Astro-nn.ru

Стройка и ремонт
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Пуэ защитное заземление электроустановок до 1000в

Защитное заземление. Основная и дополнительная системы уравнивания потенциалов. Сторонние проводящие части

Защитное заземление – заземление, выполняемое в целях электробезопасности.

Защитное заземление —это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением.

Цель защитного заземления —снизить до безопасной величины напряжение относительно земли на металлических частях оборудования, которые не находятся под напряжением, но могут оказаться под напряжением вследствие нарушения изоляции электроустановок. В результате замыкания на корпус заземленного оборудования снижается напряжение прикосновения и, как следствие,- ток, проходящий через тело человека, при его прикосновении к корпусам.

При электрическом переменном токе промышленной частоты (50 герц) берут во внимание только активное сопротивление человека (его тела) и соотносят его с величиной равной 1 кОм. При длительном прохождении тока сопротивление тела снижается до 500 – 300 Ом.

Примечание: сопротивление тела человека постоянному току от 3 до 100 кОм.

Расчеты, приведенные на рисунках, весьма приблизительны, но показывают оценить эффективность защитного заземления.

Существенное влияние на ток, проходящий через человека, оказывает величина тока короткого замыкания и сопротивление системы заземления. Наибольшее допустимое значение сопротивления заземления в установках до 1000 В: 10 Ом — при суммарной мощности генераторов и трансформаторов 100 кВА и менее, 4 Ом — во всех остальных случаях.

Указанные нормы обосновываются допустимой величиной напряжения прикосновения, которая в сетях до 1000 В не должна превышать 40 В.

Защитное заземление применяется в трехфазных трехпроводных сетях напряжением до 1000 В с изолированной нейтралью, а в сетях напряжением 1000 В и выше — с любым режимом нейтрали.

1. Каждый корпус электроустановки должен быть присоединен к заземлителю или к заземляющей магистрали с помощью отдельного ответвления. Последовательное включение нескольких заземляемых корпусов электроустановок в заземляющий проводник запрещается.

Заземляющее устройство — это совокупность заземлителя и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем.

Заземляющее устройство — это совокупность заземлителя и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем.

Заземлители

1.Естественные

— водопроводные трубы, проложенные в земле (ХВ)

— металлические конструкции здания и фундаменты, надежно соединенные с землей

— металлические оболочки кабелей

— обсадные трубы артезианских скважин

— газопроводы и трубопроводы с горючими жидкостями

— алюминиевые оболочки подземных кабелей

— трубы теплотрасс и горячего водоснабжения

Соединение с естественным заземлителем должно быть не менее чем в двух разных местах.

2. Искуственные

Контурные
Выносные: групповые и одиночные

Позволяют выбрать место с минимальным сопротивлением грунта.

Традиционно, для искусственных заземлителей применяют угловую сталь толщиной полки не менее 4 мм, стальные полосы толщиной не менее 4 мм или прутковую сталь диаметром от 10 мм.

Широкое распространение в последнее время получили глубинные заземлители с омедненными или оцинкованными электродами, которые по долговечности и затратам на изготовление заземлителя существенно превосходят традиционные методы.

Особая проблема — создание качественного заземления в условиях вечной мерзлоты. Здесь стоит обратить внимание на системы электролитического заземления, позволяющие эффективно решить проблему.

Подробную информацию о различных схемах зазелителей, способах расчета и консультации можно получить на сайте www.zandz.ru

Основная система уравнивания потенциалов.

Построение основной системы уравнивания потенциалов – создание эквипотенциальной зоны в пределах электроустановки с целью обеспечения безопасности персонала и самой электроустановки при срабатывании системы молниезащиты, заносе потенциала и коротких замыканиях.

Основная система уравнивания потенциалов в электроустановках до 1 кВ должна соединять между собой следующие проводящие части:

1 ) нулевой защитный РЕ- или РЕN- проводник питающей линии в системе TN;

2 ) заземляющий проводник, присоединенный к заземляющему устройству электроустановки, в системах IT и TT;

3 ) заземляющий проводник, присоединенный к заземлителю повторного заземления на вводе в здание;

4)металлические трубы коммуникаций , входящих в здание…

5 ) металлические части каркаса здания;

6 ) металлические части централизованных систем вентиляции и кондиционирования….

7 ) заземляющее устройство системы молниезащиты 2-й и 3-й категории;

8 ) заземляющий проводник функционального ( рабочего ) заземления, если таковое имеется и отсутствуют ограничения на присоединение сети рабочего заземления к заземляющему устройству защитного заземления;

9 ) металлические оболочки телекоммуникационных кабелей.

Для соединения с основной системой уравнивания потенциалов все указанные части должны быть присоединены к главной заземляющей шине при помощи проводников системы уравнивания потенциалов. (ПУЭ п. 1.7.82)

Несоединенный с ГЗШ элемент конструкции, инженерной системы, независимой системы рабочего заземления ( FE ) и тд. – грубейшее нарушение целостности основной системы уравнивания потенциалов. Появление разности потенциалов ( возможность искры ) – угроза жизни персонала и безопасности объекта.

Примечание: разрядник, указанный на рисунке – специализированный искровой разрядник с малым напряжением срабатывания для систем уравнивания потенциалов. Например: серии «KFSU», «EXFS..» компании DEHN.

Система дополнительного уравнивания потенциалов

— должна соединять между собой все одновременно доступные прикосновению открытые проводящие части стационарного электрооборудования и сторонние проводящие части, включая доступные прикосновению металлические части строительных конструкций здания, а также нулевые защитные проводники в системе TN и защитные заземляющие проводники в системах IT и ТТ, включая защитные проводники штепсельных розеток (ПУЭ п. 1.7.83).

Система дополнительного уравнивания потенциалов значительно улучшает уровень электробезопасности в помещении. Короткие проводники защитного заземления и уравнивания потенциалов, сведенные на шину, формируют эквипотенциальную зону по принципу аналогично основной системы уравнивания потенциалов.

Как видно из рисунков, схема электропитания претерпевает существенные изменения. Чрезвычайно важно обеспечить соединение контактов заземления розеток и клемм заземления стационарных приборов на шину дополнительного уравнивания потенциалов. При этом, даже если не будет выполнено соединение корпусов приборов с шиной ( безалаберная эксплуатация, особенно переносных приборов ) система сохранит свою эффективность по безопасности. Ситуация, когда земли розеток и приборов не подключены к шине, а сторонние проводящие части гарантированно соединены с шиной уравнивания потенциалов, в разы ухудшает электробезопасность в помещении даже по сравнению с классической схемой питания.

Сторонняя проводящая часть — проводящая часть, не являющаяся частью электроустановки.

Если формально подходить к определению, то и металлическая дверная ручка и петли на деревянной двери в деревянном доме являются сторонними проводящими частями.

При формировании дополнительной системы уравнивания потенциалов возникает вопрос, что подключать, а что не подключать на шину дополнительного уравнивания потенциалов, чтобы добиться необходимого уровня электробезопасности и не делать систему слишком громоздкой. Здесь, с точки зрения здравой логики, можно руководствоваться двумя принципами:

  1. Фактическая ( потенциальная ) возможность связи с «землей».
  2. Возможность появления потенциала на сторонней проводящей части при аварии электрооборудования в процессе эксплуатации.

Примеры сторонних проводящих частей подключаемых / не подключаемых к шине дополнительного уравнивания потенциалов:

Сторонняя проводящая часть

Металлическая полка, закрепленная на стене из непроводящего материала.

Металлическая полка, закрепленная на стене из железобетона.

(потенциальная связь с «землей» за счет крепежа к стене)

Металлическая полка, закрепленная на стене из непроводящего материала.

На полке расположен электроприбор.

(возможность появления потенциала при аварии прибора с классом изоляции I)

Металлическая тумбочка с резиновыми (пластиковыми) колесиками на бетонном полу.

Металлическая тумбочка с резиновыми колесиками на бетонном полу.

В помещении грязь и пыль в сочетании с повышенной влажностью.

(потенциальная связь с «землей» за счет загрязнения и повышенной влажности)

Некоторое количество вопросов с уравниванием потенциалов возникает по ванным и душевым помещениям. Современные требования и рекомендации по устройству системы дополнительного уравнивания потенциалов изложены в циркуляре № 23/2009.

Широкое применение пластиковых труб породило закономерный вопрос: является ли водопроводная вода сторонней проводящей частью и возможен ли занос потенциала через воду….

Ответ, содержащийся в циркуляре, несколько настораживает: « … Водопроводная вода нормального качества …не рассматривается как сторонняя проводящая часть . »

К сожалению, вода нормального качества из наших кранов течет не всегда и лучше перестраховаться, используя токопроводящие вставки на отводах от стояков водопровода подключив их к шине дополнительного уравнивания потенциалов, чтобы не подключать отдельно каждый кран. Этот метод в качестве рекомендуемого описан в этом же циркуляре.

Практика выполнения дополнительной системы уравнивания потенциалов.

Фактически наиболее распространены пять вариантов выполнения шин системы дополнительного уравнивания потенциалов:

Вариант 1. С использованием стандартных коробок уравнивания потенциалов ( КУП ).

Вариант 2. Стальная шина 4х40 ( 4х50 ) с приварными болтами опоясывающая помещение.

Вариант 3. Стальная шина, уложенная в стандартный пластиковый короб.

Вариант 4. Использование шины заземления в РЩ ( для небольших помещений ).

Вариант 5. С использованием специализированного щитка типа ЩРМ – ЩЗ

( встроенный щиток с шиной 100 мм 2 ( Cu ) со степенью защиты IP54 ).

Главные требования нормативов по устройству шины дополнительного уравнивания потенциалов содержат два требования:

— возможность осмотра соединения

— возможность индивидуального отключения

  1. Длина проводников дополнительной системы уравнивания потенциалов, соединяющих контакты штепсельных розеток, сторонние проводящие части и корпуса электрооборудования не должна превышать 2,5 м.( ? ). Сечение 4 мм 2 Сu ( ПВ-1, ПВ-3 ). См. ПУЭ 1.7.82 рис. 1.7.7.
  2. Для электроустановки здания, где применяются негорючие ( ВВГ нг –FRLS…) кабеля, следует с осторожностью использовать кабеля марки ПВ-1, ПВ-3 ( проводники уравнивания потенциалов от дополнительной системы уравнивания потенциалов до ГЗШ или щитовой шины заземления ). Данный тип кабеля, будучи уложенным вместе с негорючими кабелями, формально превращает всю систему в распространяющую горение. В большинстве случаев контролирующие органы относятся к этому спокойно, но в некоторых случаях стоит применить негорючие одножильные кабеля той же марки с нанесением соответствующей маркировки.
  3. Для зданий детских дошкольных учреждений, больниц, специальных домах престарелых и тд. применяемые пластиковые короба должны иметь сертификат о не выделении токсичных веществ при горении. Тоже касается линолеума. Поставляемые в Россию короба Legrand, ABB … таких сертификатов не имеют. Как вариант — короба фирмы DKC в которых в качестве отбеливающего вещества используется мел и есть все необходимые сертификаты.

МЕД. ГОСТ Р 50571.28 п. 710.413.1.6.3 « Шина уравнивания потенциалов должны быть расположены в самом медицинском помещении или в непосредственной близости от него. В каждом распределительном шкафу или в непосредственной близости от него должны быть расположена шина системы дополнительного уравнивания потенциалов, к которой должны быть подключены проводники…»

Для учреждений здравоохранения в помещениях гр.1 и особенно в помещениях гр.2 (чистые помещения) удобно воспользоваться вариантом № 5, схема которого представлена на рисунке.

ПУЭ в вопросах и ответах. Заземление и защитные меры электробезопасности

Заземляющие устройства электроустановок напряжением до 1 кВ в сетях с глухозаземленной нейтралью

Куда должен быть присоединен заземляющий проводник, если в PEN-проводнике, соединяющем нейтраль трансформатора или генератора с шиной PEN РУ до I кВ, установлен ТТ?
Ответ . Должен быть присоединен не к нейтрали трансформатора или генератора непосредственно, а к PEN- проводнику, по возможности сразу на ТТ. В таком случае разделение PEN-проводника на RE- и N- проводники в системе TN-S должно быть выполнено также за ТТ. ТТ следует размещать как можно ближе к выводу нейтрали трансформатора или генератора.
Каким должно быть сопротивление заземляющего устройства, к которому присоединены нейтрали генератора или трансформатора, или выводы источника однофазного тока?
Ответ . Должно быть в любое время года не более 2, 4 и 8 Ом соответственно при 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. Это сопротивление должно быть обеспечено с учетом использования естественных заземлителей, а также заземлителей повторных заземлений PEN- или PE- проводника ВЛ до 1 кВ при количестве отходящих линий не менее двух.
Каким должно быть сопротивление заземлителя, расположенного в непосредственной близости от нейтрали генератора или трансформатора, или вывода источника однофазного тока?
Ответ. Должно быть не более 15, 30 и 60 Ом соответственного при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. При удельном сопротивлении земли ρ > 100 Ом×м допускается увеличивать указанные нормы в 0,01 ρ раз, но не более десятикратного.
В каких точках сети должны быть выполнены повторные заземления PEN- проводника?
Ответ . Должны быть выполнены на концах ВЛ или ответвлений от них длиной более 200 м, а также на вводах ВЛ к электроустановкам, в которых в качестве защитной меры при косвенном прикосновении применено автоматическое отключение питания.
Каким должно быть общее сопротивление растеканию заземлителей (в том числе естественных) всех повторных заземлений PEN- проводника каждой ВЛ в любое время года?
Ответ . Должно быть не более 5, 10 и 20 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. При этом сопротивление растеканию заземлителя каждого из повторных заземлений должно быть не более 15, 30 и 60 Ом соответственно при тех же напряжениях. При удельном сопротивлении земли ρ > 100 Ом×м допускается увеличивать указанные нормы в 0,01ρ раз, но не более десятикратного.
З аземляющие устройства в электроустановках напряжением до 1 кВ с изолированной нейтралью
Какому условию должно соответствовать сопротивление заземляющего устройства, используемого для защитного заземления ОПЧ (открытая проводящая часть) в системе IT?
Ответ . Должно соответствовать условию:
R ≤ U пр/I
где R — сопротивление заземляющего устройства, Ом;
U пр— напряжение прикосновения, значение которого принимается равным 50 В; I — полный ток замыкания на землю, А.
Какие требования предъявляются к значениям сопротивления заземляющего устройства?
Ответ . Как правило, не требуется принимать значение этого сопротивления менее 4 Ом. Допускается сопротивление заземляющего устройства до 10 Ом, если соблюдено условие
R ≤ Uпр/I,
а мощность генераторов или трансформаторов не превышает 100 кВА, в том числе суммарная мощность генераторов или трансформаторов, работающих параллельно.
Заземлители
Что может быть использовано в качестве естественных заземлителей?
Ответ . Могут быть использованы:
o металлические и железобетонные конструкции зданий и сооружений, находящиеся в соприкосновении с землей, в том числе железобетонные фундаменты зданий и сооружений, имеющие защитные гидроизоляционные покрытия в неагрессивных, слабоагрессивных и среднеагрессивных средах;
o металлические трубы водопровода, проложенные в земле;
o обсадные трубы буровых скважин;
o металлические шпунты гидротехнических сооружений, водоводы, закладные части затворов и т.п.;
o рельсовые пути магистральных неэлектрифицированных железных дорог и подъездные пути при наличии преднамеренного устройства перемычек между рельсами;
o другие находящиеся в земле металлические конструкции и сооружения;
o металлические оболочки бронированных кабелей, проложенных в земле. Алюминиевые оболочки кабелей использовать в качестве заземлителей не допускается.
Допускается ли использовать в качестве заземлителей трубопроводы горючих жидкостей, горючих или взрывоопасных газов и смесей и трубопроводов канализации и центрального отопления?
Ответ . Использовать не допускается. Указанные ограничения не исключают необходимости присоединения таких трубопроводов к заземляющему устройству с целью уравнивания потенциалов.
Заземляющие проводники

Какое сечение должен иметь заземляющий проводник, присоединяющий заземлитель рабочего (функционального) заземления к главной заземляющей шине в электроустановках до 1 кВ?
Ответ . Должен иметь сечение не менее: медный — 10 мм> 2 , алюминиевый — 16 мм 2 , стальной — 75 мм?.
Главная заземляющая шина

Что следует использовать в качестве главной заземляющей шины внутри вводного устройства? Ответ . Следует использовать шину PE.
Какие требования предъявляются к главной заземляющей шине?
Ответ . Ее сечение должно быть не менее сечения PE (PEN) — проводника питающей линии. Она должна быть, как правило, медной. Допускается применение ее из стали. Применение алюминиевых шин не допускается.
Какие требования предъявляются к установке главной заземляющей шины?
Ответ . В местах, доступных только квалифицированному персоналу, например, щитовых помещениях жилых домов, ее следует устанавливать открыто. В местах, доступных посторонним лицам, например, подъездах и подвалах домов, она должна иметь защитную оболочку — шкаф или ящик с запирающейся на ключ дверцей. На дверце или на стене над шиной должен быть нанесен знак .
Как должна быть выполнена главная заземляющая жила в случае, если здание имеет несколько обособленных вводов?
Ответ . Должна быть выполнена для каждого вводного устройства.

Защитные проводники (PE-проводники)

Какие проводники могут использоваться в качестве PE-проводников в электроустановках до 1 кВ?
Ответ . Могут использоваться:
— специально предусмотренные проводники, жилы многожильных кабелей, изолированные или неизолированные провода в общей оболочке с фазными проводами, стационарно проложенные изолированные или неизолированные проводники;
— ОПЧ электроустановок: алюминиевые оболочки кабелей, стальные трубы электропроводов, металлические оболочки и опорные конструкции шинопроводов и комплектных устройств заводского изготовления;
— некоторые сторонние проводящие части: металлические строительные конструкции зданий и сооружений (фермы, колонны и т.п.), арматура железобетонных строительных конструкций зданий при условии выполнения требований, приведенных в ответе на вопрос 300, металлические конструкции производственного назначения (подкрановые рельсы, галереи, площадки, шахты лифтов, подъемников, элеваторов, обрамления каналов и т.п.).
Могут ли быть использованы в качестве PE-проводников сторонние проводящие части?
Ответ . Они могут быть использованы, если отвечают требованиям настоящей главы к проводимости и, кроме того, одновременно отвечают следующим требованиям: непрерывность электрической цепи обеспечивается либо их конструкцией, либо соответствующими соединениями, защищенными от механических, химических и других повреждений; их демонтаж невозможен, если не предусмотрены меры по сохранению непрерывности цепи и ее проводимости.
Что не допускается использовать в качестве PE-проводников?
Ответ . Не допускается использовать: металлические оболочки изоляционных труб и трубчатых проводов, несущие тросы при тросовой электропроводке, металлорукава, а также свинцовые оболочки проводов и кабелей; трубопроводы газоснабжения и другие трубопроводы горючих и взрывоопасных веществ и смесей, трубы канализации и центрального отопления; водопроводные трубы при наличии в них изолирующих вставок.
В каких случаях не допускается использовать нулевые защитные проводники в качестве защитных проводников?
Ответ . Не допускается использовать в качестве защитных проводников нулевые защитные проводники оборудования, питающегося по другим цепям, а также использовать ОПЧ электрооборудования в качестве нулевых защитных проводников для другого электрооборудования, за исключением оболочек и опорных конструкций шинопроводов и комплектных устройств заводского изготовления, обеспечивающих возможность подключения к ним защитных проводников в другом месте.
Какими должны быть наименьшие площади поперечного сечения защитных проводников?
Ответ . Должны соответствовать данным таблице 1
Таблица 1

Читать еще:  Что означает класс защиты IP67
Сечение фазных проводников, мм 2Наименьшее сечение защитных проводников, мм
S≤16S
1616
S>35S/2

Какие требования к подключению к нулевому защитному проводнику в системе TN или к заземлению в системе IT металлических корпусов переносных электроприемников при применении автоматического отключение питания?

Требования к заземляющим устройствам

а) Электроустановки напряжением выше 1000 В с большими токами замыкания на землю. Согласно ПУЭ сопротивление заземляющего устройства в этих электроустановках не должно превышать 0,5 Ом. Однако одно лишь ограничение сопротивления заземляющего устройства не обеспечивает приемлемых напряжений прикосновения и шага при токах замыкания на землю в несколько килоампер.

Рис.8-11. Выравнивание потенциалов с помощью дополнительных выравнивающих проводников при контурном заземлителе

Например, при токе короткого замыкания 6 кА на заземляющем устройстве будет напряжение 3 кВ. Поэтому дополнительно к ограничению сопротивления заземляющего устройства предусматривается также выполнение следующих мероприятий:

1) быстродействующее отключение при замыканиях на землю;

2) выравнивание потенциалов в пределах территории, на которой находится электроустановка, и на ее границах.

Для выравнивания потенциалов на территории электроустановки на глубине 0,5-0,8 м должна закладываться сетка из выравнивающих проводников (рис. 8-11). Продольные проводники закладываются параллельно осям оборудования на расстоянии 0,8 — 1 м от фундаментов или оснований оборудования и соединяются между собой на всей площади поперечными проводниками с шагом не более 6 м. Для улучшения выравнивания на границе контура крайние проводники сетки, с которых происходит большее стекание тока в землю, укладываются на глубине около 1 м.

Выравнивание потенциалов должно быть также осуществлено у входов и въездов на территорию электроустановки путем укладки двух дополнительных полос с постепенным заглублением; на расстоянии 1 и 2 м от заземлителя на глубине 1 и 1,5 м соответственно.

При размещении электроустановки на достаточной площади расстояние от границ заземлителя до ограды электроустановки должно быть не менее 3 м, и ограда в этом случае не заземляется. В местах, часто посещаемых персоналом, и в местах входов и съездов целесообразно устраивать дорожки с покрытием асфальтом или гравием, имеющим малую проводимость.

В целях исключения выноса потенциала за пределы территории электроустановки с большим током замыкания на землю запрещается питание приемников, находящихся вне территории электроустановки, производить от трансформаторов с заземленной нейтралью при напряжениях 380/220 или 220/127 В, находящихся в пределах территории электроустановки. При необходимости питание таких приемников осуществляется от трансформаторов с изолированной нейтралью.

Для исключения выноса потенциала рельсовые пути, заходящие на территорию электроустановки, к заземляющему контуру электроустановки не присоединяются, а на выходе за пределы электроустановки рельсы заземляются в нескольких точках. Так как рельсы при этом имеют нулевой потенциал, должна быть исключена возможность попадания человека под значительное шаговое напряжение в пределах электроустановки, когда он одной ногой касается грунта, а другой — рельса. Возможность эта исключается при насыпи железнодорожного полотна из крупного щебня, гальки, ракушечника, имеющих малую проводимость.

Если заземлитель не размещается внутри ограждаемой территории, он может быть расширен за пределы электроустановок с обязательным выравниванием потенциалов на границе контура путем постепенного заглубления крайних проводников сетки. При этом металлические части забора и арматура стоек железобетонного забора должны быть присоединены к заземлителю.

При расположении электроустановок с большим током замыкания на землю у цехов промышленных предприятий необходимо выполнять следующие мероприятия:

1) все прилегающие здания должны быть включены в общий контур заземления;

2) должны приниматься меры к выравниванию потенциалов внутри цехов;

3) вокруг зданий на расстоянии 1 м от стен на глубине 1 м должен быть проложен проводник, соединенный с заземляющими проводниками внутри здания, а у входов и въездов в здания должно быть выполнено выравнивание потенциалов путем прокладки дополнительных полос с постепенным заглублением;

4) вокруг зданий следует устраивать асфальтированные отмостки шириной 1-1,5 м.

Так как токи короткого замыкания на землю в рассматриваемых установках имеют большие значения, должна быть обеспечена термическая стойкость заземляющих проводников. Сечения заземляющих проводников должны быть выбраны такими, чтобы при протекании по ним расчетных токов однофазных замыканий на землю температура их за время до срабатывания основной защиты не превысила допустимой (400° С). В соответствии с этим минимальные сечения проводников по допустимому нагреву током однофазного замыкания на землю определяются по формуле:

(8-11)

где I зм — установившийся ток к. з., А; t п — приведенное время прохождения тока на землю, с; с — постоянная: для стали 74, для толстых медных проводников 195, для кабелей напряжением до 10 кВ с медными жилами 182, для голых алюминиевых проводников и кабелей с алюминиевыми жилами напряжением до 10 кВ 112.

В качестве установившегося тока к. з. при расчетах принимается наибольший ток, проходящий через проводник при замыкании на рассматриваемом устройстве или при однофазных замыканиях на землю вне его, для возможной в эксплуатации схемы сети с учетом распределения тока к. з. на землю между заземленными нейтралями сети.

б) Электроустановки напряжением выше 1000 В с малыми токами замыкания на землю. В соответствии с требованиями ПУЭ в электроустановках без компенсации емкостных токов сопротивление заземляющего устройства при протекании через него расчетного тока в любое время года должно удовлетворять условию, Ом

(8-12)

где I расч — расчетный ток через заземляющее устройство, А; U расч — расчетное напряжение на заземляющем устройстве по отношению к земле, В.

Расчетным током является полный тон замыкания на землю при полностью включенных присоединениях электрически связанной сети.

Расчетный ток замыкания на землю может быть найден из выражения, А

где U — междуфазное напряжение сети, кВ; l к, l в — общая длина электрически связанных между собой кабельных и воздушных линий, км.

Если заземляющее устройство используется только для электроустановок напряжением выше 1000 В, I расч принимается равным 250 В; если заземляющее устройство одновременно используется и для электроустановок напряжением до 1000 В, I расч = 125 В.

Сопротивление заземляющего устройства для сетей напряжением выше 1000 В с малыми токами замыкания на землю должно быть не более 10 Ом.

В сетях с компенсацией емкостных токов сопротивление заземляющего устройства рассчитывается по формуле (8-12). При этом в качестве расчетного тока следует принимать:

1) для заземляющих устройств, к которым присоединены компенсирующие аппараты, ток, равный 125% номинального тока этих аппаратов;

2) для заземляющих устройств, к которым не присоединены компенсирующие аппараты, наибольший остаточный ток замыкания на землю, который может иметь место в сети при отключении наиболее мощного из компенсирующий аппаратов, но не менее 30 А.

С целью облегчения устройства заземлений ПУЭ допускают во всех электроустановках с малыми токами замыкания на землю рассчитывать заземляющие устройства по формуле (8-12), принимая в качестве расчетного ток срабатывания релейной защиты или ток плавления предохранителей, если эта защита обеспечивает отключение замыканий на землю. При этом наименьший в условиях эксплуатации ток замыкания на землю должен быть не менее полуторакратного тока срабатывания релейной защиты или трехкратного номинального тока предохранителей.

в) Электроустановки напряжением до 1000 В с глухим заземлением нейтрали. Согласно ПУЭ сопротивление заземляющего устройства в установках напряжением до 1000 В с глухим заземлением нейтрали должно быть не более 4 Ом. Исключение составляют электроустановки, в которых суммарная мощность установленных генераторов и трансформаторов не превышает 100 кВА. В этих случаях заземляющие устройства могут иметь сопротивления не более 10 Ом.

Части электроустановок, подлежащие заземлению, должны иметь надежную металлическую связь с нейтралью источника питания, выполняемую с помощью заземляющих проводников или нулевого провода. При воздушных линиях металлическая связь с нейтралью источника питания осуществляется при помощи специального нулевого провода, прокладываемого на опорах так же, как и фазные провода. При этом через каждые 250 м, а также на концах линий и ответвлений длиной более 200 м должны устраиваться повторные заземления нулевого провода. Сопротивление заземляющих устройств каждого из повторных заземлений должно быть не более 10 Ом. В сетях с суммарной мощностью питающих генераторов и трансформаторов 100 кВА и менее, для которых допущено cопротивление основного заземляющего устройства 10 Ом, сопротивление заземляющих устройств каждого из повторных заземлений должно быть не более 30 Ом при числе их не менее трех.

С целью обеспечения автоматического отключения участка с однофазным замыканием заземляющие проводники должны быть выбраны таким образом, чтобы при замыкании на корпус или на нулевой провод возникал ток короткого замыкания, превышающий:

1) в 3 раза номинальный ток плавкой вставки ближайшего предохранителя;

2) в 3 раза номинальный ток замедленного расцепителя автоматического выключателя, имеющего обратнозависимую от тока характеристику.

При защите сетей автоматическими выключателями, имеющими только электромагнитный расцепитель, заземляющие проводники должны быть выбраны таким образом, чтобы в петле фаза — нуль был обеспечен ток короткого замыкания, равный току уставки электромагнитного расцепителя, умноженному на коэффициент, учитывающий разброс, и на коэффициент запаса, равный 1,1. При отсутствии заводских данных по разбросу кратность тока короткого замыкания относительно тока уставки электромагнитного расцепителя следует принимать равной: для автоматов с номинальным током до 100 А 1,4; для прочих автоматов 1,25.

Полная проводимость заземляющих проводников во всех случаях должна составлять не менее 50% проводимости фазного проводника.

Условия в отношении тока замыкания на землю должны проверяться испытаниями или измерениями до ввода электроустановки в эксплуатацию, а также периодически в процессе ее эксплуатации. В целях удовлетворения указанных требований в отношении тока замыкания заземляющие проводники рекомендуется прокладывать совместно или в непосредственной близости с фазными.

Не допускается использование свинцовых оболочек кабелей в качестве заземляющих проводников.

В условиях проектирования для проверки обеспечения отключения замыканий между фазным и нулевым проводами ток однофазного замыкания определяется по приближенной формуле:

(8-13)

где Uф — фазное напряжение сети; Zт.о — полное сопротивление нулевой последовательности трансформатора; Z — полное сопротивление петли фаза — нуль.

При совместной подвеске нулевого и фазных проводов линии удельное реактивное сопротивление проводов петли из цветных металлов принимается равным 0,6 Ом/км; при стальных проводах внешнее удельное реактивное сопротивление проводов петли принимается также равным 0,6 Ом/км, а внутренние реактивное и активное сопротивления определяются для тока, фактически проходящего по проводам в условиях однофазного замыкания. В качестве первого приближения их можно определять для тока замыкания, превышающего ток срабатывания защиты в указанное число раз.

Отмеченная приближенность формулы (8-13) заключается в замене геометрического сложения полных сопротивлений трансформатора и цепи фаза — нуль арифметическим, так как векторы этих сопротивлений почти параллельны и погрешность от такой замены не превышает 5% в сторону увеличения расчетного сопротивления.

В установках постоянного тока заземление выполняется так же, как и в установках переменного тока.

Особенностью прохождения постоянного тока в земле является электролитическая коррозия подземных сооружений (водопровод и другие трубопроводы, оболочки кабелей, конструкции зданий).

Опасность коррозии существует в установках с длительным протеканием рабочего тока через заземлитель (рабочее заземление одного полюса) или при наличии токов утечки (электролизные установки, рельсовый электрический транспорт). Поэтому при устройстве заземлений в установках постоянного тока не следует использовать в качестве заземляющих устройств подземные сооружения, коррозия которых приводит к большим убыткам. Заземлители установок постоянного тока не должны объединяться с заземлителями других систем. Элементы заземлителей должны быть достаточной толщины для предотвращения быстрого разрушения. Если электроустановки постоянного тока связаны с электроустановками переменного тока (преобразователи), то могут быть применены общие заземляющие устройства.

В сетях постоянного тока повторные заземления нулевого провода должны осуществляться при помощи отдельных искусственных заземлителей, которые не должны иметь металлических соединений с подземными трубопроводами, оболочками кабелей и т.п.

г) Электроустановки напряжением до 1000 В с изолированной нейтралью. Сопротивление заземляющего устройства согласно ПУЭ не должно превышать 4 Ом, а в электроустановках с суммарной мощностью параллельно работающих генераторов и трансформаторов 100 кВА и ниже не должно быть выше 10 Ом.

В месте установки трансформаторов при совместном использовании заземляющего устройства для сетей напряжением до 1000 В и выше сопротивление заземляющего устройства должно удовлетворять формуле (8-12) при расчетном напряжении на заземляющем устройстве Uрасч — 125 В. Это требование предусматривает снижение опасных последствии при повреждении трансформатора с замыканием между обмотками высшего и низшего напряжений. При этом, если при повреждении не произойдет отключения от действия защиты высшей стороны, через пробивной предохранитель и заземляющее устройство будет протекать ток замыкания на землю сети высшего напряжения.

При однофазных замыканиях в сетях до 1000 В в месте замыкания протекает ток, обусловленный проводимостями (активной и емкостной) фаз на землю.

Напряжение на заземлителе относительно точки нулевого потенциала равно:

где где I зм — ток замыкания, А; R зм — сопротивление заземляющего устройства, не превышающее 4 Ом (или 10).

Наибольшее значение напряжения прикосновения при этом составляет несколько десятков вольт. Поэтому в коротких сетях с малой проводимостью на землю неоспоримы преимущества сетей с изолированной нейтралью с точки зрения элекробезопасности.

Выдержка из Справочника по электроснабжению промышленных предприятий

под общей редакцией А. А. Федорова и Г. В. Сербиновского

Требования к заземляющим проводникам: стационарным и временным

Заземляющий провод является одним из неотъемлемых элементов любой электроустановки. Его основное назначение — защита от косвенного прикосновения к частям электроустановки, находящимся под напряжением. Косвенным называется прикосновение к частям оборудования, которые в нормальных условиях не находятся под напряжением, например, корпуса двигателей, трансформаторов или даже ручка фена.

Но вследствие нарушения изоляции токоведущих частей (проводов), они могут оказаться под напряжением. Именно для защиты от таких случайностей и предназначено защитное заземление.

Немного теории

Обычному человеку, не особо вдающемуся в основы электротехники, достаточно сложно разобраться во всех этих нюансах. Особенно когда начинают оперировать такими понятиями как заземление, зануление, глухо заземленная или эффективно заземленная нейтраль. Поэтому, для начала попробуем доступным языком объяснить суть всех этих обозначений, и определить основную цель, с которой их придумали.

  • Существует пять основных схем подключения нейтрали электрооборудования. Нейтралью называют общую точку обмоток электрооборудования, соединенного в звезду. Соединение звезда — это кода три начала обмотки подключаются к соответствующим фазным проводам, а концы этих обмоток соединяются между собой — нейтраль.
  • В точке соединения концов этих обмоток, в идеальных условиях потенциал будет равен нулю. Такой же потенциал имеет земля. Поэтому при помощи шины или проводника выполняется заземление нейтрального провода. Обычно подключается он к специальной шине стационарного заземлителя.
  • Такая система называется TN или системой с глухо заземленной нейтралью. В нашей стране она повсеместно используется в электроустановках до 1000В и подразделяется на три подвида.
  • Но прежде чем мы приступим к разбору этих подвидов, давайте определимся, что такое нулевой и защитный провод. Как говорит инструкция, нулевым или нейтральным проводом называется проводник, подключенный к нейтрали. На схемах этот провод обычно обозначают – «N».

  • Кроме того, существует еще так называемый проводник защитного заземления. Он обозначается «РЕ». Используя КС 066 1 зажим плашечный заземляющего провода или другой подобный вид подключения, он подключается к земле и к корпусу оборудования, тем самым, обеспечивая нулевой потенциал на корпусе. Но как мы помним, в сетях с глухо заземленной нейтралью она так же подключается к земле.
Читать еще:  Датчик утечки газа с клапаном отсекателем: устройство, классификация как правильно выбрать и установить

Именно, исходя из этого условия, в сетях TN и существует три вида подключения:

Важно: Ссылаясь на систему заземления TN -С, некоторые «горе электрики» пытаются реализовать ее у себя дома, используя нулевой проводник в качестве и нейтрального и защитного. Но согласно п.1.7.132 ПУЭ для однофазных сетей это запрещено. Это связано с тем, что при обрыве нулевого провода высока вероятность появления напряжения на корпусе защищаемого оборудования. Поэтому, если нет отдельного контура заземления, то лучше обойтись вообще без него, чем подключать корпус оборудования к нулевому проводнику.

Требования к заземлителям

Ну вот, разобравшись с основными теоретическими аспектами, давайте поговорим и о самих проводниках. В зависимости от места их установки к ним предъявляются совершенно разные требования. Поэтому давайте отдельно рассмотрим включение заземляющих проводов для стационарных и передвижных электроустановок.

Общие требования к проводам заземления

Но начнем мы наш разговор с общих требований, предъявляемых к проводникам, используемым для заземления. Как вы уже должны были понять они должны обеспечивать снижение потенциала на защищаемом оборудовании до нулевого или близкого к нему значения. В связи с этим они должны иметь возможность пропускать ток, равный току короткого замыкания в данной электроустановке.

  • Казалось бы, в связи с этим, сечение таких проводников, в обязательном порядке должно быть не меньше, чем у фазных проводников, но это не так. Дело в том, что фазные проводники должны обеспечивать долговременное протекание больших токов. А вот защитный провод, должен обеспечить такую возможность только на время работы защиты. Обычно это время не превышает 2-3 секунд.

  • Определить такое сечение вы вполне можете и своими руками благодаря таблице 1.7.5 ПУЭ. Для проводов с сечением рабочих жил до 16 мм 2, сечение защитных проводников должно быть идентичным. Для проводов от 16 до 35 мм 2 сечение защитных проводов может быть 16 мм 2 . Для проводов большего сечения защитный проводник должен быть не менее чем в два раза меньшего сечения.

Согласно нормам ГОСТ, вся кабельно-проводниковая продукция должна содержать маркировку сечения жил. Причем если сечение жил зануления и заземления отличаются от рабочих, то она должна указываться отдельно как на видео.

  • В некоторых случаях допускается отдельный расчёт сечения проводника заземления. Для этого используется формула, в которой учтены такие показатели как ток короткого замыкания, время срабатывания защит, тип изоляции и проводника, а также способ прокладки кабеля. Но используют такой способ определения сечения достаточно редко.
  • Теперь, что касается обозначения заземляющих и нулевых проводников. Их буквенную аббревиатуру вы уже знаете. Но кроме того они имеют еще и цветовую. Заземление при пятипроводной системе заземления должно иметь желто-зеленую окраску. Нулевой провод обозначается голубым цветом.

  • Отдельным вопросом является качество заземления. Его определяют путем измерения его сопротивления. Согласно п.1.7.101 ПУЭ для трехфазной сети с линейным напряжением в 380В, оно должно быть не более 4 Ом. Это достаточно маленькая величина, которая обуславливается только внутренним сопротивлением проводника.

  • Для достижения соответствующего качества заземления следует использовать винтовые зажимы. Они позволяют достаточно просто отключить проводник для ремонтных работ и испытаний, а также обеспечивают качественный контакт. Удлинение заземления и нулевых проводников не приветствуется, но допускается. В этом случае можно использовать зажим плашечный заземляющего провода КС 066 1 или подобные зажимы для проводов меньшего сечения.
  • Отдельным вопросом является отдельная прокладка проводов заземления и зануления. Согласно п.1.7.127 ПУЭ провод медный для заземления должен быть не менее 2,5 мм 2 если он имеет защиту от механических повреждений и не менее 4 мм 2, если он не имеет таковой. Для алюминиевого провода, независимо от способа прокладки, сечение должно быть не меньше 16 мм 2 .

Требования к переносным заземлениям

Отдельной темой стоят проводники для временного использования. С их помощью к заземляющему контуру подключают электроустановки временного характера. Это могут быть передвижные будки, механизмы или автотранспорт.

  • Для этого используют специальные переносные заземления. Подобные проводники используют и для создания безопасных условий работ.
  • Такие проводники не должны иметь изоляции, это делается для того, чтобы всегда можно было визуально осмотреть его целостность. Для крепления к контуру заземления и механизму он должен иметь струбцины. Струбцина для провода заземления должна крепится к проводу методом сварки или винтового соединения.

  • Проводник обязательно должен быть медным и многожильным. Причем количество оборванных отдельных проволок строго регламентируется и не должно превышать 5%.
  • Сечение таких переносных заземлений должно быть не менее 16 мм 2 для электроустановок до 1000В и не менее 25 мм 2 для электроустановок более высокого напряжения. Для заземления машин и механизмов можно использовать провод с сечением не менее 16 мм 2 независимо от класса напряжения.

Качество такого заземления проверить достаточно сложно. Поэтому единственным условием является обязательная зачистка металлической поверхности перед их наложением.

Вывод

Заземление нейтрального провода и проводника заземления играют очень важную роль не только для создания безопасных условий, но и для работоспособности всей системы. Поэтому этим аспектом электроустановки не следует пренебрегать. И мы очень надеемся, что наша статья помогла вам разобраться в этом вопросе.

Заземление и защитные меры электробезопасности в ПУЭ

Строительство жилого дома включает в себя прокладку электропроводки, к которой подключается много приборов различной мощности. Несмотря на их надежность, всегда сохраняется риск пробивания тока на корпус и поражения человека. Кроме этого, велика вероятность попадания в строение молнии, что чревато пожаром и разрушениями. Чтобы сделать жизнь в доме безопасной, нужно обустроить в соответствии с ПУЭ заземление, которое обеспечит поглощение электричества грунтом при возникновении аварийных ситуаций.

Вопросы, затрагиваемые в ПУЭ

Утвержденные Министерством энергетики Российской Федерации Правила устройства электроустановок регламентируют область применения защитного оборудования, правила заземления и порядок его обустройства.

Под этим термином подразумевается совокупность металлических деталей, которые в собранном состоянии обеспечивают электрический контакт между устройствами и грунтом. В документе описываются требования к заземлению оборудования, технические характеристики и нормы.

ПУЭ распространяются на такие объекты:

  1. Средства производства. К ним относятся станки, подъемники всех типов для людей и грузов, холодильные установки, генераторы, электродвигатели, обогреватели, транспортеры и прочие изделия, установленные в заводских цехах.
  2. Электрические приборы бытового и промышленного назначения. Регламентируется заземление нейтрали трансформатора по ПУЭ, стабилизаторов, КТП, выпрямительных и накопительных устройств.
  3. Жилые и частные дома, дачи и коттеджи. В строениях старой постройки проводится только заземление шкафов по ПУЭ. Подключение квартир с выводом на розетки осуществляется индивидуально по инициативе жильцов.
  4. Трубопроводы, по которым транспортируются взрывоопасные и горючие материалы — нефть, газ, бензин, дизельное топливо, растворители.
  5. Опоры ЛЭП. Заземлять требуется сооружения из металла, который является отличным проводником тока. Также нужно оснащать защитными конструкциями бетонные столбы, высота которых не превышает 6 м.
  6. Металлические вышки для прожекторов, антенн и размещения наблюдателей. Кроме этого, строения оснащаются громоотводами.

В соответствии с ПУЭ контур заземления должен обеспечивать гарантированный прием утечки электричества при любых условиях. Для этого разработаны нормативы монтажа в различных типах грунта.

Конструкция контура

Регламентирует видимое заземление оборудования пункт ПУЭ 1.7.139. В соответствии с документом соединение деталей должно отличаться прочностью и надежностью, конструктивно обеспечивающим непрерывность цепи. Для разводки энергии по потребителям устанавливается электрошкаф, который сам повторно оборудуется соответствующей защитой от пробивания на корпус.

Составные части системы заземления согласно ПУЭ следующие:

  1. Монтажная плата. Деталь находится в распределительном щите, в который выводятся кабели от заземлённых объектов. Линия к внешним конструкциям крепится гайкой и болтом. Дверь щитка должна быть постоянно закрыта на замок. Как правило, щитовые устанавливаются внутри зданий. В частном секторе допускается установка ящика снаружи, при условии оборудования его навесом.
  2. Коммуникация. Предназначена для соединения монтажной коробки с заглубленной в землю конструкцией. Материалом служит медный кабель с бронью и железные рейки, сваренные между собой. Линия пускается под полом помещения, внешним стенам, по лотковому сливу отмостки. По ПУЭ заземление электрооборудования должно проводится кабелем сечением не менее 5 мм.
  3. Вертикальные штыри. Предназначены для электрического контакта с грунтом. В зависимости от его типа забиваются на глубину 100-250 см. Штыри изготавливаются из черного железа или нержавеющей стали. Выбор определяется финансовыми возможностями строителя.
  4. Контур. Служит обвязкой для заглубленных штырей. В соответствии с ПУЭ заземление металлоконструкций здания должно производиться с помощью контура со стороной не менее 200 см. Частное лицо может заземлить свою недвижимость рамкой, размер которой может составлять 80-100 см. Согласно нормам ПУЭ контур заземления вкапывается на глубину 50-100 см.
  5. Соединительный болт. Предназначен для коммуникации металлосвязи и контура. Наружный конец детали должен находиться над почвой на высоте 15-30 см. В целях безопасности и во избежание механических повреждений контакт накрывается кожухом.

Монтаж системы защиты от утечки тока проводится на расстоянии, величина которого определяется спецификой строения. Для жилых домов оно составляет 50-100 см. Для хозяйственных сооружений допускается удаление контура до 10 м. При этом выполнение соединения должно проводиться медным кабелем.

Влияние почвы на сопротивление

Качество поглощения тока грунтом зависит от его состава, плотности и влажности. Чем эти показатели лучше, тем больше гарантии того, что электричество пройдет не через тело человека, а по пути наименьшего сопротивления.

При напряжении 1000 В сопротивление грунта в ом составляет:

  • асфальт — 200;
  • вода прудовая — 40;
  • вечномерзлый грунт (суглинок) — 2000;
  • глина влажная — 20;
  • глина полутвердая — 60;
  • гнейс разложившийся — 275;
  • гравий глинистый неоднородный — 300;
  • дресва — 5500;
  • зола и пепел — 40;
  • ил — 30;
  • желтозем — 250;
  • песок умеренно влажный — 60;
  • супесь (супесок) — 150;
  • садовая земля — 40;
  • солончак — 20;
  • суглинок лесовидный — 100;
  • торф — 25;
  • чернозем — 60;
  • щебень мокрый — 3000;
  • щебень сухой — 5000;

Проводимость уменьшается при смачивании грунта. Чтобы этим мероприятием не заниматься постоянно, следует устанавливать контур на северной стороне, куда не попадает солнце. Кроме этого, нужно протягивать кабель с сопротивлением не более 0,4 ом.

Устройство и типы контуров

Согласно определению ПУЭ контур является частью системы заземления предназначенной для обеспечения контакта с грунтом. Металл имеет намного меньшее сопротивление, чем человеческое тело. Изделие притягивает электроны, принимая их в массив, направляя излишки в почву через утопленные в ней штыри.

Обязательным правилом является погружение изделия ниже точки промерзания грунта. Это объясняется тем, что мерзлая земля имеет большое сопротивление, которое превышает проводимость тела человека. Сезонное пучение грунта приводит к деформации фигуры, что чревато разрывом сварочных и болтовых соединений. Кроме этого, глубина вкапывания зависит от уровня грунтовых вод. Рекомендуется опускать рамку на 50 см выше от их верхней точки.

Форма изделия принципиального значения не имеет. Выбор делается исходя из наличия свободного места и особенностей придомовой территории.

Наиболее распространены такие разновидности конфигурации металлических рамок:

  • прямоугольник;
  • квадрат;
  • треугольник;
  • линия.

В некоторых случаях принимается решение об установке рамки по периметру строения. Такой проект востребован для обустройства электроустановок большой мощности. Общая площадь, которая отводится под конструкцию, может составлять до 20 кв.м. Размер определяется силой тока и напряжением, которое теоретически может пробить на корпус устройства.

Для небольшого частного дома достаточно внутренней треугольной конструкции с ребром 100-120 см. Для защиты от поражения объекта мощностью от 50 кВт потребуется контур общей длиной не менее 20 м.

Производители предлагают приобрести готовые комплекты, состоящие из деталей с резьбовым соединением и медным покрытием. Стоимость товара довольно высока, но не заоблачна. Изделия имеют отличные электрические показатели, собираются без сварки, отличаются эффективностью и длительным сроком эксплуатации.

Виды материала

Чаще всего для изготовления металлосвязи используется черное железо без какого-либо покрытия. Реже для обустройства применяется нержавеющая сталь, хотя ее контактные свойства сохраняются на протяжении десятилетий. Отличными характеристиками обладает медь и латунь, но эти материалы имеют высокую цену и быстро разрушаются из-за электролитической коррозии. Поэтому железо является наиболее популярным в строительстве металлом.

Для изготовления погружных электродов обычно используется арматура диаметром 16 мм. Эти изделия отличаются достаточной прочностью, долговечностью и проводимостью.

Для сборки рамки можно применять такие виды металлического проката:

  • лента 12-30 х 4 мм;
  • уголок 30-40 х 4 мм;
  • круглая труба со стенками 4-5 мм;
  • тавр или двутавр толщиной от 4 мм;
  • профильная труба 20 х 40 мм;
  • монолитный штырь от 10 мм.

Каких-либо жестких требований к форме профилей не предъявляется. Главным условием является их целостность и качественное соединение.

Поскольку металл склонен к окислению, качество контактов постепенно ухудшается. Кроме этого имеется вероятность нарушения целостности продольных деталей, если они долго находятся в щелочном или кислотном грунте. Состояние металлосвязей должно проверяться с периодичностью, которая соответствует химическому составу почвы. Полученная информация поможет провести своевременный ремонт, свести к нулю риск поражения людей и порчи бытовой техники.

Защитные меры электробезопасности

Поскольку металлосвязь в любой момент может стать проводником тока высокого напряжения, вся система нуждается в защите от нежелательного контакта.

Следует соблюдать следующие меры электробезопасности:

  • ограждать изделия от случайного прикосновения;
  • выставлять заборы и ограды;
  • прокладывать пластины и открытые кабели в пластиковом коробе или гофрированной трубке;
  • место соединения жилы и контура закрывать герметичной коробкой;
  • устанавливать в цепь устройства защитного отключения с порогом срабатывания 30 мА;
  • предусматривать автоматическое отключение электричества;
  • внедрять устройства уравнивания и выравнивания потенциалов.

При проведении установок приборов и приспособлений нужно следить, чтобы они не оказывали взаимного влияния, которое может негативно сказаться на работе остальных опций.

Самостоятельное изготовление

Самостоятельное изготовление заземления представляет собой последовательный процесс, состоящий из нескольких этапов, каждый из которых имеет свои особенности. Для этого не нужна кипа бумаг, так как в частном строительстве разрешение не требуется. Монтаж следует осуществлять в теплое время года, когда грунт оттаял, просох и осел.

Для работы потребуется:

  • сварочный аппарат;
  • болгарка, перфоратор;
  • уровень, рулетка;
  • плоскогубцы;
  • лопата, кувалда;
  • кисточка, краска;
  • гофрированная трубка;
  • алюминиевый скотч.

Работа выполняется в такой последовательности:

  1. Составление проекта. На его основании проводится расчет материалов и оборудования. Следует делать небольшой запас, так как в процессе работы возможны ошибки.
  2. Проведение разметки. Аккуратно снимается дерновый слой, затем отрывается котлован заданной формы. Вынутый материал нужно сохранить, так как он пойдет на обратную засыпку.
  3. От середины одной стороны или от угла прокапывается ровная траншея к зданию. Она нужна для укладки кабеля или другого проводника тока между рамкой и электрическим щитом.
  4. Выпиливаются электроды. Их концы заостряются для более простого погружения в почву. После этого штыри забиваются в грунт по углам траншеи. Если используется уголок, предварительно бурятся отверстия, а проемы заполняются смесью земли и соли.
  5. Выпиливаются стороны контура. Проводится их соединение с электродами и между собой. Места сварки закрашиваются.
  6. Возле канавы к дому к рамке приваривается болт. К нему прикручивается кабель. Стык закрывается пластиковой бутылкой, горлышко которой герметизируется алюминиевым скотчем.
  7. Ввод в дом делается в цоколе. Чтобы предотвратить перетирание изоляции кабеля, в отверстие вставляется гибкая стальная трубка. Кабель протягивается в нее и подключается к щиту.
  8. Заключительным этапом является заполнение канав грунтом, его выравнивание и трамбовка.

В процессе эксплуатации необходимо регулярно поливать место расположения контура соленой водой. Особенно часто это нужно делать в засушливое время.

Глава 7. Заземление электроустановок

7.1. На радиопредприятиях должны быть три вида заземлений: защитное, рабочее и молниезащитное (в соответствии с ВНТП — 212-93 Предприятия радиосвязи, радиовещания и телевидения. Передающие и приемные радиостанции, радиотелевизионные передающие станции и радиотелевизионные ретрансляторы).

7.2. Для заземления электроустановок и защитного заземления радиоустановок следует применять одно общее заземляющее устройство.

Заземление электроустановок следует проектировать в соответствии с Правилами устройства электроустановок.

(Измененная редакция, Изм. N 1)

7.3. Между заземлителями всех видов заземлений следует предусматривать электрическое соединение в земле и техническом здании. Исключением в данном случае является заземление оборудования, не допускающего объединения заземлений, например аппаратуры уплотнения и т.п.

7.4. Не допускается использовать в качестве заземлителей защитного заземляющего устройства только заземлители рабочего (высокочастотного) заземляющего устройства или заземляющего устройства антенно-фидерной системы.

Читать еще:  Чем опасен обрыв нулевого провода в электрической сети

7.5. Заземление или зануление электроустановок необходимо выполнять:

а) при напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока — во всех случаях;

б) при номинальном напряжении от 42 до 380 В переменного тока и от 110 до 440 В постоянного тока в помещениях с повышенной опасностью и особо опасных (см. п. 5.12а, 5.12б настоящих Правил) и в наружных электроустановках;

в) при всех напряжениях переменного и постоянного токов во взрывоопасных зонах.

(Измененная редакция, Изм. N 1)

7.6. К частям, подлежащим защитному заземлению, относятся:

а) корпуса электрических машин, трансформаторов, аппаратов, светильников и т.д.;

б) корпуса радиоустановок;

в) приводы электрических аппаратов;

г) вторичные обмотки измерительных трансформаторов;

д) металлические конструкции распределительных устройств, металлические корпуса кабельных муфт, металлические оболочки, броня и экраны кабелей, металлические оболочки и экраны проводов, стальные трубы для проводки и другие металлические конструкции;

е) металлические корпуса передвижных и переносных электроприемников и приборов;

ж) корпус и вторичные обмотки напряжением 42 В и ниже понижающих трансформаторов, включенных в сеть с глухозаземленной нейтралью, если эти трансформаторы не являются разделительными.

(Измененная редакция, Изм. N 1)

7.7. Заземлению не подлежат:

а) оборудование, установленное на заземленных (зануленных) металлических конструкциях, если на опорных поверхностях предусмотрены зачищенные и незакрашенные места для обеспечения надежного электрического контакта;

б) корпуса электроизмерительных приборов, реле и т.п., установленных на металлических щитах, шкафах, а также на стенах камер распределительных устройств, имеющих заземление;

в) корпуса электроприемников с двойной изоляцией;

г) съемные или открывающиеся части металлических каркасов камер распределительных устройств, ограждений, шкафов и т.п., если на съемных (открывающихся) частях не установлено электрическое оборудование или если напряжение установленного электрического оборудования не превышает 42 В переменного тока или 110 В постоянного тока.

В невзрывоопасном помещении вместо заземления отдельных электродвигателей, аппаратов и т.п., установленных на станках, можно заземлять станины станков, если обеспечен надежный контакт между корпусом оборудования и станиной.

(Измененная редакция, Изм. N 1)

7.8. Сопротивление заземляющего устройства электроустановок определяется в соответствии с ПУЭ.

Сопротивление защитного заземляющего устройства для радиоустановок должно быть не более 4 Ом (при удельном сопротивлении грунта до ).

При удельном сопротивлении земли более 100 допускается повысить значение сопротивления заземляющего устройства в раз, но не более чем в 10 раз.

(Измененная редакция, Изм. N 1)

7.9. Для определения технического состояния заземляющего устройства должны периодически производиться:

измерение сопротивления заземляющего устройства и не реже 1 раза в 12 лет выборочная проверка осмотром со вскрытием грунта элементов заземлителя, находящихся в земле;

проверка состояния цепей между заземлителями и заземляемыми элементами, а также соединений естественных заземлителей с заземляющим устройством;

измерение напряжения прикосновения в электроустановках, заземляющие устройства которых выполнены по нормам на напряжение прикосновения.

7.10. Измерение сопротивления заземляющих устройств должно производиться не реже 1 раза в 10 лет, а также после монтажа, переустройства и капитального ремонта этих устройств. Измерения должны пополняться в периоды наибольшего высыхания грунта.

7.11. Измерения напряжения прикосновения должны проводиться после монтажа, переустройства и капитального ремонта заземляющего устройства, но не реже 1 раза в 6 лет. Кроме того, на предприятии ежегодно должны производиться: уточнение тока однофазного КЗ, стекающего в землю с заземлителя электроустановки; корректировка значений напряжения прикосновения, сравнение их с требованиями ПУЭ. В случае необходимости должны выполняться мероприятия по снижению напряжения прикосновения.

7.12. При невозможности выполнения заземления или устройств защитного отключения, удовлетворяющих требованиям ПУЭ, или если это представляет значительные трудности по технологическим причинам, допускается обслуживание электроустановок или радиооборудования с изолирующих площадок. При этом должна быть исключена возможность одновременного прикосновения к электрооборудованию и частям другого оборудования и здания.

(Измененная редакция, Изм. N 1)

7.13. Каждая часть электроустановки, подлежащая заземлению или занулению, должна быть присоединена к сети заземления или зануления с помощью отдельного проводника. Последовательное включение в заземляющий или нулевой защитный проводник заземляемых или зануляемых частей электроустановки запрещается.

7.14. Присоединение заземляющих и нулевых защитных проводников к заземлителям, заземляющему контуру и к заземляющим конструкциям должно быть выполнено сваркой, а к корпусам аппаратов, машин и опор воздушных линий электропередачи — сваркой или надежным болтовым соединением.

Использование земли в качестве фазного или нулевого провода в электроустановках напряжением до 1000 В запрещается.

7.15. Если электроустановки радиопредприятий питаются от сети с глухозаземленной нейтралью, то при замыкании на заземленные части должно быть обеспечено автоматическое отключение поврежденных участков сети.

С этой целью в электроустановках напряжением до 1000 В с глухозаземленной нейтралью обязательно выполнение зануления, т.е. металлической связи корпусов оборудования с заземленной нейтралью питающего трансформатора или генератора.

(Измененная редакция, Изм. N 1)

7.16. Металлические корпуса переносных электроприемников выше 42 В переменного тока и выше 110 В постоянного тока в помещениях с повышенной опасностью, особо опасных в наружных установках должны быть заземлены или занулены, за исключением электроприемников с двойной изоляцией или питающихся от распределительных трансформаторов.

Заземление или зануление переносных электроприемников должно осуществляться специальной жилой (третья — для электроприемников однофазного и постоянного тока, четвертая -для электроприемников трехфазного тока), расположенной в одной оболочке с фазными жилами переносного провода и присоединяемой к корпусу злектроприемника и к специальному контакту вилки штепсельного разъема. Сечение этой жилы должно быть равным сечению фазных проводников. Использование для этой цели нулевого рабочего проводника, в том числе расположенного в общей оболочке, не допускается.

Жилы проводов и кабелей должны быть медными, гибкими, сечением не менее .

(Измененная редакция, Изм. N 1)

7.17. Переносные электроприемники испытательных и экспериментальных установок, перемещение которых в период их работы не предусматривается, допускается заземлять с использованием стационарных или отдельных переносных заземляющих проводников. При этом стационарные заземляющие проводники должны удовлетворять требованиям ПУЭ, а переносные — должны быть гибкими, медными, сечением не менее сечения фазных проводников.

В штепсельных разъемах переносных электроприемников, а также удлинительных проводов и кабелей к розетке должны быть подведены проводники со стороны источника питания, а к вилке — со стороны электроприемников. Штепсельные разъемы должны иметь специальные контакты, к которым присоединяются заземляющие и нулевые защитные проводники. Соединение между этими контактами при включении должно устанавливаться до того, как войдут в соприкосновение контакты фазных проводов. Порядок разъединения контактов при отключении должен быть обратным.

Конструкция штепсельных разъемов должна быть такой, чтобы была исключена возможность соединения контактов фазных проводников с контактами заземления (зануления). Если корпус штепсельного разъема выполнен из металла, он должен быть электрически соединен с контактом заземления (зануления).

7.18. Заземляющие проводники должны быть защищены от коррозии.

7.19. Открыто проложенные стальные заземляющие проводники должны иметь черную окраску.

7.20. Магистрали заземления или зануления и ответвления от них в закрытых помещениях и в наружных установках должны быть доступны для осмотра. Требование о доступности для осмотра не распространяется на нулевые жилы и оболочки кабелей, на арматуру железобетонных конструкций, а также на заземляющие и нулевые защитные проводники, проложенные в трубах и коробах, а также непосредственно в теле строительных конструкций (замоноличенные).

Ответвления от магистралей к электроприемникам напряжением до 1000 В допускается прокладывать скрыто, непосредственно в стене, под чистым полом и т.п. с защитой их от воздействия агрессивных сред. Такие ответвления не должны иметь соединений.

В наружных установках заземляющие и нулевые защитные проводники допускается прокладывать в земле, в полу или по краю площадок, фундаментов технологических установок и т.п.

Использование неизолированных алюминиевых проводников для прокладки в земле в качестве заземляющих или нулевых защитных проводников не допускается.

7.21. Все места присоединения временных заземлений должны быть зачищены и смазаны вазелином.

7.22. У мест ввода заземляющих проводников в здание должны быть предусмотрены опознавательные знаки.

7.23. Использование специально проложенных заземляющих проводников для иных целей не допускается.

7.24. Соединения заземляющих и нулевых защитных проводников между собой должны обеспечивать надежный электрический контакт и выполняться сваркой.

(Измененная редакция, Изм. N 1)

7.25. Каждое заземляющее устройство должно иметь паспорт со схемой заземления, где указываются его основные технические данные, результаты проверки состояния устройства, записи об изменениях, внесенных во время ремонта и реконструкции.

>
Требования безопасности при обслуживании оборудования радиопредприятий
Содержание
Правила по охране труда при работе на радиопредприятиях ПОТ РО-45-002-94 (утв. приказом Минсвязи РФ от 5 декабря 1994 г. N.

Откройте актуальную версию документа прямо сейчас или получите полный доступ к системе ГАРАНТ на 3 дня бесплатно!

Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.

Виды и правила заземления электроустановок

Работа с электроприборами, не подключенными к заземляющему контуру или заземленными с нарушением правил электробезопасности, может стать причиной несчастных случаев на производстве. Также это приводит к выходу из строя как самих электроустановок, так и сопутствующего защитного и измерительного оборудования. Правильно подключенное защитное заземление электроустановок обеспечит их защиту в случае выхода из строя изоляции токоведущих частей.

Общие сведения

Заземлением называется мероприятие по созданию контакта между корпусом электроустановки и землей, с целью защиты обслуживающего персонала и электроустановок. В случае правильного подключения системы заземления электроустановок, при пробое изоляции, большая часть тока уйдет по заземляющему контуру, который имеет меньшее сопротивление, чем другие элементы цепи.

Согласно правилам безопасности, электроустановки и другие приборы, которые подлежат заземлению, можно подключить к естественным заземлителям. В их качестве используют:

  • имеющие непосредственный контакт с землей металлические каркасы помещений;
  • металлическую защитную обмотку кабелей, закопанных в землю;
  • проложенные в земле металлические трубы (за исключением трубопроводов с горючими смесями);
  • железнодорожные рельсы.

Подключение таких конструкций к электроустановкам позволяет снизить затраты на оборудование заземления.

Важность сопротивления

Основным параметром эффективности заземления электроустановок является величина электрического сопротивления.

Согласно нормам ПУЭ (Правил Устройства Электроустановок) сопротивление заземлителя на жилых объектах с напряжением сети 220 и 380 Вольт, должно составлять не более чем 30 Ом.

Сопротивление промышленного оборудования (трансформаторных подстанций, генераторов, сварочного оборудования и других приборов) не более чем 4 Ом.
Чтобы достигнуть заданного в ПУЭ значения сопротивления, необходимо обеспечить заземляющее устройство высокой проводимостью. Для увеличения проводимости заземлителя в электроустановках и уменьшения его сопротивления необходимо выполнить одно из условий.

Во-первых, можно увеличить площадь соприкосновения заземляющего контура с землей. Достигается или увеличением площади металлической рамки заземлителя или помещением в грунт дополнительных стальных прутьев.

Во-вторых, можно повысить проводимость земли в месте установки заземлителя. Сопротивление повышается, если грунт поливать соляным раствором.

Еще один способ заключается в замене кабеля, идущего от корпуса электроприбора к контуру заземлителя, на кабель, имеющий большую токопроводимость.

Защита электроприборов

Для обеспечения необходимой защиты от поражения электрическим током применяются следующие защитные мероприятия:

  • установка защитных ограждений;
  • надежная изоляция всех токоведущих элементов;
  • защитные оболочки;
  • ограничение зоны досягаемости;
  • по возможности, использование малого напряжения.

На случай пробоев и изоляции и утечки напряжения на корпус электрооборудования применяются такие методы защиты, как заземление, выравнивание потенциалов, дополнительная изоляция токоведущих частей оборудования. В некоторых случаях требуется установка изолирующих (непроводящих электричество) помещений.

В случаях, когда наряду с заземлением применяются другие меры защиты от поражения электрическим током, они не должны оказывать друг на друга негативного влияния и снижать эффективность защиты оборудования и персонала.

Применение естественных элементов заземления возможно только в том случае, если исключается возможность нанесения им какого-либо ущерба, вследствие протекания по ним электрического тока.

Требования к электробезопасности

Если различные виды электроустановок располагаются на смежной территории, следует использовать одно общее заземляющее устройство, отвечающее всем необходимым параметрам безопасности.

Заземляющее устройство, применяемое для защиты электрического оборудования имеющее одно или разное назначение, в обязательном порядке должно соответствовать правилам безопасности. Каждое требование, предъявляемое к устройству заземления электроустановок, должно соблюдаться.

Для соединения заземляющего контура различного электрического оборудования в одну общую заземляющую сеть, можно применять как естественные, так и искусственные заземляющие устройства.

Пиковое значение напряжения утечки и сопротивление заземляющей сети должно отвечать требованиям электробезопасности и обеспечивать надежную защиту при любых атмосферных явлениях, и в любое время года. При расчете сопротивления заземляющих устройств, следует учитывать параметры всех естественных и искусственных заземлителей.

Все элементы схемы заземления должны быть устойчивы к внешним механическим воздействиям, влиянию высокой температуры и любых атмосферных явлений.

Основные типы

Согласно ПУЭ (Правил Устройства Электроустановок) существуют система заземления ТN (включающая в себя группы TN-C, TN-S, TN-C-S), TT и IT.
Латинские буквы в обозначении имеют следующее значение:

  • Т – источник питания соединен с землей;
  • S – размыкание осуществляется разными проводниками;
  • N – нейтраль;
  • C – размыкаются одним проводником;
  • I – изолированная токоведущая часть.

Зная, что означает каждая буква обозначения, можно определить устройство и принцип работы заземляющего устройства, к которому подключается электрооборудование.

Система ТN

Наиболее часто встречающаяся система защитного заземления. Главной ее особенностью служит наличие заземленной «наглухо» нейтрали питающей сети. Иными словами, нулевой выход питающей сети напрямую соединен с заземляющим контуром.

TN-C – данная система заземления широко применялась при постройке старых жилых помещений, а в наше время не используется при строительстве домов, так как является устаревшей и не отвечает всем стандартам безопасности. Такой вид заземления электроприборов применяется в трехфазных сетях с четырехжильным кабелем и однофазных сетях с кабелями имеющими две жилы. Главным недостатком данного типа, является отсутствие в кабелях защитной жилы заземления.

TN-S – система, часто используется для подключения зданий к электрической сети. Имеет наивысшую степень защиты, среди всех систем заземления. Нулевой и рабочий проводник, в этой системе, прокладываются отдельно друг от друга, при этом защитный проводник соединяется со всеми токоведущими частями зачищаемого оборудования. К недостаткам этого вида заземления модно отнести необходимость прокладки дополнительного кабеля.

TN-C-S – в этой системе, жила защитного проводника соединена с нейтральной рабочий жилой. Согласно правили электробезопасности, для системы TN-C-S требуется установка дополнительного заземления.

Система TT

Эта система широко применяется для обеспечения электробезопасности питающих подстанций и установок, имеющих отдельное заземляющее устройство. Часто используется для защиты отдельно стоящих помещений (гаражи, ларьки, ангары и другие сооружения).

Система IT

Источник питания в данной системе изолирован воздушной прослойкой или соединен элементом с большим сопротивлением, что позволяет существенно снизить ток утечки. Система заземления типа IT наиболее часто применяется в медицинских заведениях и лабораториях, для обеспечения корректной работы высокоточных, чувствительных к скачкам напряжения приборов.

Разница между заземлением и занулением

Заземление и зануление электроустановок – это схожие понятия, но имеющие одно отличие.

При использовании заземлителя защита обеспечивается снижением напряжения в токоведущей части. А при занулении защитное действие заключается в мгновенном отключении подачи напряжения в вышедшем из строя участке сети.

Обязательной является установка заземления во всех электроустановках, где нейтраль заизолирована. В том случае когда электроприбор имеет глухозаземленную нейтраль, а напряжение в рабочей сети до 1000 В, можно обойтись только одним занулением.

Правила расчета

Расчет защитного заземления необходимо производить для того, чтобы правильно определить параметры заземляющего контура, такие как его тип, форма, площадь, размеры, количество заземлителей и расстояние между ними. Все эти параметры, вместе со значением токопроводимости грунта, напрямую влияют на суммарное значение сопротивления системы заземления.

Расчет заземляющего устройства производится в обязательном порядке перед началом монтажа контура.

При расчете защитного заземления, обращают особое внимание на значение удельного сопротивления земли. Для расчетов необходимо принимать то его значение, которое соответствует наиболее неблагоприятным сезонным условиям.

Правила установки переносного вида

Переносное заземление устанавливается при временных работах по обслуживанию или ремонту электрооборудования. Монтаж защитного заземления разрешается осуществлять только после проверки на отсутствие напряжения в цепи.

Защитное заземление, предназначенное для защиты работающего на линии персонала от поражения током в случае ошибочного включения напряжения, в обязательном порядке устанавливается на все отключенные фазы, со всех сторон, с которых может быть подано напряжение.

Монтаж переносного заземления в электроустановках с напряжением более 1000 Вольт разрешается производить персоналу имеющему группу электробезопасности не ниже четвертой, а в установках до 1000 Вольт – не ниже третей.

Запрещается использовать в качестве заземляющих элементов детали, которые не предназначены для этого, также запрещается соединять элементы заземления методом скрутки.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector