Astro-nn.ru

Стройка и ремонт
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Заземление нейтрали трансформатора 110 кв

Свойства сетей с глухо заземленной нейтралью и с эффективно заземленной нейтралью

С глухозаземленной нейтралью работают электрические сети напряжением 220 кВ и выше Сети напряжением 110 кВ работают с эффективно зазем­ленной нейтралью.

Рассмотрим свойства таких сетей.

В сетях напряжением 220 кВ и выше заземляют нейтрали всех трансформаторов (рисунок 7.4). Разъединители в цепи нейтралей трансформаторов класса 220 кВ и выше не устанавливаются

Рисунок 7.4 – Сеть с глухо заземлёнными нейтралями

В нормальном режиме работы заземление нейтрали на работу сети не влияет. Влияние режима заземления нейтрали проявляется только при замыканиях на землю.

Рассмотрим однофазное короткое замыкание на землю в точке К. Заземленная нейтраль, линия и место замыкания на землю образуют замкнутый контур через землю. При заземлении нейтралей двух трансформаторов, как это показано на рисунке 7,4, будет два замкнутых контура через землю, в которых протекают токи КЗ Iк1 и Iк2. В месте КЗ токи всех контуров суммируются и через место замыкания протекает суммарный ток КЗ. Величина тока КЗ определяется величиной эквивалентного сопротивления схемы замещения относительно точки КЗ. При этом суммарный ток в месте однофазного КЗ в комплексной форме определяется по выражению:

(7.1)

где Z1Σ, ZΣ, — эквивалентные (суммарные) сопротивления, прямой и нулевой последовательности; UФ – фазное напряжение.

Ток при трехфазном коротком замыкании.

. (7.2)

Эквивалентные сопротивления прямой и нулевой последовательности в сетях 110 кВ и выше могут быть соизмеримы по величине. При этом токи однофазного короткого замыкания могут быть близки по величине к токам трехфазного короткого замыкания. Поэтому сети 110 кВ и выше называют сетями с большими токами замыкания на землю. Большие токи при КЗ на землю – это главное свойство сетей с глухо заземленными и эффективно заземленными нейтралями.

Это и преимущество, и недостаток таких сетей. Преимущество: при большом токе короткого замыкания можно сравнительно просто выявить поврежденную линию, сравнительно просто определить место КЗ и быстро отключить (изолировать) поврежденный элемент.

Недостаток: при большом токе короткого замыкания усложняется работа оборудования. Повышаются требования к термической и динамической стойкости.

Сети 110 кВ и сети напряжением 220 кВ и выше имеют одно важное отличие: воздушные линии напряжением 220 кВ и выше выполняются без ответвлений и не имеют промежуточных отборов мощности. Воздушные линии 110 кВ, в отличие от линий напряжением 220 кВ и выше, имеют многочисленные ответвления к подстанциям промышленных предприятий. При этом от ВЛ-110 кВ через ответвительные подстанции (ПС-3 на рисунке 7.5) получают питание потребители, территориально удаленные от узловых подстанций энергосистемы (ПС-1 и ПС-2 на рисунке 7.5). К одной ВЛ-110 кВ может быть подключено до пяти ответвительных подстанций.

Рисунок 7.5 – Сеть с эффективно заземленной нейтралью

При этом число трансформаторов в сети 110 кВ может быть в несколько раз больше, чем в сетях напряжением 220 кВ и выше. Если в сети 110 кВ нейтрали всех трансформаторов заземлить, то при однофазном КЗ на землю будет несколько контуров для токов КЗ. Это приведет к резкому снижению эквивалентного сопротивления нулевой последовательности ZΣ. Если сопротивление нулевой последовательности снизится до сопротивления прямой последовательности и будет выполнено равенство Z1Σ = ZΣ, то, в соответствии с (7.1) и (7.2), ток однофазного короткого замыкания будет равен току трехфазного короткого замыкания. Если сопротивление нулевой последовательности станет меньше сопротивления прямой последовательности ZΣ

На рисунке 7.5 приведены векторные диаграммы напряжений в точке однофазного КЗ.

Рисунок 7.6 – Векторные диаграммы напряжений в точке КЗ

На рисунке 7.5, а показаны векторы фазных напряжений UА, UВ и UС по отношению к нейтрали трансформатора N. В нормальном режиме потенциал нейтрали по отношению к земле равен нулю. При КЗ на землю фаза А через землю от точки З земли (рисунок 7.4) к нейтрали трансформатора потечет ток КЗ Iк, который отстает от напряжения фазы на угол φ. От тока КЗ в сопротивлении земли между точкой в земле Зв месте замыкания и заземленной нейтралью N появится падение напряжения UЗN. При этом фазные напряжения UВЗ и UСЗ неповрежденных фаз В и С по отношению к земле будут отличаться от фазных напряжений по отношению к нейтрали: UВЗ не равно UВ и UСЗ не равно UС.

Отношение разности потенциалов между неповрежденной фазой и землей при ЗНЗ к разности потенциалов между фазой и землей в этой точке до замыканияназывается коэффициентом замыкания (ПУЭ п.1.2.4). Для электрической сети с эффективно заземленной нейтралью коэффициент замыкания на землю не должен превышать 1,4 (kз ≤ 1,4). Число трансформаторов с разземленной нейтралью выбирается так, чтобы выполнялось условие:

. (7.2)

Если разъединитель в нейтрали отключен, то при однофазном КЗ на изолированной от земли нейтрали может появиться фазное напряжение. В нормальном режиме напряжение на нейтрали трансформатора по отношению к земле равно нулю. Поэтому для удешевления трансформатора изоляция нейтралей трансформаторов класса 110 кВ выполняется обычно ослабленной. Фазное напряжение на нейтрали п отношению к земле для ослабленной изоляции нейтрали является опасным и может вызвать ее пробой. Схемы защиты нейтрали трансформаторов от перенапряжений приведены на рисунке 7.7. В качестве защитных средств FV применяются разрядники (рисунок 7.7, а) или ограничители перенапряжений (рисунок 7.7, б). Для возможности заземления нейтрали (при необходимости) параллельно разряднику устанавливаются разъединитель QS. Номинальное напряжение разрядника выбирается на класс ниже номинального напряжения сети. Например, если сеть напряжением 110 кВ, то разрядник устанавливают на 55 кВ. Для этого включают последовательно два разрядника на 20 и 35 кВ.

Рисунок 7.7 – Схемы защиты нейтрали трансформатора

Виды нейтралей в электрических сетях

Электрические сети, как известно, делятся в зависимости от класса напряжения – до и выше 1000В. Нейтраль – это общая точка обмоток у трансформаторов и генераторов, соединенных в звезду. Если же схема обмоток треугольник и необходим ноль, то можно вспомнить про схему «скользящий треугольник». Будем рассматривать только сети переменного тока.

Виды заземления нейтрали в сетях до 1кВ

В электрических сетях напряжением до 1000В принято использовать три системы заземления нейтрали – это TN, IT, TT. Каждая из букв несет определенный смысл, разберемся:

  • 1-ая буква описывает способ заземления нейтрали источника питания
    • T (terra) – нейтраль глухозаземленная
    • I (isolate) – нейтраль изолирована (и – изолирована, легко запомнить)
  • 2-ая буква показывает способ заземления открытых проводящих частей (ОПЧ) с землей
    • N (neutral) – ОПЧ заземлены через глухозаземленную нейтраль источника питания
    • T – ОПЧ заземлены независимо от источника питания

В свою очередь система TN делится на три подсистемы – TN-C, TN-S и TN-C-S. В рамках данной подсистемы третьи буквы (C — combine, S — separe) обозначают совмещение или разделение в одном проводе функций нулевого защитного (PE) и нулевого рабочего (N) проводника.

Рассмотрим теперь каждую систему более подробно.

Система заземления TN

В этой системе нейтраль глухозаземлена, а открытые проводящие части заземлены через эту глухозаземленную нейтраль. Глухозаземленная – это значит что нейтраль присоединена непосредственно к заземляющему устройству (болтом, сваркой) или через малое сопротивление (трансформатор тока).

В сетях до 1кВ глузозаземленная нейтраль используется для питания однофазных и трехфазных нагрузок.

Система заземления TT

Система TT предполагает, что нейтраль источника питания глухозаземлена, а ОПЧ оборудования заземлены заземляющим устройством электрически несвязанным с нейтралью источника. То есть защитный PE-проводник создается у самого потребителя, а не идет от источника питания.

Система заземления IT

В системе IT нейтраль генератора или трансформатора изолирована или заземлена через устройства, имеющие высокое сопротивление, а ОПЧ заземлены независимо. Эта система не рекомендуется для жилых зданий, используется там, где при первом замыкании на землю не требуется перерыв питания. Это могут быть электроустановки с повышенными требованиями надежности снабжения электроэнергией.

Виды заземления нейтрали в электросетях выше 1кВ

В сетях напряжением выше 1000В используется изолированная (незаземленная) нейтраль, эффективно заземленная нейтраль и резонансно-заземленная нейтраль. Глухозаземленная нейтраль используется только в сетях до 1кВ.

Сети с незаземленной (изолированной) нейтралью

Исторически первая система заземления. Нейтральная точка источника питания не присоединена к заземляющему устройству. Обмотки соединены в треугольник и выходит, что нулевая точка отсутствует. Применяется на напряжение 3-35кВ.

Сети с эффективно-заземленной нейтралью

Этот вид заземления используется в сетях напряжением выше 110кВ. Достоинство заключается в том, что при однофазных замыканиях на неповрежденных фазах напряжение относительно земли будет равно 0,8 междуфазного в нормальном режиме работы. В этой системе сам контур заземления выполняется с учетом протекания больших токов КЗ, что делает его сложным и дорогим.

Сети с нейтралью, заземленной через резистор или реактор

Применяется в сетях 3-35кВ. Используется для уменьшения величины токов КЗ. Исторически был вторым способом заземления нейтрали. Заземление через резистор используется во всем мире, через реактор – в странах бывшего союза.

Заземление через реактор – при отсутствии замыкания ток через реактор мал. Когда происходит замыкание фазы на землю, то через место повреждения течет емкостной ток КЗ и индуктивный ток реактора. Если их величина равна, то в месте замыкания отсутствует ток (явление резонанса).

Заземление через резистор бывает низкоомным и высокоомным. Разница в величине тока, создаваемым резистором при замыкании на землю. Высокоомное применяется в сетях с малыми емкостными токами, в этом случае замыкание можно не отключать немедленно. Низкоомное заземление наоборот используется при больших емкостных токах.

Выбор виды заземления нейтрали зависит от следующих факторов:

  • величина емкостного тока сети
  • допустимая величина однофазного замыкания
  • возможности отключения однофазного замыкания
  • вида и типа релейных защит
  • безопасности персонала
  • наличия резерва

Сохраните в закладки или поделитесь с друзьями

Зачем и как делают заземление трансформаторов

От производителей электроэнергии передается ток высокого напряжения. Чтобы им могли пользоваться потребители на бытовом уровне, применяют понижающие трансформаторы. Согласно ПУЭ для них необходимо применять защитное заземление. Предусмотрен внешний и внутренний контур заземления. Устанавливают также защиту от ударов молнии.

Читать еще:  Как правильно выполнить заземление газового котла

Принципы устройства

Трансформатор преобразует (трансформирует) параметры переменного электрического тока. Происходит это благодаря явлению электромагнитной индукции. Основные детали прибора – катушки (обмотки) с проводами и ферромагнитный сердечник.

На одну катушку ток поступает, и она называется первичной. Вторичных катушек может быть 1, 2 и больше. С них снимается ток с уже измененными характеристиками.

У повышающего трансформатора число витков на вторичной обмотке больше, чем на первичной. В прямой связи увеличивается индуцированное напряжение с одновременным понижением силы тока.

Устройство понижающих трансформаторов другое. Они сделаны с точностью наоборот. Число витков в первичной обмотке у них больше, чем на вторичной обмотке, поэтому индуцированное напряжение снижается.

На большие расстояния выгоднее передавать электричество высокого напряжения и низкой силы тока, поскольку потери энергии на выделения тепла наименьшие.

Так и поступают. А трансформаторы впоследствии преобразуют ток до необходимых параметров.

Способ соединения обмоток трансформатора может быть выбран «треугольник», «звезда» или «зигзаг». В случае «треугольника» обмотки соединены последовательно, образуя замкнутый контур. Способ «звезда» предполагает соединение концов фазных обмоток в одну точку. Ее называют нулевой (нейтральной) точкой.

В случае «зигзага» каждая фазная обмотка состоит из 2-х частей на разных стержнях. Соединение 2-х частей происходит навстречу друг другу. Образовавшиеся три вывода соединяют, как «звезду».

Для трансформаторов высокого напряжения применяют соединение «звезда». Заземляется нулевая точка или конец вторичной обмотки. При объединении в «звезду» заземляют фазный провод.

Применение

Для преобразования тока, который передается по электрическим сетям, применяют силовые трансформаторы. Такие устройства способны работать с большими мощностями. Они преобразуют напряжение на линиях с 35…750 кВ в напряжение 6 и 10 кВ и далее в 400 В. После этого электроэнергией могут пользоваться потребители на бытовом уровне.

Трансформаторы тока используют, чтобы снижать ток до требуемой величины. Их применяют в схемах бесконтактного управления, чтобы обезопасить людей и технику от поражения током.

Трансформаторы тока применяют также в измерительных и защитных устройствах, схемах сигнализации и в других приборах.

Особенность трансформатора тока в том, что его вторичная обмотка работает в режиме, близком к короткому замыканию. Если по какой-то причине происходит разрыв цепи на вторичной обмотке, то напряжение на ней повышается до значительных величин.

Скачек напряжения может вызвать поломку оборудования, включенного в сеть. Поэтому должно присутствовать защитное заземление.

Существуют также трансформаторы напряжения, импульсные трансформаторы, автотрансформаторы, сварочные и другие. Для каждого из них существуют своя схема и особенности подключения заземления. Чтобы правильно его выполнить, необходимо изучить техническую документацию к оборудованию.

Зачем заземлять

Заземление нейтрали трансформатора необходимо для создания стабильной работы электроустановки и безопасности людей, которые могут находиться на подстанции.

Рабочее заземление на трансформаторе является частью защитного. Это значит, что заземление, предназначенное для стабильной работы устройства, также защищает от поражения током.

Правила устройства электроустановок требуют, чтобы все силовые трансформаторы были заземлены.

В трансформаторах напряжения заземляется только трансформатор. Согласно правилам устройства электроустановок у трансформатора напряжения заземление вторичной обмотки происходит путем соединения общей точки или одного из концов обмотки с заземляющим проводником.

В трансформаторах тока заземляются вторичные обмотки. Для подключения проводников предусмотрены специальные зажимы. Обмотки нескольких установок можно соединять одним проводником и подключать к одной шине.

В электротехнике выделяют понятие сети с эффективно заземленной нейтралью. Оно применимо для силового трансформатора, у которого заземлено большинство нейтралей обмоток (глухое заземление нейтрали).

Если произойдет однофазное замыкание, то напряжение на поврежденных фазах не должно быть выше 1,4 напряжения на рабочих фазах в нормальных условиях.

Дугогасящие реакторы

В сетях, рассчитанных на 110 кВ и выше, предусмотрена защита с глухозаземленной нейтралью. Если сеть рассчитана на 35 кВ и ниже, то применяется заземление с изолированной нейтралью.

Преимущество изолированной нейтрали в том, что если произойдет замыкание фазы на земли, то это не приведет к короткому замыканию.

На трансформаторах с системой изолированной нейтрали устанавливают дугогасящие реакторы. Они компенсируют емкостные токи, возникающие при замыкании на землю.

Дело в том, что вдоль линии электропередачи накапливается электрический заряд (емкостное электричество). И как только происходит разрыв или иное повреждение изоляции, при контакте с землей возникает ток.

Если он достигает 30 А, образуется разрядная дуга. В результате кабель нагревается, начинает разрушаться изоляция и вместе с ней проводник.

Такое явление приводит к двухфазному и трехфазному замыканию. Срабатывает защита, и трансформатор полностью отключается. Обесточенными остаются сотни и тысячи потребителей электроэнергии.

Чтобы этого не произошло, устанавливают дугогасящие реакторы. Нейтраль заземляют через них. Во время однофазного замыкания на землю возрастает индуктивность дугогасящего реактора. Индуктивная проводимость компенсирует емкостную, и электрическая дуга не возникает.

Через дугогасящие реакторы заземляют нейтраль первичной обмотки одного из трансформаторов сети, в которой соединение обмоток происходит по типу «звезда-треугольник».

Если произошло замыкание на землю, то благодаря такой системе заземления, трансформатор сможет работать на протяжении еще 2-х часов, пока неполадки не будут устранены.

Создание внешнего контура

Чтобы сделать внешний контур заземления трансформатора, применяют вертикальные электроды, соединенные горизонтальными перемычками. Перемычки выполняют из листовой стали толщиной 4 мм и шириной 40 мм. Электроды втыкают в грунт по периметру трансформатора.

Проверяют удельное сопротивление грунта. Оно должно составлять максимум 100 Ом*м. Исходя из этого, требуется создать контур сопротивлением максимум 4 Ом.

Если взять круг диаметром 16 м, с условным трансформатором посередине, то для создания заземляющего контура потребуется минимум восемь электродов длиной по 5 м каждый.

Их размещают на расстоянии приблизительно 1 м от фундамента трансформаторной станции. Чем ближе стержни будут располагаться к стене, тем лучше. Горизонтальные полоски-соединения укладывают на ребро на глубину 0,5-0,7 м.

Такое требование к расположению связано с вопросами безопасности. Заземлитель не должен быть поврежден при проведении каких-либо ремонтных и строительных работ.

Защита от молний

Чтобы выполнить молниезащиты трансформаторной подстанции с металлической крышей, необходимо соединить крышу с внешним контуром заземления.

Соединение происходит в двух противоположных точках. То есть в одной точке кровля соединяется с внешним контуром, и со стороны, расположенной напротив, также происходит соединение кровли с контуром. Соединительным проводником становится проволока толщиной 8 мм.

Если кровля не металлическая, то на ней наверху создают специальный молниеприемник.

Создание внутреннего контура

Трансформаторная подстанция разделена на 3 помещения. Отдельно делают помещения для высокого и низкого напряжения – это помещения распределительных устройств (для входа и выхода). И отдельно предусмотрена трансформаторная камера, непосредственно для трансформатора.

В каждом отделении должна быть проложена заземляющая полоса. Ее прикрепляют к стенам на высоте 0,4…0,6 м, чтобы заземлить все части из металла, не предназначенные для проведения тока. Для крепления применяют дюбеля или специальные держатели круглых и плоских заземляющих проводников.

К заземляющей полосе подключают швеллер, предназначенный для установки трансформатора. Он размещен в стяжке пола. Подсоединяют и другие детали (шинный мост, металлические элементы барьера, крепежные детали, место присоединения переносного заземления). К системе заземления подключают все опорные конструкции из металла и стальные каркасы.

Для разборных соединений применяют болты, в остальных случаях элементы сваривают между собой. Для закрепления переносного заземления используют гайку с ушками «барашек».

Перемычки делают из гибкого медного провода ПВ3. Однако изоляционную оболочку с такого провода надо снять, чтобы можно было следить за целостностью жил.

Заделку в стены осуществляют посредством вставки гильз и заполнением свободного пространства негорючим материалом. Полосу окрашивают в желтый цвет с зелеными полосами. Такую окраску имеет защитный нулевой провод.

Нулевую шину подключают к заземляющему контуру. Корпус трансформатора соединяют с контуром перемычками.

При осмотре трансформатора на вход ставят оградительный барьер и навешивают табличку «Осторожно! Высокое напряжение!».

Что такое эффективно заземленная нейтраль и в чем ее преимущества

Что собой представляет эффективно заземленная нейтраль, какой у нее принцип работы и область применения. Плюсы и минусы электрических сетей с эффективно заземленной нейтралью.

Для передачи электроэнергии на большие расстояния применяют сети высокого напряжения. Безопасная эксплуатация обеспечивается средствами защиты, которая для каждого напряжения своя. В зависимости питающего напряжения применяют различные виды заземления нейтрали. Согласно правилу эксплуатации электроустановок, в сетях до 0,4 КВ применяется глухозаземленная нейтраль. В сетях 0,6-35 кВ для увеличения надежности используется схема с изолированной нейтралью. Для исключения перенапряжения неповрежденных фаз при коротком замыкании одной фазы на землю в линиях 110-1150 кВ применяется эффективно заземленная нейтраль (ЭЗН). Что это такое и в чем особенность данной схемы, мы расскажем читателям сайта Сам Электрик в пределах этой статьи.

Определение эффективно заземленной нейтрали

ЭЗН применяется в высоковольтных сетях 110 кВ и более. В случае замыкания фазы на землю, представляет собой однофазное КЗ.

Оно сопровождается значительными токами в месте повреждения, в результате чего срабатывает система защиты с отключением напряжения. Дадим определение, что это такое.

Эффективно заземленная нейтраль — это заземленная нейтраль в сетях трехфазного напряжения выше 1000 В, коэффициент замыкания на землю которой ≤ 1,4.

На ниже приведенном рисунке представлена схема ЭЗН:

Это значит, что при однофазном замыкании на землю, напряжение других, не поврежденных фаз, увеличится на величину, не превышающую значения 1,4.

И рассчитывается по нижеприведенной формуле:

Это имеет большое значение для высоковольтных сетей. Т.к. при такой схеме напряжение неповрежденных фаз не значительно превышает номинальное. А это значит, что нет необходимости увеличивать изоляцию сетей и оборудования.

Эксплуатация сетей с ЭЗН будет обходиться значительно дешевле. При этом следует учитывать, что экономия увеличивается по мере возрастания напряжения в линии.

Читать еще:  Заземление компьютера своими руками

Требования ПУЭ к сетям

Для сетей с эффективно изолированной нейтралью ПУЭ регламентирует максимальное сопротивление заземления, не превышающего 0,5 Ом. При этом учитывается естественное заземление. А сопротивление искусственных заземлителей не должно быть более 1 Ом.

Это справедливо для установок свыше 1000 В, режим токов КЗ на землю у которых равен или превышает значения 500 А. При этом следует учитывать, что ЭИН и глухозаземленная нейтраль имеют аналогичные схемы без существенных отличий. Такая схема показана на рисунке снизу.

Эффективно заземления нейтраль и глухозаземленная схема заземления позволяют предупредить дуговые перенапряжения. Однако, они относятся к системам с большими токами короткого замыкания на землю (больше или равно 500А).

Для уменьшения токов КЗ используют искусственное увеличение нулевой последовательности. Для этого на подстанции заземляется только часть нейтралей трансформаторов, или нейтрали заземляются через резистор.

В результате увеличивается напряжение на неповрежденных проводниках. К наиболее тяжелым авариям относят межфазное короткое замыкание. При этом, напряжение и токи короткого замыкания будут меньше, чем при однофазном КЗ.

Поэтому расчеты выполняются на основании больших значений, т.е. однофазного короткого замыкания.

Как выглядит однофазное КЗ на рисунке снизу:

Эффективно заземленная нейтраль предназначена для высоковольтных сетей 110 кВ и более. Но допускается использовать такую схему и для напряжения менее 1 000 В. Ее применяют там, где отсутствуют и не предвидится монтаж электроустановок, в которых может возникнуть пожар или устройства, которые могут выйти из строя или взорваться.

Другими словами, ЭЗН применяется в сетях с напряжением менее 1000 В, при условии отсутствия взрыво- и пожароопасных приборов.

Эффективно используются в городских электрических сетях. Особенность работы таких линий заключается в том, что при коэффициенте замыкания на землю менее единицы, можно применить кабель, рассчитанный на напряжение 6 кВ в сетях с напряжением 10 кВ.

Это позволяет передавать большую мощность с коэффициентом 1,73. При этом замена кабеля и коммутационной аппаратуры не требуется.

Достоинства и недостатки

Эффективно заземленная нейтраль применяется в сетях 110 кВ и выше. Она обладает рядом преимуществ.

Главным назначением таких схем являются:

  • В схемах с ЭЗН происходит стабилизация потенциала нейтрали и исключение вероятности возникновения устойчивых заземляющих дуг и последствий возникающих вследствие КЗ.
  • При КЗ на землю и переходных процессах, на изоляцию не воздействуют большие напряжения. Что дает возможность применить изоляцию с меньшим запасом прочности. А это в свою очередь дает значительный экономический эффект от применения менее дорогостоящей изоляции, что снижает эксплуатационные затраты сетей.
  • Применение быстродействующей селективной автоматики. Мгновенная работа защиты не позволяет усугубить возникшую неисправность.

Кроме очевидных достоинств, сети имеют и недостатки.

К ним относятся:

  • При любом КЗ на землю происходит обесточивание неисправного участка. При этом релейные системы защиты оборудуются средствами автоматического повторного включения. При отключении напряжения средствами автоматики, происходит нарушение бесперебойной подачи напряжения, что негативно сказывается на потребителях. А в некоторых случаях, ответственные потребители, вынуждены устанавливать устройства подачи бесперебойного напряжения.
  • В момент короткого замыкания возникает повышенный электромагнитный импульс. Он отрицательно влияет на средства связи. Их приходится дополнительно экранировать.
  • Применение сложных быстродействующих средств защиты.
  • Выход генератора из синхронизма при значительных токах короткого замыкания. Т.е. в момент КЗ происходит «притормаживание» генератора.
  • Значительные токи короткого замыкания могу вызвать повреждение кабеля с повреждением изоляции, механическое разрушение изоляторов на ЛЭП, повреждение железа статора генератора в случае пробоя изоляции на землю и т.п.
  • Возникает опасность поражения людей электрическим током вследствие повышенного и шагового напряжения при коротком замыкании на землю.
  • Изготовление заземляющих устройств. Отсутствие дублирующего заземления может оставить оборудование без защиты, если произойдет обрыв нейтрального провода.

Заключение

Принцип работы сетей с эффективно заземленной нейтралью можно кратко описать так. Основная часть замыканий на землю сопровождающаяся большими токами КЗ, самоустраняется после отключения напряжения. После автоматического повторного включения напряжения в ЛЭП, режим работы линии восстанавливается.

Заземление только части трансформаторов позволяет уменьшить токи КЗ. Так, если на подстанции смонтированы два трансформатора, то к заземляющему устройству подключают только один.

Чем называют эффективно заземленную нейтраль?

Высоковольтные линии электропередач предназначены для передачи энергии на большие расстояния. Для обеспечения безопасной работы энергосистемы используются средства защиты. Для чего применяются различные виды заземления нейтрали. Схема подключения заземлителя зависит от питающего напряжения:

Для исключения перенапряжения неповрежденных фаз при возникновении однофазного замыкания на землю.

В электросетях с напряжением 110 КВ и выше выполняется система с эффективно заземленной нейтралью. Она представляет собой разновидность сети с глухозаземленной нейтралью. И предназначена для уменьшения коммутационного перенапряжения сети. Что уменьшает требования к изоляции. А это существенно снижает стоимость электросетей.

Позволяет применить быстродействующую защиту от коротких замыканий на землю. Что, в свою очередь, уменьшает вероятность сложных трехфазных замыканий, но в тоже время при замыкании на землю возникают большие токи.

Эффективно заземленная нейтраль

Что же такое эффективно заземленная нейтраль – это трехфазная сеть с коэффициентом замыкания на землю, который эквивалентен значению меньше или равному 1,4 в системах с питающим напряжением свыше 1000 В. И рассчитывается по формуле:

Эффективное заземление нейтрали применяется в сетях напряжением 110 КВ и выше. Применение такой схемы обусловлено стоимостью изоляции.

При использовании такой электросхемы во время замыкания одной фазы на землю, потенциал на остальных не превышает значения равного межфазному напряжению, умноженному на коэффициент 0,8. Что позволяет производить расчет изоляции на это значение. В отличие от сетей с изолированной или компенсированной нейтралью, где расчет производится на полное межфазное напряжение.

Требования к сетям, согласно нормативу

Правилами эксплуатации электроустановок потребителями предъявляются требования к заземляющему устройству, сопротивление которого не должно превышать 0,5 Ом в схеме, где применена эффективно заземленная нейтраль. При этом должно учитываться значение искусственного заземляющего устройства, сопротивление которого не должно превышать значения 1 Ом. Что справедливо для сетей с потенциалом выше 1000 В и током короткого замыкания на землю более 500 А.

Эти требования к заземляющему устройству предъявляются при возникновении КЗ фазы на землю, что является однофазным замыканием в схеме, где присутствует заземленная нейтраль, чтобы немедленно и эффективно произошло отключение.

К сложным аварийным ситуациям относятся замыкания двух или трех фаз на землю. Однако, в этом случае напряжение на неповрежденных фазах и токи замыкания будут существенно ниже, чем при однофазном.

Поэтому при расчетах принимают большие значения, а напряжение и токи двух и трехфазных замыканий не используются.

Такое подключение эффективно при аварии и служит для понижения потенциала между не отказавшей фазой и землей в сетях, где применяется заземленная нейтраль, что позволяет не допустить превышение шагового напряжения. А также не ограничивает вынос потенциала за пределы подстанции и уменьшает риск поражения электрическим током обслуживающего персонала.

Большая часть замыканий после снятия напряжения исчезает, а автоматика (АПВ) включает подачу электропитания в ЛЭП. Для уменьшения токов в аварийной ситуации заземляют не все трансформаторы, а только часть. Так, при смонтированных на подстанции двух силовых трансформаторов подключают только один. Такая система называется электросетью с эффективно заземленной нейтралью.

Преимущества и недостатки системы

Главным достоинством таких систем можно отметить ограничение потенциала в системах напряжением 110 КВ и более в неповрежденных линиях при возникновении аварийной ситуации, что оказывает существенное значение для материалов изоляции. А также применение относительно несложных устройств релейной защиты от однофазных коротких замыканий на землю.

Недостатками подобных электросетей, касательно к сетям с изолированной нейтралью, можно отнести высокие токи КЗ, что требует моментального отключения напряжения. Если этого не произойдет, то возникает опасность серьезного повреждения линии, а также возрастает вероятность поражения электрическим током обслуживающего персонала.

И велико возникновение пожара и даже взрыва. Высокие токи КЗ предъявляют особые требования к устройствам защиты, она должна срабатывать мгновенно, а это усложняет приборы защиты.

Использование в сетях ниже тысячи вольт

Эффективно заземленная нейтраль применяется в основном в сетях с напряжением в 110 В. и более. Однако, допустимо применять в сетях ниже тысячи вольт, где нет, и не предвидится применение приборов, у которых имеется опасность возникновения пожара. Или отсутствуют устройства, у которых может повредиться электрооборудование или возникнуть взрыв.

В последнее время такие электросхемы получили распространение в городских электросетях. Что имеет смысл при коэффициенте тока короткого замыкания на землю меньше единицы. Это дает возможность использовать кабель, рассчитанный на напряжение 6 КВ использовать в сети 10 КВ. Что позволяет увеличить передаваемую мощность на величину 1,73 без замены кабеля и коммутационной аппаратуры.

Нейтраль трансформатора

Нейтраль трансформатора точка соединения фазных обмоток при схеме подключения «звезда». Разность потенциалов в этой точке равна нулю. Разность потенциалов между концами фаз и нейтралью соответствует линейному напряжению между фазами.

При замыкании на землю изменяется симметрия электрической системы; изменяется значение напряжения между землей и фазами; образуются токи замыкания на землю, возникает перенапряжение в сети. Степень искажения симметрии зависит от выбранного режима присоединения нейтрали.

Выбранный режим должен обеспечивать безопасность обслуживающего персонала, экономичность электроустановки, бесперебойность электроснабжения потребителей и надежность работы.

Нейтрали трансформаторов электрических установок заземляются непосредственно, либо через активные или индуктивные сопротивления, либо изолируются от земли.

  • Глухозаземленная нейтраль присоединяется к заземляющему устройству непосредственно.
  • Изолированная нейтраль не соединена с заземлением.
  • Резонанснозаземленная (компенсированная) нейтраль соединяется через индуктивное сопротивление (реактор) компенсирующее ёмкостный ток сети.
  • Резистивнозаземленная нейтраль заземляется через активное сопротивление (резистор).
  • Сетью с эффективнозаземленной нейтралью считается сеть напряжением свыше 1 кВ, коэффициент замыкания на землю которого не более 1,4.

Заземляющее устройство, к которому присоединяется нейтраль трансформатора или генератора должно иметь сопротивление не выше 4 Ом для электроустановок с напряжением 380/220В.

Читать еще:  Замер сопротивления заземления мультиметром

В отличие от защитного заземления, заземление нейтрали трансформатора или генератора называется рабочим заземлением.

Для выбора метода заземления нейтрали не утверждены стандарты. При проектировании электрических систем, энергетических установок и линий необходимо руководствоваться практикой эксплуатации существующих установок, директивными рекомендациями по предотвращению перенапряжений и параметрами электрооборудования.

Системы заземления TN-S, TN-C, TNC-S, TT, IT

При проектировании, монтаже и эксплуатации электроустановок, промышленного и бытового электрооборудования, а также электрических сетей освещения, одним из основополагающих факторов обеспечения их функциональности и электробезопасности является точно спроектированное и правильно выполненное заземление. Основные требования к системам заземления содержатся в пункте 1.7 Правил устройства электроустановок (ПУЭ). В зависимости от того, каким образом, и с каким заземляющими конструкциями, устройствами или предметами соединены соответствующие провода, приборы, корпуса устройств, оборудование или определенные точки сети, различают естественное и искусственное заземление.

Естественными заземлителями являются любые металлические предметы, постоянно находящиеся в земле: сваи, трубы, арматура и другие токопроводящие изделия. Однако, ввиду того, что электрическое сопротивление растеканию в земле электротока и электрических зарядов от таких предметов плохо поддается контролю и прогнозированию, использовать естественное заземление при эксплуатации электрооборудования запрещается. В нормативной документации предусмотрено использование только искусственного заземления, при котором все подключения производятся к специально созданным для этого заземляющим устройствам.

Основным нормируемым показателем, характеризующим, насколько качественно выполнено заземление, является его сопротивление. Здесь контролируется противодействие растеканию тока, поступающего в землю через данное устройство — заземлитель. Величина сопротивления заземления зависит от типа и состояния грунта, а также особенностей конструкции и материалов, из которых изготовлено заземляющее устройство. Определяющим фактором, влияющих на величину сопротивления заземлителя, является площадь непосредственного контакта с землей составляющих его пластин, штырей, труб и других электродов.

Виды систем искусственного заземления

Основным документом, регламентирующим использование различных систем заземления в России, является ПУЭ (пункт 1.7), разработанный в соответствии с принципами, классификацией и способами устройства заземляющих систем, утвержденных специальным протоколом Международной электротехнической комиссии (МЭК). Сокращенные названия систем заземления принято обозначать сочетанием первых букв французских слов: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также английских: «combined» и «separated» — комбинированный и раздельный.

  • T — заземление.
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение функционального и защитного нулевых проводов.
  • S — раздельное использование во всей сети функционального и защитного нулевых проводов.

В приведенных ниже названиях систем искусственного заземления по первой букве можно судить о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя. Принято различать TN, TT и IT системы заземления. Первая из которых, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Для понимания различий и способов устройства перечисленных систем заземления следует рассмотреть каждую из них более детально.

1. Системы с глухозаземлённой нейтралью (системы заземления TN)

Это обозначение систем, в которых для подключения нулевых функциональных и защитных проводников используется общая глухозаземленная нейтраль генератора или понижающего трансформатора. При этом все корпусные электропроводящие детали и экраны потребителей следует подключить к общему нулевому проводнику, соединенному с данной нейтралью. В соответствии с ГОСТ Р50571.2-94 нулевые проводники различного типа также обозначают латинскими буквами:

  • N — функциональный «ноль»;
  • PE — защитный «ноль»;
  • PEN — совмещение функционального и защитного нулевых проводников.

Построенная с использованием глухозаземленной нейтрали, система заземления TN характеризуется подключением функционального «ноля» — проводника N (нейтрали) к контуру заземления, оборудованному рядом с трансформаторной подстанцией. Очевидно, что в данной системе заземление нейтрали посредством специального компенсаторного устройства — дугогасящего реактора не используется. На практике применяются три подвида системы TN: TN-C, TN-S, TN-C-S, которые отличаются друг от друга различными способами подключения нулевых проводников «N» и «PE».

Система заземления TN-C

Система заземления TN-C

Как следует из буквенного обозначения, для системы TN-C характерно объединение функционального и защитного нулевых проводников. Классической TN-C системой является традиционная четырехпроводная схема электроснабжения с тремя фазными и одним нулевым проводом. Основная шина заземления в данном случае – глухозаземленная нейтраль, с которой дополнительными нулевыми проводами необходимо соединить все открытые детали, корпуса и металлические части приборов, способные проводить электрический ток..

Данная система имеет несколько существенных недостатков, главный из которых – утеря защитных функций в случае обрыва или отгорания нулевого провода. При этом на неизолированных поверхностях корпусов приборов и оборудования появится опасное для жизни напряжение. Так как отдельный защитный заземляющий проводник PE в данной системе не используется, все подключенные розетки земли не имеют. Поэтому используемое электрооборудование приходится занулять – соединять корпусные детали с нулевым проводом. .

Если при таком подключении фазный провод коснется корпуса, из-за короткого замыкания сработает автоматический предохранитель, и опасность поражения электрическим током людей или возгорания искрящего оборудования будет устранена быстрым аварийным отключением. Важным ограничением при вынужденном занулении бытовых приборов, о чем следует знать всем проживающим в помещениях, запитанных по системе TN-C, является запрет использования дополнительных контуров уравнивания потенциалов в ванных комнатах.

В настоящее время данная система заземления сохранилась в домах, относящихся к старому жилому фонду, а также применяется в сетях уличного освещения, где степень риска минимальна.

Система TN-S

Система заземления TN-S

Более прогрессивная и безопасная по сравнению с TN-C система с разделенными рабочим и защитным нолями TN-S была разработана и внедрена в 30-е годы прошлого века. При высоком уровне электробезопасности людей и оборудования это решение имеет один, но достаточно очень существенный недостаток — высокую стоимость. Так как разделение рабочего (N) и защитного (PE) ноля реализовано сразу на подстанции, подача трехфазного напряжения производится по пяти проводам, однофазного — по трем. Для подключения обоих нулевых проводников на стороне источника используется глухозаземленная нейтраль генератора или трансформатора.

В ГОСТ Р50571 и обновленной редакции ПУЭ содержится предписание об устройстве на всем ответственных объектах, а также строящихся и капитально ремонтируемых зданиях энергоснабжения на основе системы TN-S, обеспечивающей высокий уровень электробезопасности. К сожалению, широкому распространению и внедрению системы TN-S препятствует высокий уровень затрат и ориентированность российской энергетики на четырехпроводные схемы трехфазного электроснабжения.

Система TN-C-S

Система заземления TN-C-S

С целью удешевления оптимальной по безопасности, но финансово емкой системы TN-S с разделенными нулевыми проводниками N и PE, было создано решение, позволяющее использовать ее преимущества с меньшим бюджетом, незначительно превышающим расходы на энергоснабжение по системе TN-C. Суть данного способа подключения состоит в том, что с подстанции осуществляется подача электричества с использованием комбинированного нуля «PEN», подключенного к глухозаземленной нейтрали. Который при входе в здание разветвляется на «PE» — ноль защитный, и еще один проводник, исполняющий на стороне потребителя функцию рабочего ноля «N».

Данная система имеет существенный недостаток — в случае повреждения или отгорания провода PEN на участке подстанция — здание, на проводнике PE, а, следовательно, и всех связанных с ним корпусных деталях электроприборов, появится опасное напряжение. Поэтому при использовании системы TN-C-S, которая достаточно распространена, нормативные документы требуют обеспечения специальных мер защиты проводника PEN от повреждения.

Система заземления TT

Система заземления TT

При подаче электроэнергии по традиционной для сельской и загородной местности воздушной линии, в случае использования здесь небезопасной системы TN-C-S трудно обеспечить надлежащую защиту проводника комбинированной земли PEN. Здесь все чаще используется система TT, которая предполагает «глухое» заземление нейтрали источника, и передачу трехфазного напряжения по четырем проводам. Четвертый является функциональным нолем «N». На стороне потребителя выполняется местный, как правило, модульно-штыревой заземлитель, к которому подключаются все проводники защитной земли PE, связанные с корпусными деталями.

Совсем недавно разрешенная к использованию на территории РФ, данная система быстро распространилась в российской глубинке для энергоснабжения частных домовладений. В городской местности TT часто используется при электрификации точек временной торговли и оказания услуг. При таком способе устройства заземления обязательным условием является наличие приборов защитного отключения, а также осуществление технических мер грозозащиты.

2. Системы с изолированной нейтралью

Во всех описанных выше системах нейтраль связана с землей, что делает их достаточно надежными, но не лишенными ряда существенных недостатков. Намного более совершенными и безопасными являются системы, в которых используется абсолютно не связанная с землей изолированная нейтраль, либо заземленная при помощи специальных приборов и устройств с большим сопротивлением. Например, как в системе IT. Такие способы подключения часто используются в медицинских учреждениях для электропитания оборудования жизнеобеспечения, на предприятиях нефтепереработки и энергетики, научных лабораториях с особо чувствительными приборами, и других ответственных объектах.

Система IT

Система заземления IT

Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.

Надежное заземление — гарантия безопасности

Все существующие системы устройства заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, подключенных на стороне потребителя, а также исключения случаев поражения электрическим током людей, использующих это оборудование. При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами которых является как функциональное, так и защитное заземление, должна быть уменьшена до минимума возможность появления на токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей.

Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием. В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное — жизнь человека.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector