Как рассчитать контур заземления
Расчет защитного заземления
Расчет заземления производится для того чтобы определить сопротивление сооружаемого контура заземления при эксплуатации, его размеры и форму. Как известно, контур заземления состоит из вертикальных заземлителей, горизонтальных заземлителей и заземляющего проводника. Вертикальные заземлители вбиваются в почву на определенную глубину.
Горизонтальные заземлители соединяют между собой вертикальные заземлители. Заземляющий проводник соединяет контур заземления непосредственно с электрощитом.
Размеры и количество этих заземлителей, расстояние между ними, удельное сопротивление грунта – все эти параметры напрямую зависят на сопротивление заземления.
К чему сводится расчет заземления?
Заземление служит для снижения напряжения прикосновения до безопасной величины. Благодаря заземлению опасный потенциал уходит в землю тем самым, защищая человека от поражения электрическим током.
Величина тока стекания в землю зависит от сопротивления заземляющего контура. Чем сопротивление будет меньше, тем величина опасного потенциала на корпусе поврежденной электроустановки будет меньше.
Заземляющие устройства должны удовлетворять возложенным на них определенным требованиям, а именно величины сопротивление растекания токов и распределения опасного потенциала.
Поэтому основной расчет защитного заземления сводится к определению сопротивления растекания тока заземлителя. Это сопротивление зависит от размеров и количества заземляющих проводников, расстояния между ними, глубины их заложения и проводимости грунта.
Исходные данные для расчета заземления
1. Основные условия, которых необходимо придерживаться при сооружении заземляющих устройств это размеры заземлителей.
1.1. В зависимости от используемого материала (уголок, полоса, круглая сталь) минимальные размеры заземлителей должны быть не меньше:
- а) полоса 12х4 – 48 мм2;
- б) уголок 4х4;
- в) круглая сталь – 10 мм2;
- г) стальная труба (толщина стенки) – 3.5 мм.
Минимальные размеры арматуры применяемые для монтажа заземляющих устройств
1.2. Длина заземляющего стержня должна быть не меньше 1.5 – 2 м.
1.3. Расстояния между заземляющими стержнями берется из соотношения их длины, то есть: a = 1хL; a = 2хL; a = 3хL.
В зависимости от позволяющей площади и удобства монтажа заземляющие стрежни можно размещать в ряд, либо в виде какой ни будь фигуры (треугольник, квадрат и т.п.).
Цель расчета защитного заземления.
Основной целью расчета заземления является определить число заземляющих стержней и длину полосы, которая их соединяет.
Пример расчета заземления
Сопротивление растекания тока одного вертикального заземлителя (стержня):
где – ρэкв — эквивалентное удельное сопротивление грунта, Ом·м; L – длина стержня, м; d – его диаметр, м; Т – расстояние от поверхности земли до середины стержня, м.
В случае установки заземляющего устройства в неоднородный грунт (двухслойный), эквивалентное удельное сопротивление грунта находится по формуле:
где – Ψ — сезонный климатический коэффициент (таблица 2); ρ1, ρ2 – удельное сопротивления верхнего и нижнего слоя грунта соответственно, Ом·м (таблица 1); Н – толщина верхнего слоя грунта, м; t — заглубление вертикального заземлителя (глубина траншеи) t = 0.7 м.
Так как удельное сопротивление грунта зависит от его влажности, для стабильности сопротивления заземлителя и уменьшения на него влияния климатических условий, заземлитель размещают на глубине не менее 0.7 м.
Грунт | Удельное сопротивление грунта, Ом·м |
Торф | 20 |
Почва (чернозем и др.) | 50 |
Глина | 60 |
Супесь | 150 |
Песок при грунтовых водах до 5 м | 500 |
Песок при грунтовых водах глубже 5 м | 1000 |
Заглубление горизонтального заземлителя можно найти по формуле:
Монтаж и установку заземления необходимо производить таким образом, чтобы заземляющий стержень пронизывал верхний слой грунта полностью и частично нижний.
Тип заземляющих электродов | Климатическая зона | |||
I | II | III | IV | |
Стержневой (вертикальный) | 1.8 ÷ 2 | 1.5 ÷ 1.8 | 1.4 ÷ 1.6 | 1.2 ÷ 1.4 |
Полосовой (горизонтальный) | 4.5 ÷ 7 | 3.5 ÷ 4.5 | 2 ÷ 2.5 | 1.5 |
Климатические признаки зон | ||||
Средняя многолетняя низшая температура (январь) | от -20+15 | от -14+10 | от -10 до 0 | от 0 до +5 |
Средняя многолетняя высшая температура (июль) | от +16 до +18 | от +18 до +22 | от +22 до +24 | от +24 до +26 |
Количество стержней заземления без учета сопротивления горизонтального заземления находится по формуле:
Rн — нормируемое сопротивление растеканию тока заземляющего устройства, определяется исходя из правил ПТЭЭП (Таблица 3).
Характеристика электроустановки | Удельное сопротивление грунта ρ, Ом·м | Сопротивление Заземляющего устройства, Ом |
Искусственный заземлитель к которому присоединяется нейтрали генераторов и трансформаторов, а также повторные заземлители нулевого провода (в том числе во вводах помещения) в сетях с заземленной нейтралью на напряжение, В: | ||
660/380 | до 100 | 15 |
свыше 100 | 0.5·ρ | |
380/220 | до 100 | 30 |
свыше 100 | 0.3·ρ | |
220/127 | до 100 | 60 |
свыше 100 | 0.6·ρ |
Как видно из таблицы нормируемое сопротивления для нашего случая должно быть не больше 30 Ом. Поэтому Rн принимается равным Rн = 30 Ом.
Сопротивление растекания тока для горизонтального заземлителя:
Lг, b – длина и ширина заземлителя; Ψ – коэффициент сезонности горизонтального заземлителя; ηг – коэффициент спроса горизонтальных заземлителей (таблица 4).
Длину самого горизонтального заземлителя найдем исходя из количества заземлителей:
— в ряд;
— по контуру.
а – расстояние между заземляющими стержнями.
Определим сопротивление вертикального заземлителя с учетом сопротивления растеканию тока горизонтальных заземлителей:
Полное количество вертикальных заземлителей определяется по формуле:
ηв – коэффициент спроса вертикальных заземлителей (таблица 4).
Коэффициент использования показывает как влияют друг на друга токи растекания с одиночных заземлителей при различном расположении последних. При соединении параллельно, токи растекания одиночных заземлителей оказывают взаимное влияние друг на друга, поэтому чем ближе расположены друг к другу заземляющие стержни тем общее сопротивление заземляющего контура больше.
Полученное при расчете число заземлителей округляется до ближайшего большего.
Расчет заземления по указанным выше формулам можно автоматизировать воспользовавшись для расчета специальной программой «Электрик v.6.6», скачать ее можно в интернете бесплатно.
Расчет контура заземления
Расчет контура заземления и заземляющих устройств с помощью онлайн-калькулятора – расчет заземления по СНиП для частного дома онлайн и формулы.
Перемотайте вниз чтобы НАЧАТЬ (место для вашего контента)
На данной странице вы можете выполнить расчет заземления с помощью онлайн-калькулятора или самостоятельно по формулам. Теоретическое обоснование, рекомендации и пример расчета представлены ниже. В качестве источников использовались материалы из документов: Правила устройства электроустановок, Нормы устройства сетей заземления, Заземляющие устройства электроустановок (Карякин Р. Н.), справочник по проектированию электрических сетей и электрооборудования (Барыбин Ю. Г.), Справочник по электроснабжению промышленных предприятий (Федоров А. А., Сербиновскй Г. В.). Чтобы начать расчет, нажмите кнопку «Рассчитать».
Смежные нормативные документы:
- СП 256.1325800.2016 «Электроустановки жилых и общественных зданий. Правила проектирования и монтажа»
- СП 76.13330.2016 «Электротехнические устройства»
- ГОСТ Р 57190-2016 «Заземлители и заземляющие устройства различного назначения»
- ГОСТ 12.1.030-81 «Электробезопасность. Защитное заземление. Зануление. Система стандартов безопасности труда»
- ПУЭ 7 «Правила устройства электроустановок»
Расчет заземляющего устройства
В современном мире, мы не представляет свою жизнь без использования электричества. Оно вокруг нас повсюду и именно оно позволило человечеству перейти на совершенно новый уровень развития. Переоценить его важность невозможно, однако при всех своих положительных качествах, за своей безобидностью и простотой, скрывается колоссальная энергия, которая представляет смертельную опасность.
Для того чтобы обезопасить помещения, где постоянно находятся люди, было создано специальное устройство – заземлитель. Это набор проводников, которые предназначены для отвода электрической энергии от приборов к грунту, тем самым исключая поражение током человека. Он состоит из заземлителей (горизонтальных и вертикальных стержней) и заземляющих проводников.
Калькулятор расчета заземления
Для того чтобы упростить расчеты, мы предлагаем вам воспользоваться простым и точным калькулятором расчета заземления.
Наш онлайн-калькулятор расчета заземления учитывает все поправочные коэффициенты и работает на основании приведенных формул. Для того чтобы выполнить надежный расчет, вам необходимо заполнить поля программы правильно.
- Грунт. Укажите верхний и нижний слой грунта, а также глубину.
- Климатический коэффициент. Поправка в расчетах на основании климатической зоны:
- I зона — от -20 до -15°С (Январь); от +16 до +18°С (Июль);
- II зона — от -14 до -10°С (Январь); от +18 до +22°С (Июль);
- III зона — от -10 до 0°С (Январь); от +22 до +24°С (Июль);
- IV зона — от 0 до +5°С (Январь); от +24 до +26°С (Июль);
- Вертикальные заземлители. Количество вертикальных заземлителей (предполагаем любой число, по умолчанию 5), их длина и диаметр.
- Горизонтальные заземлители. Глубина заложения горизонтальной полосы, ширина полки и длина стержня (берется из расчета 1:3, 1:2 или 1:1 к длине вертикального заземлителя – чем больше, тем лучше).
Нажимая кнопку «Рассчитать» вы получите следующие показатели:
- удельное электрическое сопротивление грунта;
- сопротивление одиночного вертикального заземлителя;
- длина горизонтального заземлителя;
- сопротивление горизонтального заземлителя;
- общее сопротивление растеканию электрического тока.
Последний параметр является определяющим. Согласно ПУЭ 7 «Правила устройства электроустановок» нормативное сопротивление заземление для электроустановок до 1000 В не должно превышать 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока.
Пример расчета заземления на калькуляторе
Предположим, что наш дом расположен на черноземных почвах с толщиной пласта 0.5 м. Мы живем на юге России в четвертой климатической зоне. Предположительно, в качестве заземлителей будут использоваться 5 вертикальных электродов диаметром 0.025 м и длиной 2 м, горизонтальные стержни на глубине 0.5 м – длиной 2 м с шириной полки 0.05 м.
Тогда, перенеся все значения в калькулятор расчета заземления мы получим общее сопротивление на растекание равное 4.134 Ома.
Если в нашем частном доме однофазная сеть с напряжением в 220 Вт, то это значение недопустимо, так как этого заземления будет недостаточно.
Добавим еще один вертикальный электрод и получим значение 3.568 Ом. Это величина нам вполне подходит, а значит такое заземление гарантировано защитит вашу постройку и ее обитателей.
Если вы получаете значение близкое к критическому, то лучше увеличить количество или размер электродов. Помните, что расчет контура заземления крайне важен для безопасности!
Как рассчитать заземление в частном доме вручную
Как вы уже поняли, основной параметр, который необходимо рассчитать – это общее сопротивление на растекание, т.е. нужно подобрать такую конфигурацию электродов, чтобы сопротивление заземляющего устройства, не превышало нормативное. Согласно положениям правил устройств электроустановок (ПЭУ), необходимо соблюдать определенные максимумы для токов:
- 4 Ом — для 220 Вольт;
- 4 Ом — для 380 Вольт;
- 2 Ом — для 660 Вольт.
Правильный расчет начинается с подсчета оптимального размера и количества стержней. Для того чтобы сделать это вручную, легче всего воспользоваться упрощенными формулами, приведенными ниже.
- Ro – сопротивление стержня, Ом;
- L – длина электрода, м;
- d – диаметр электрода, м;
- T – расстояние от середины электрода до поверхности, м;
- pэкв – сопротивление грунта, Ом;
- ln — натуральный логарифм;
- π — константа (3.14).
- Rн – нормируемое сопротивление заземляющего устройства (2 или 4 Ом).
- ψ – поправочный климатический коэффициент сопротивления грунта (1.3, 1.45, 1.7, 1.9, в зависимости от зоны).
Используя эти формулы, вы можете рассчитать заземляющее устройство достаточно точно, однако для упрощения расчета некоторые коэффициенты опускаются.
Также очень важно, чтобы при выборе глубины залегания и длины заземляющих стержней, нижний конец проходил ниже уровня промерзания, так как при отрицательных температурах резко возрастает сопротивление грунта, и возникают определенные сложности.
Расчёт заземления
Расчёт заземления (расчёт сопротивления заземления) для одиночного глубинного заземлителя на основе модульного заземления производится как расчёт обычного вертикального заземлителя из металлического стержня диаметром 14,2 мм.
Формула расчёта сопротивления заземления одиночного вертикального заземлителя:
![]()
где:
ρ – удельное сопротивление грунта (Ом* м )
L – длина заземлителя (м)
d – диаметр заземлителя (м)
T — заглубление заземлителя (расстояние от поверхности земли до середины заземлителя) (м)
π — математическая константа Пи (3,141592)
ln — натуральный логарифм
Для готовых комплектов модульного заземления ZANDZ формула расчёта сопротивления упрощается до вида:
— для комплекта ZZ-000-015
— для комплекта ZZ-000-030
Для расчета взяты следующие величины:
L = 15 (30) метров
d = 0,014 метра = 14 мм
T = 8 (15,5) метров: с учетом заглубления электрода на глубине 0,5 метра
Расчёт электролитического заземления
Расчёт электролитического заземления (расчёт сопротивления заземления) производится как расчет обычного горизонтального электрода в виде трубы, имеющей длину 2,4 метра с учетом влияния электролита на окружающий грунт (коэффициент С).
Формула расчёта сопротивления заземления одиночного горизонтального электрода с добавлением поправочного коэффициента:
![]()
где:
ρ – удельное сопротивление грунта (Ом* м )
L – длина заземлителя (м)
d – диаметр заземлителя (м)
T — заглубление (расстояние от поверхности земли до заземлителя) (м)
π — математическая константа Пи (3,141592)
ln — натуральный логарифм
С – коэффициент содержания электролита в окружающем грунте
Коэффициент C варьируется от 0,5 до 0,05.
Со временем он уменьшается, т.к. электролит проникает в грунт на бОльший объем, при это повышая свою концентрацию. Как правило, он составляет 0,125 через 6 месяцев выщелачивания солей электрода в плотном грунте и через 0,5 — 1 месяц выщелачивания солей электрода в рыхлом грунте. Процесс можно ускорить путем добавления воды в электрод при монтаже.
Для электролитического заземления ZANDZ формула расчёта сопротивления заземления упрощается до вида:
— для комплекта ZZ-100-102
Для расчёта взяты следующие величины:
L = 2,4 метра
d = 0,065 метра = 65 мм
T = 0,6 метра
С = 0,125
Расчёт заземления: практические данные
Стоит обратить внимание на тот факт, что получаемые практически результаты ВСЕГДА отличаются от теоретических расчетов заземления.
В случае глубинного / модульного заземления — разница связана с тем, что в формуле расчёта чаще всего используется НЕИЗМЕННОЕ ОЦЕНОЧНОЕ удельное сопротивление грунта НА ВСЕЙ глубине электрода. Хотя в реальности, такого никогда не наблюдается.
Даже если характер грунта не меняется — его удельное сопротивление уменьшается с глубиной: грунт становится более плотным, более влажным; на глубине от 5 метров часто находятся водоносные слои.
Фактически, получаемое сопротивление заземления будет ниже расчётного в разы (в 90% случаев получается сопротивление заземления в 2-3 раза меньше).
В случае электролитического заземления — разница связана с тем, что в формуле расчета используется коэффициент «С» , берущийся в расчёт как усредненная поправочная величина, которую нельзя описать в виде формул и зависимостей. Определяется он исходя из множества характеристик грунта (температура, влажность, рыхлость, диаметр частиц, гигроскопичность, концентрации солей и т.п.)
Процесс выщелачивания длителен и относительно постоянен. Со временем концентрация электролита в окружающем грунте растёт. Также растёт объём грунта с присутствием электролита вокруг электрода. Через 3-5 лет после монтажа этот получившийся «полезный» объём можно описать трёхметровым радиусом вокруг электрода.
Из-за этого, сопротивление электролитического заземления ZANDZ со временем существенно падает . Замеры показали уменьшение в разы:
- 4 Ома сразу после монтажа
- 3 Ома через 1 год
- 1,9 Ома спустя 4 года
Расчёт заземления в виде нескольких электродов
Расчёт заземления (расчёт сопротивления заземления) для нескольких электродов модульного заземления производится как расчёт параллельно-соединенных одиночных заземлителей.
Формула расчёта с учетом взаимного влияния электродов — коэффициента использования:
![]()
где:
R1 – сопротивление одиночного заземлителя/электрода (Ом)
Ки – коэффициент использования
N – количество электродов в заземлителе
Вклад соединительного заземляющего проводника здесь не учитывается.
Расчёт необходимого количества заземляющих электродов
Проведя обратное вычисление получим формулу расчёта количества электродов для необходимой величины итогового сопротивления сопротивления (R):
![]()
где:
] [ — округление результата в бОльшую сторону.
R – необходимое сопротивление многоэлектродного заземлителя (Ом)
R1 – сопротивление одиночного заземлителя/электрода (Ом)
Ки – коэффициент использования
Вклад соединительного заземляющего проводника здесь не учитывается.
Расстояние между заземляющими электродами
При многоэлектродной конфигурации заземлителя на итоговое сопротивление заземления начинает оказывать свое влияние еще один фактор — расстояние между заземляющими электродами. В формулах расчёта заземления этот фактор описывается величиной «коэффициент использования».
Для модульного и электролитического заземления этим коэффициентом можно пренебречь (т.е. его величина равна 1) при соблюдении определенного расстояния между заземляющими электродами:
- не менее глубины погружения электродов — для модульного
- не менее 7 метров — для электролитического
Соединение электродов в заземлитель
Для соединения заземляющих электродов между собой и с объектом в качестве заземляющего проводника используется медная катанка или стальная полоса.
Сечение проводника часто выбирается — 50 мм² для меди и 150 мм² для стали. Распространено использование обычной стальной полосы 5*30 мм.
Для частного дома без молниеприёмников достаточно медного провода сечением 16-25 мм² .
Подробнее о прокладке заземляющего проводника можно ознакомиться на отдельной странице «Монтаж заземления».
Сервис расчёта вероятности удара молнии в объект
Если помимо заземляющего устройства Вам предстоит установить систему внешней молниезащиты, Вы можете воспользоваться уникальным сервисом расчета вероятности удара молнии в объект, защищённый молниеприёмниками. Сервис разработан командой ZANDZ совместно с ОАО «Энергетический институт им.Г.М.Кржижановского» (ОАО «ЭНИН»)
Этот инструмент позволяет не просто проверить надёжность системы молниезащиты, но и выполнить наиболее рациональный и правильный проект защиты от молнии, обеспечивая:
- меньшую стоимость конструкции и монтажных работ, уменьшая ненужный запас и используя менее высокие, менее дорогие в монтаже, молниеприёмники;
- меньшее количество ударов молнии в систему, сокращая вторичные негативные последствия, что особенно важно на объектах со множеством электронных приборов (количество ударов молнии уменьшается с уменьшением высоты стержневых молниеприёмников).
Функционал сервиса позволяет рассчитать эффективность запланированной молниезащиты в виде понятных параметров:
- вероятность прорыва молнии в объекты системы (надёжность системы защиты определяется как 1 минус величина вероятности);
- число ударов молнии в систему в год;
- число прорывов молнии, минуя защиту, в год.
Имея подобную информацию, проектировщик может сравнить требования заказчика и нормативной документации с полученной надежностью и принять меры по изменению конструкции молниезащиты.
Для того, чтобы приступить к расчёту, перейдите по ссылке.
Как производится расчет контура заземления
Для того чтобы система грозозащиты была эффективной и охватывала все объекты, которые необходимо оградить от воздействия молнии, необходимо правильно провести расчет контура заземления. Основные принципы расскажем в статье.
Контур заземления и его устройство
Чаще всего заземление обустраивается при помощи стальных стержней электродов – их загоняют глубоко в землю и соединяют вместе при помощи проволоки либо прута. Глубина зависит от множества факторов. Основным из них можно назвать насыщенность грунта водой. Соответственно, чем этот показатель ниже, тем глубже необходимо закопать заземлитель.
Не забывайте, что расстояние от дома до устройства системы должно быть строго от 1 до 10 метров.
Особенности устройства системы
Итак, основные требования, которые предъявляются к заземлителям – гладкая структура и пожаростойкий материал, например сталь, медь или алюминий. Допускается использование арматуры, трубы и прочих предметов, которые соответствуют названным параметрам.
Все эти стержни располагаются в виде определенной геометрической фигуры. Выбор ее зависит от того, какую именно удобно использовать в данном случае. Но наиболее удобным по-прежнему остается треугольник.
Иногда стержни располагают по периметру здания. Однако учитывайте, что контур обязательно должен располагаться ниже уровня промерзания грунта.
То есть, как вы поняли, заземление можно обустроить при помощи подручных материалов. Однако в продаже имеются и специальные комплекты. Хоть стоимость их не самая низкая, именно такая система прослужит дольше всего и облегчит задачу монтажа.
Расчет контура заземления – пример
Естественно, что каждый проект необходимо рассматривать в отдельности. В качестве примера рассмотрим заземление одного коттеджа.
Даны следующие факты:
- Почвенный грунт, удельное сопротивление которого 60 Омметр;
- Были выбраны заземлители: 50й уголок 2,5 метров, ширина полки этого уголка – 0,05 м., расстояние между заземлителями равно 2,5 метра;
- Глубина выкопанной траншеи – 0,7 метр;
- Сопротивление, необходимое для заземления – 10 Ом.
Теперь руководствуясь специальными таблицами, которые можно найти в ПУЭ, определяем коэффициенты, которые характерны для вашей климатической зоны. В нашем примере мы выбрали вторую группу.
Сопротивление почвы рассчитывается по формуле:
С = К * Р = 0,87 Омм
Диаметр заземлителя соответствует формуле Д = 095 * Р (ширина полки).
В нашем случае мы получаем 0,0475 (0,05)м.
Заглубление вычисляется по формуле – 0,5 * L (длина заземлителя) * t (глубина траншеи).
У нас получается 1,75.
Общая формула выглядит так:
R = C 2П1 (1n 21d + 0,5 * 1n * 4h+1 4h – 1. У нас получатся 27, 58 м.
Как видите, в этом нет ничего сложного, но если вы не уверены в правильности своих действий, то лучше обратитесь к специалисту. В этом случае вы получите гарантию на проделанные работы, а также специальный паспорт заземления с его схемой.
Примеры расчёта заземляющего устройства
Привёдем несколько примеров для расчёта заземления:
Любой предварительный расчёт заземления сводится к определению сопротивления растекания тока заземлителя в соответствие с требованием ПУЭ, как уже отмечалось ранее, а также на количество требуемых материалов и затрат на изготовления заземляющего устройства (бурение, ручная забивка заземлителей, сварочные работы, электромонтажные работы).
Так же отметим, что любой расчёт начинается с расчёта одиночного заземлителя, одиночный заземлитель применяется в основном для повторного заземления ВЛ опор , где требования ПУЭ (п. 1.7.103.) общее сопротивление растеканию заземлителей должно быть не более 15, 30 и 60 Ом соответственно при тех же напряжениях: 660, 380 и 220 В.
1. Пример расчёта одиночного заземлителя для опоры ВЛ 380 В:
Выбираем арматуру из таблицы 1 для вертикальных заземлителей — круглую сталь ø 16 мм., длиной L — 2,5 м.В качестве грунта примем глину полутвердую (см. таблицу 5) с удельным сопротивлением ρ — 60 Ом·м. Глубина траншеи равна 0,5 м. Из таблицы 6 возьмем повышающий коэффициент для третей климатической зоны и длине заземлителей до 2,5 м. с коэффициентом промерзания грунта для вертикальных электродов ψ — 1,45. Нормированное сопротивление заземляющего устройства равно 30 Ом. Фактическое удельное сопротивление почвы вычислим по формуле: ρфакт = ψ·ρ = 1.45 · 60 = 87 Ом·м. Примечание: расчёт одиночного заземлителя проводим без учёта горизонтального сопротивления заземления.
Расчет:
а) заглубление равно (рис. 2): h = 0,5l + t = 0,5 · 2,5 + 0,5 = 1,75 м.;
б) сопротивление одного заземлителя вычислим по формуле, (ρэкв = ρфакт):
прим. автора, где ln — логарифм, смотри ⇒ формулы на Рис. 4
Нормируемое сопротивления для нашего примера должно быть не больше 30 Ом., поэтому принимается равным R1 ≈ 28 Ом., что соответствует ПУЭ для одиночного вертикального заземлителя (электрода) заземления опоры ВЛ — U ∼ 380 В.
Если недостаточно одного заземлителя для опоры, то можно добавить второй или третий, в этом случае для двух заземлителей расчёт выполняется как для заземлителей в ряд, для трёх заземлителей (треугольником) по контуру, при этом надо иметь в виду, что расчёт треугольником малоэффективный, из-за взаимного влияния электродов друг к другу.
2. Пример расчёта заземления с расположением заземлителей в ряд:
Воспользуемся данными из примера 1 , где R = 27,58 Ом·м для расчёт вторичного заземления электроустановок (ЭУ), где нормативное сопротивление требуется не более Rн = 10 Ом, на вводе в здания, при напряжении 380 В и каждого повторного заземлителя не более Rн = 30 (см. ПУЭ п.1.7.103 см. Заземлители) .
Расчет:
а) для расчёта заземления с расположением в ряд заземлителей, как уже отмечалось выше, возьмем данные из примера 1, где R1 = 27,58 Ом·м одиночного заземлителя и Ψ — 1,45 для третей климатической зоне;
б) предварительное количество стержней вертикального заземления без учета сопротивления горизонтального заземления находится по формуле 4.3 (см. Расчёт заземления):
n = 27,58 / 10 = 3,54 шт, где коэффициент спроса (использования) примем η = 1; далее по таблице 3 выберем число электродов n = 3 в ряд при отношение расстояние между электродами к их длине a = 1хL и коэффициент спроса η = 0,78, далее уточняем число электродов:
n = 27,58 / (10 · 0,78) = 3,26 шт; где потребуется увеличить число электродов или изменить расстояние к их длине a = 3хL, для экономии материалов примем отношение a = 3хL и количество вертикальных электродов равным — n = 3 шт . с коэффициентом спроса η = 0,91: n = 27,58 / (10 · 0,91) = 3,03 шт; т.к. общее сопротивление заземлителя уменьшиться за счёт горизонтального заземлителя;
в) длину самого горизонтального заземлителя найдем исходя из количества заземлителей расположенных в ряд, где а = 3· L = 3 · 2 = 6 м ; Lг = 6 · (3 — 1) = 12 м;
г) сопротивление растекания тока для горизонтального заземлителя находим по формуле 5 (см. Расчёт заземления), где в качестве верхнего грунта принято глина полутвердая с удельным сопротивлением 60 Ом·м., до глубины верхнего слоя нашей траншеи t = 0,5 м. см. пример 1; выберем полосу заземлителя 40 х 4 мм ., где коэффициент III климатической зоны для горизонтального (полосового) заземлителя возьмём Ψ — 2,2 и коэффициент спроса примем η = 1 , т.к. расстояние между электродами более 5 м., что исключает влияние около электродной зоны, по количеству принятых электродов, их длине и отношению расстояния между ними (см. таблицу 3 Расчёт заземления) :
ширина полки для полосы b = 0,04 м.
Rг = 0,366 · (100 · 2,2 / 12 · 1) · lg (2 · 12 2 /0,04 · 0,5) = 27,90 Ом·м, примем сопротивление горизонтального заземлителя — Rг = 27,9 Ом·м;
где, lg- десятичный логарифм ( смотри формулы формулы для расчёта рис. 4), b — 0,04 м. ширина полосы, t — 0,5 м. глубина траншеи.
д) Определим общее сопротивление вертикального заземлителя с учетом сопротивления растеканию тока горизонтальных заземлителей:
Rоб = (27,9 · 27,58) / (27,58 · 1) + (27,9 · 0,91 ·3) = 7,42 Ом·м
где Rоб — общее сопротивление заземлителей; R В — вертикального; RГ — горизонтального , ηВ и ηГ — коэффициенты использования вертикального и горизонтального заземлителя , n — шт количество вертикальных заземлителей.
Rоб = 7,42 Ом·м соответствует норме при напряжении U — 380 В для ввода в здание, где нормированное сопротивление не более Rн = 10 Ом (Общее сопротивление растеканию заземлителей (в том числе естественных) всех повторных заземлений PEN-проводника каждой ВЛ в любое время года должно быть не более 5, 10 и 20 Ом соответственно при линейных напряжениях 660, 380 и 220 В., ПУЭ п.1.7.103.)
3. Пример расчёта заземления с расположением заземлителей по контуру:
В качестве грунта примем сугли́нок — почва с преимущественным содержанием глины и значительным количеством песка с удельным сопротивлением ρ — 100 Ом·м. Вертикальный заземлитель из стальной трубы с наружным диаметром d — 32 мм., толщена стенки S — 4 мм., длиной электрода L — 2,2 м и расстоянием между ними 2,2 м ( a = 1хL). Заземлители расположены по контуру. Глубина траншеи равна t = 0,7 м. Из таблицы 6 возьмем повышающий коэффициент для второй климатической зоны и длине заземлителей до 5 м, его сезонное климатическое значение сопротивление составит Ψ — 1,5. Нормированное сопротивление заземляющего устройства равно Rн = 10 Ом·м . Фактическое удельное сопротивление почвы вычислим по формуле: ρ экв = Ψρ = 1.5 · 100 = 150 Ом·м.
а) вычислим сопротивление растекания тока одного вертикального заземлителя (стержня) по формуле 2 см. Расчёт заземления:
R О = 150 / (2π · 2,2) · ( ln (2 · 2,2 / 0,032) + 0,5 · ln (4 · 1,8 + 2,2) / (4 · 1,8 — 2,2)) = 10,85 · (ln 137,5 + 0,5 · ln 1,88) = 56,845 Ом·м., где T = 0,5 · L + t = 0,5 · 2,2 + 0,7 = 1,8 м. Примем RО = RВ = 56,85 Ом·м.,
б) предварительное количество стержней вертикального заземления без учета сопротивления горизонтального заземления находим по формуле (см. Расчёт заземления):
n = 56,85 /10 = 5,685 шт., округляем по таблице 3 до ближайшего значения, где n = 4 шт., далее по таблице 3 выберем число электродов n = 6 шт по контуру при отношение расстояние между электродами к их длине a = 1хL, где коэффициент спроса η = 0,62 и уточним количество
стержней с коэффициентом использования вертикальных заземлителей: n = 56,85 /10 · 0,62 = 9,17 шт., т.е требуется увеличить количество электродов до n = 10 шт., где коэффициент спроса η В = 0,55 ;
в) находим длину горизонтального заземлителя исходя из количества заземлителей расположенных по контуру: L Г = а · n , L Г = 2,2 · 10 = 22 м., где а = 1 · L = 1 · 2,2 = 2,2 м;
г) находим сопротивление растекания тока для горизонтального заземлителя по формуле 5 (см. Расчёт заземления), где коэффициент для II климатической зоны для горизонтального (полосового) заземлителя возьмём Ψ — 3,5 , коэффициент спроса примем по таблице 3 — η Г = 0,34 , ширина полосы горизонтального заземлителя b — 40 мм , (если из той же трубы d = 32 мм , то тогда ширина b полосы будет равна — b = 2 · d = 2 · 32 = 64 мм , b = 0,064 м .) и удельное сопротивление грунта — ρ = 100 Ом.м, по формуле 6:
R Г = 0,366 · (100 · 3,5 / 22 · 0,34) · lg (2 · 22 2 /0,040 · 0,7) = 17,126 · lg 34571,428 = 77,73 Ом·м, примем сопротивление горизонтального заземлителя — R Г = 77,73 Ом·м;
д) Определим полное сопротивление вертикального заземлителя с учетом сопротивления растекания тока горизонтальных заземлителей по формуле 6:
Rоб = (77,73 · 56,85) / (56,85 · 0,34) + (77,73 · 0,55 ·10) = 9,89 Ом·м , что соответствует заданной норме сопротивления не более Rн = 10 Ом·м.
Перейти далее: ⇒ Продолжение примеров расчёта заземления
Данный расчет следует применять как оценочный. После ок ончания монтажа заземляющего устройства необходимо пригласить специалистов электролаборатории для проведения электроизмерений (для ООО и ИП обязательно).
Вернутся:
Перейти в раздел: Паспорт ЗУ, Акт освидетельствования скрытых работ, Протокол испытания ЗУ
Примечание: данный раздел пока находится в разработке, могут быть опечатки.
Как рассчитать контур заземления самостоятельно – пошаговая инструкция
Защита от статического электричества устанавливается в случаях работы оборудования из материалов, проводящих ток. Расчет контура заземления выполняется с учетом принятых стандартов.
Принципы и правила вычислений согласно ПУЭ
Порядок расчета и исходные данные
Определение оптимального контура защитного заземления
Электроды и проводники — выбор и расчет
Пример расчета контура заземления
Расчет заземляющего устройства в режиме онлайн
Комментарии и Отзывы
Принципы и правила вычислений согласно ПУЭ
Перед рассчетом параметров заземления электрических проводников, а также их размеров, надо определить тип грунта. Рекомендуется использовать собранную установщиком информацию и постоянные значения, указанные в таблицах. При выполнении подсчетов нужно руководствоваться требованиями ГОСТа и Правилами устройства электроустановок (ПУЭ).
Порядок расчета и исходные данные
Для определения допустимого вертикального или горизонтального заземления следует:
- Рассчитать контур.
- Подготовить заземляющие электроды и проводники.
- Воспользоваться формулами для расчета.
Определение оптимального контура защитного заземления
Для получения оптимального растекания напряжения подбирается форма контура. Устройство представляет собой прямую линию либо геометрическую фигуру.
Менее затратным вариантом при определении необходимого контура заземления будет использование линейной схемы, в соответствии с которой нужно только выкопать одну траншею.
В процессе эксплуатации показатели напряжения и формы растекания могут измениться, потому при расчетах используется поправочный коэффициент. Подходящим вариантом будет применение треугольной формы контура: монтаж электродных элементов выполняется по вершинам геометрической фигуры. Для частного домовладения достаточно будет использовать три электрода.
Алекс Жук подробно рассказал о вычислении параметров заземления, а также количества проводников и электродов.
Электроды и проводники — выбор и расчет
Вертикальные электродные элементы являются основными составляющими, которые учитываются при расчете контура заземления. Длина приспособлений определяется расстоянием между ними. Непосредственно от размера электродов зависит и величина сопротивления. Значение сечения определяется в соответствии с ПУЭ, в связи с этим необходимо создать максимально износостойкую систему.
При выборе нужных размеров нужно иметь ввиду, что чем бо́льшая часть электрода погружается в землю, тем более эффективным получится контур. Для увеличения метража повышается количество самих стержней или берутся элементы с более высокими показателями длины. Здесь потребитель выбирает самостоятельно, что ему сделать проще: установить много электродов в землю или забивать каждый из них максимально глубоко.
Правила выбора и расчета:
- Длина электродных элементов выбирается с учетом того, что заземляться они должны не менее, чем на 0,5 м (среднее значение сезонного промерзания грунта). Установка стержня ниже этого показателя обеспечит корректную работу всех электрических приборов независимо от погодных условий.
- Расстояние между вертикальными элементами. Показатель определяется конфигурацией контура, а также длиной составляющих.
Трехметровые электроды устанавливать сложнее. Оптимальным считается использование двухметровых элементов с небольшим отклонением в большую либо меньшую сторону.
Канал «Дни Решений» рассказал о теоретических особенностях определения параметров необходимого защитного заземления и нюансах создания контура.
Размеры материала для заземления
Подбор материалов начинается с расчета минимальной длины.
Материал | Профиль сечения | Диаметр, мм | Площадь поперечного сечения, мм | Толщина стенки, мм |
Черная сталь | Круглый | |||
Для заземлителей вертикального типа | 16 | — | — | |
Для горизонтальных устройств | 10 | — | — | |
В форме прямоугольника | — | 100 | 4 | |
В виде угла | — | 100 | 4 | |
Трубный | 32 | — | 3,5 | |
Оцинкованная сталь | Круглый | |||
Для заземлителей вертикального класса | 12 | — | — | |
Для горизонтальных элементов | 10 | — | — | |
Для устройств с прямоугольным профилем | — | 75 | 3 | |
Трубный | 25 | — | 2 |
Формулы расчета
Для вычислений применяются формулы, исходя из характеристик заземлителя. Необходимо будет посчитать величину сопротивлений растекания тока, а также вертикального стержня.
Как определить сопротивление растеканию тока
Пример расчета приведен на изображении. Выбор формул зависит от расположения стержня электрода. Роль играет и вид логарифма.
Универсальная формула расчета сопротивления вертикального стержня
- Рэкв — параметр эквивалентного сопротивления почвы, измеряющийся в Ом/м;
- d — диаметр изделия, мм;
- L — размер непосредственно стержня, измеряется в метрах;
- Т — значение расстояния от середины изделия до поверхности земли.
Таблицы вспомогательной информации для расчета заземления
Значение удельного сопротивления почвы зависит от степени влажности грунта. Для обеспечения максимальной стабильности заземлителя, а также предотвращения негативного воздействия погодных условий, его нужно установить на глубине 0,7 м.
Показатели для различных видов почвы.
Тип грунта | Значение удельного сопротивления, Ом |
Торф | 20 |
Земля, чернозем | 50 |
Глинистый грунт | 60 |
Супесь | 150 |
Песок, если грунтовые воды находятся на расстоянии 5 метров | 500 |
Песчаный, когда подземное течение расположено на глубине более 5 м | 1000 |
Установку системы заземления необходимо производить так, чтобы стержень полностью проходил верхний слой почвы, а также часть нижнего. При этом надо учитывать сезонный климатический коэффициент.
Величина сопротивления грунта.
Разновидность электрода | Климатическая зона местности | |||
1 | 2 | 3 | 4 | |
Вертикальный | 1,8/2 | 1,5/1,8 | 1,4/1,6 | 1,2/1,4 |
Горизонтальный | 4,5/7 | 3,5/4,5 | 2/2,5 | 1,5 |
Климатические признаки зон, в градусах | ||||
Среднее значение самой низкой температуры в январе | В диапазоне от -20 до +15 | От -14 до +10 | От -10 до 0 | От 0 до +5 |
Величина самой высокой точки температуры, измеряется в июле | В диапазоне от +16 до +18 | 18-22 | 22-24 | 24-26 |
Расчет вертикальных заземлителей – таблица и формула
Расчет производится по формуле N=(R1*X)/R2. R2 представляет собой нормируемую величину сопротивления растекания тока электрода, который определяется стандартом ПТЭЭП (Правила технической эксплуатации установок потребителя).
Нормы, которых следует придерживаться.
Свойства электрооборудования | Величина удельного сопротивления почвы, Ом | Значение сопротивления заземляющего электрода, Ом |
Искусственное заземляющее устройство, к которому подключаются генераторные и трансформаторные установки | ||
660/380 | максимум 100 | 15 |
больше 100 | 0,5*р | |
380/220 | не более 100 | 30 |
больше 100 | 0,3*р | |
220/127 | максимум 100 | 60 |
больше 100 | 0,6*р |
Формула расчета горизонтального проводника
Коэффициенты использования заземлителей.
Сотношение расстояний между электродами и их длиной, м
Канал «Не только СТРОЙКА» рассказал о методике ведения расчетов параметров заземления с помощью специальной программы индивидуально для каждого жилого дома.
Пример расчета контура заземления
Для изготовления заземлителя обычно используется металлический уголок длиной 2,5-3 метра и размером 50х50 мм. При установке расстояние между элементами должно соответствовать их длине, или 2,5-3 метра. Показатель сопротивления для глиняного грунта будет 60 Ом*м. Согласно таблице климатических зон, значение сезонности для средней полосы составит около 1,45. Сопротивление будет равно: 60*1,45=87 Ом*м.
Пошаговый алгоритм монтажа заземления:
- Выкопать возле дома траншею по контуру глубиной 0,5 м.
- Забить в ее дно металлический уголок. Габариты его полки подобрать с учетом условного диаметра электродного элемента, который вычисляется по формуле d=0.95*p=0.995*0.05=87 Ом*м.
- Определить глубину залегания средней точки уголка: h=0.5*l+t=0,5*2,5*0,5=1,75 м.
- Подставить данное значение в ранее описанную формулу для расчета величины сопротивления одного заземлителя. Полученный параметр в итоге составит 27,58 Ом.
Необходимое число электродов можно определить по формуле N=R1/(Kисп*Rнорм). В результате получится 7. Изначально в качестве Кисп применяется цифра 1. В соответствии с табличными данными, для семи заземлительных устройств значение составит 0,59. Подставив полученную величину в формулу расчета, получаем результат: для дачного участка необходимо использовать 12 электродных элементов.
Соответственно, производится новый перерасчет с учетом этого параметра. Кисп по таблице теперь составит 0,54. Если использовать это значение в формуле, то в результате получится 13 штук. Тогда величина сопротивления электродов будет равна 4 Ома.
Расчет заземляющего устройства в режиме онлайн
Ускорить расчетный процесс помогает применение онлайн-калькулятора.
- Вычислить удельное сопротивление грунта ρ (1), учитывая его неоднородность. Для этого выбирать состав верхнего и нижнего слоя земли. Калькулятор сам подбирает необходимые значения для ρ1 и ρ2.
- Указать климатическую зону (коэффициент k1) и ввести остальные параметры. R1 (2) и R2 (3) определяют сопротивление заземлителей — горизонтального и вертикального.
- Провести расчет R (4) на основании полученных результатов.
- Ознакомиться с итогом.
Рекомендуется проверить, соответствует ли нормам (ПУЭ 1.7.101) сопротивление заземляющих устройств. Если оно превышает допустимое значение, надо изменить исходные параметры. В частности, уменьшить или увеличить количество вертикальных заземлителей.
Видео
Канал «Pro Дом» рассказал об алгоритме проведения расчетов для установки заземлительных электродов в бумажном формате и выборе резисторов.
Правила и алгоритм расчета заземляющих устройств
Система заземления обеспечивает безопасность жильцов и бесперебойное функционирование электробытовой техники. Заземление предотвращает поражение током в случае утечек электричества на нетоковедущие элементы из металла, возникающих при повреждении изоляции. Создание системы безопасности — ответственное мероприятие, поэтому перед его проведением необходимо произвести расчет заземления.
Естественное заземление
Во времена, когда перечень электробытовой техники в жилище ограничивался одним телевизором, холодильником и стиральной машиной, заземляющие устройства использовались редко. Защита от утечки тока возлагалась на естественные заземлители, такие как:
- неизолированные металлические трубы;
- обсадка водяных скважин;
- элементы металлических заборов, уличные фонари;
- оплетка кабельных сетей;
- стальные элементы фундаментов, колонн.
Лучший вариант естественного заземления — водопроводная магистраль из стали. За счет своей большой длины водопроводы сводят к минимуму сопротивление току растекания. Эффективность водопроводов достигается еще и благодаря их прокладке ниже уровня сезонного промерзания, а потому на их защитные качества не влияют ни жара, ни холод.
Металлические элементы подземных железобетонных изделий подходят для заземлительной системы, если соответствуют следующим требованиям:
- имеется достаточный (по нормам Правил устройства электроустановок) контакт с глинистой, супесчаной или влажной песчаной основой;
- при строительстве фундамента арматура на двух или более участках была выведена наружу;
- металлические элементы имеют сварные соединения;
- сопротивление арматуры соответствует регламенту ПУЭ;
- имеется электросвязь с шиной заземления.
Обратите внимание! Из всего перечня указанных выше естественных заземлений рассчитываются только подземные железобетонные конструкции.
Эффективность функционирования естественного заземления устанавливается на основе измерений, проведенных уполномоченным лицом (представителем Энергонадзора). На основе проведенных замеров специалист даст рекомендации относительно необходимости установки дополнительного контура к естественному контуру заземления. Если естественная защита отвечает требованиям нормативов, Правила устройства электроустановки указывают на нецелесообразность дополнительного заземления.
Расчеты для устройства искусственного заземления
Абсолютно точный расчет заземления произвести практически невозможно. Даже профессиональные проектировщики оперируют приблизительным количеством электродов и дистанциями между ними.
Причина сложности расчетов состоит в большом количестве внешних факторов, каждый из которых оказывает существенное влияние на систему. К примеру, нельзя предсказать точный уровень влажности, не всегда известна фактическая плотность грунта, его удельное сопротивление и так далее. В связи с неполной определенностью вводных данных итоговое сопротивление организованного контура заземления в конечном счете отличается от базового значения.
Разницу в проектируемых и реальных показателях нивелируют за счет монтажа дополнительных электродов или путем увеличения длины стержней. Тем не менее, предварительные расчеты важны, так как позволяют:
- отказаться от лишних трат (или хотя бы уменьшить их) на покупку материалов, на земляные работы;
- подобрать наиболее подходящую конфигурацию заземлительной системы;
- выбрать правильный план действий.
Для облегчения расчетов существует разнообразное программное обеспечение. Однако чтобы разобраться в их работе, необходимы определенные познания о принципах и характере вычислений.
Компоненты защиты
Защитное заземление включает электроды, установленные в землю и соединенные электросвязью с заземляющей шиной.
В системе имеются такие элементы:
- Металлические стержни. Один или несколько металлических стержней направляют ток растекания в грунт. Обычно в качестве электродов используют отрезки длинномерного металла (трубы, уголок, круглые металлические изделия). В некоторых случаях используется листовая сталь.
- Металлический проводник, объединяющий несколько заземлителей в единую систему. Обычно в этом качестве используют установленный по горизонтали проводник в виде уголка, прута или полосы. Металлическую связь приваривают к концам закопанных в землю электродов.
- Проводник, соединяющий находящийся в грунте заземлитель с шиной, которая имеет связь с защищаемым оборудованием.
Два последних элемента называются одинаково — заземляющий проводник. Оба элемента выполняют идентичную функцию. Различие кроется в том, что металлосвязь находится в грунте, а проводник подключения заземления к шине располагается на поверхности. В связи с этим к проводникам предъявляются неодинаковые требования по устойчивости к коррозии.
Принципы и правила вычислений
Грунт — один из составляющих элементов системы заземления. Его параметры имеют важное значение и участвуют в расчетах так же, как и длина металлических деталей.
При проведении расчетов используют формулы, указанные в Правилах устройства электроустановок. Применяются переменные данные, собираемые установщиком системы, и постоянные параметры (есть в таблицах). К постоянным данным относится, например, сопротивление грунта.
Определение подходящего контура
Прежде всего необходимо выбрать форму контура. Конструкция обычно выполняется в виде определенной геометрической фигуры или простой линии. Выбор конкретной конфигурации зависит от размеров и формы участка.
Проще всего реализовать линейную схему, так как для монтажа электродов понадобится выкопать лишь одну прямую траншею. Однако установленные в линию электроды станут экранировать, что ухудшит положение с током растекания. В связи с этим при расчетах линейного заземления применяется поправочный коэффициент.
Наиболее распространенной схемой для создания защитного заземления выступает треугольная форма контура. По вершинам геометрической фигуры устанавливают электроды. Металлические штыри должны быть достаточно отдалены друг от друга, чтобы не препятствовать рассеиванию поступающих в них токов. Для обустройства защитной системы частного дома считается достаточным три электрода. Для организации эффективной защиты необходимо еще и правильно подобрать длину стержней.
Расчет параметров проводников
Длина металлических стержней важна, поскольку влияет на эффективность системы защиты. Имеет значение и длина элементов металлосвязи. Кроме того, от длины металлических деталей зависят расход материала и общие затраты на обустройство заземления.
Сопротивление вертикальных электродов определяется их длиной. Другой параметр — поперечные размеры — не влияет существенным образом на качество защиты. И все же сечение проводников регулируется Правилами устройства электроустановок, так как данная характеристика важна с точки зрения устойчивости к коррозии (электроды должны служить 5 – 10 лет).
При соблюдении прочих условий существует правило: чем больше металлических изделий участвует в схеме, тем выше безопасность контура. Работы по организации заземления довольно трудоемкие: чем больше заземлителей, тем больше земляных работ, чем длиннее стержни, тем глубже их нужно забивать.
Что выбрать: количество электродов или их длину — решать организатору работ. Однако на этот счет есть определенные правила:
- Стержни необходимо устанавливать ниже горизонта сезонного промерзания по крайней мере на 50 сантиметров. Это позволит отстранить сезонные факторы от влияния на эффективность системы.
- Дистанция между вертикально установленными заземлителями. Расстояние определяется конфигурацией контура и длиной стержней. Для выбора правильной дистанции нужно воспользоваться соответствующей справочной таблицей.
Нарезанный металлопрокат вбивают в грунт на 2,5 – 3 метра при помощи кувалды. Это довольно трудоемкая задача, даже если учесть, что из указанной величины нужно вычесть примерно 70 сантиметров глубины траншеи.
Экономное расходование материала
Так как сечение металла — не самый важный параметр, рекомендуется приобретать материал с наименьшей площадью сечения. Однако при этом нужно оставаться в пределах минимально рекомендуемых значений. Наиболее экономичные (но способные выдержать удары кувалды) варианты металлоизделий:
- трубы диаметром 32 миллиметра и толщиной стенок от 3 миллиметров;
- уголок равнополочный (сторона — 50 или 60 миллиметров, толщина — 4 или 5 миллиметров);
- круглая сталь (диаметр от 12 до 16 миллиметров).
В качестве металлосвязи оптимальным выбором станет полоса из стали толщиной 4 миллиметра. В качестве альтернативы подойдет 6-миллиметровый стальной прут.
Обратите внимание! Горизонтальные стержни приваривают к вершинам электродов. Поэтому к расчетной дистанции между электродами следует добавить еще 18 – 23 сантиметра.
Наружный участок заземления можно изготовить из 4-миллиметровой полосы (ширина — 12 миллиметров).
Формулы для расчетов
Далее расскажем о том, как рассчитать заземление по формулам, и приведем пример расчетов. Выбираем формулу, исходя из типа заземлителей.
Подойдет универсальная формула, с помощью которой рассчитывают сопротивление вертикального электрода.
При проведении вычислений не обойтись без справочных таблиц, где указаны примерные значения. Данные параметры определяются составом грунта, его средней плотностью, способностью задерживать воду, климатическим поясом.
Устанавливаем нужное количество стержней, не принимая во внимание показатель сопротивления горизонтального проводника.
Вычисляем данные по горизонтальной части заземлительной системы.
Определяем уровень сопротивления вертикального стержня на основе показателя сопротивления заземлителя горизонтального типа.
На основании полученных результатов приобретаем нужное количество материала и планируем начало работ по созданию системы заземления.
Заключение
Поскольку самое высокое сопротивление грунта отмечается в сухое и морозное время, организацию заземлительной системы лучше всего запланировать именно на этот период. В среднем сооружение заземления занимает 1 – 3 рабочих дня.
До засыпки траншеи землей следует проверить работоспособность заземлительных устройств. Оптимальная среда для проверки должна быть как можно более сухой, в почве не должно быть много влаги. Поскольку зимы не всегда бывают бесснежными, проще всего заняться строительством системы заземления в летний период.