощью различных конструктивных приемов и введением различных поглощающих добавок в основу. В качестве основы используют каучук, поролон, пенополистирол, пенопласт, керамикометаллические композиции и т. д. В качестве добавок используют сажу, активированный уголь и пр. Экраны заземляют.

Средства индивидуальной защиты. К СИЗ, которые применяют для защиты от электромагнитных излучений, относят: радиозащитные костюмы, комбинезоны, фартуки, очки, маски.

Защита от постоянных электрических и магнитных полей

Электростатическое экранирование заключается в замыкании электрического поля на поверхности металлической массы экрана и передачи образующихся на экране электрических зарядов на заземленный корпус установки (землю). Электрическое сопротивление заземляющего экрана не должно превышать 0,1…0,2 МОм.

Магнитостатическое экранирование заключается в замыкании магнитного поля в толще экрана, происходящим из-за его повышенной магнитопроводимости. Экраны обладают большой магнитной проницаемостью, изготавливают из стали, никелевых сплавов.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector