Astro-nn.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Виды заземления и их назначения

Виды заземления. Повторное заземление

Назначение заземления

Сначала определимся с определением заземления. Заземление нужно понимать как специальное электрическое соединение некоторых элементов сети, металлических корпусов различных электроприборов или электроустановок с конструкцией заземления.

Заземление нейтрали и защитное заземление

Устройство заземления нужно рассматривать как некоторую конструкцию специальных заземлителей с заземляющими проводниками, которые представляют собой электрическую связь электроустановки с грунтом.

То есть, эта конструкция заземляющих устройств предназначена для поглощения землей опасного для жизни напряжения, появившегося на металлическом корпусе электроустановки при пробое изоляции сетевых проводов. Заземлители обеспечивают надежный контакт с грунтом, и через проводники связаны с металлическими частями электрических установок.

Для оценки надежности и качества ЗУ существуют определенные значения сопротивления заземления с грунтом. Чем меньше величина сопротивления заземления, тем качественнее электрическое соединение между заземлителем и грунтом. Для идеального варианта сопротивление равно нулю, но такого не может быть из-за наличия удельного электрического сопротивления грунта.

Варианты контура заземления для частного дома

Поэтому для различных типов электросетей определены нормированные сопротивления заземления. Сопротивление заземление нейтрали у трансформатора подстанции по нормативу 4 Ома. Величина сопротивления заземления молниезащиты в однофазных сетях 220 В, также в 3-х фазной электросети 380 В составляет 10 Ом. По правилам ПЭУ 1.7. 103 для систем электропитания TN-C-S частных домов и электросети 220/380 В значение сопротивления заземления не превышает 30 Ом.

Виды заземления и их задачи

Существует два типа заземления электроустановок – это рабочее и защитное. Эти виды заземления имеют свою функциональность. Так рабочее заземление обеспечивает нормальные условия работы электроустановок. Рабочее заземление предназначено для заземления отдельных частей установки, необходимое для эффективной работы. Т. е. здесь не говорится о защитных свойствах заземления.

Как пример, является заземление трансформаторов подстанций, генераторов тока с целью создания рабочего режима и повышения устойчивости и надежности энергосистем. А ответственной задачей защитного заземления будет защита от поражения током во время аварии. Таким образом, защитное заземление предотвращает появление опасного напряжения на тех металлических конструкциях, где его не ждут, но оно может появиться.

Рабочее и защитное заземление в разных системах энергоснабжения

Опасное напряжение может появиться на любых металлических конструкциях, трубах, ограждениях, корпусах. Появится опасное напряжение также может в результате пробоя изоляции проводов, утечки тока через изоляцию, электростатических разрядов, молнии. Работа защитного заземления заключается в отводе опасного напряжения с металлических конструкций на землю и создании тока утечки с заземленных участков, для срабатывания УЗО и отключения электросети.

Важным элементом заземления является сам заземлитель, который имеет прямое соприкосновение с землей. Особенно важным параметром заземлителя считается сопротивление заземления, которое уменьшается с увеличением площади заземлителя. Чтобы увеличить площадь заземлителя устанавливают их несколько, увеличивают их длину, меняют конфигурацию. Со стороны грунта – насыщают солями или вовсе засыпают другой грунт или устанавливают заземление в местах с близкими грунтовыми водами.

Заземлению не подлежат трубы централизованного отопления, водопровод, канализация, трубопровод горючих жидкостей и газопроводы.

В качестве заземлителей можно приспособить естественные заземлители – это конструкции установленные в земле которые соответствуют предъявляемым требованиям. К естественным заземлителям можно отнести арматуру фундаментов, бетонных плит, обсадные трубы.

Повторное заземление

Такое заземление снижает величину опасного напряжения при пробое фазного проводника электроустановки, по отношению к земле в обычном рабочем режиме и в случае обрыва нулевого проводника. Можно сказать что повторное заземление – это заземление которое выполняется не в одном месте, а одновременно в нескольких местах на протяжении всей длины нулевого проводника.

Повторное заземление

Повторное заземление должно выбираться так, чтобы при аварии и к. з. на корпус, отключался ближайший автомат. Контур заземления старых домов уже не соответствует современным требованиям, поэтому необходимо делать повторное заземление. Провод заземления, при повторном заземлении должен быть непрерывным относительно каждого источника напряжения и присоединяется с варкой, а к корпусу приборов возможно соединение болтом.

Создание защитного заземления

Защитное заземление — это специальное электрическое соединение с контактом «земля» различных электроприборов, металлические элементы которых не находятся под напряжением, но могут проводить опасные токи при неправильной работе.

Основное назначение защитного заземления — повышение безопасности и исключение возможности поражения человека электрическим током (ПУЭ 1.7.29).


При правильно сделанном соединении, в ситуации с нарушением изоляции и появлении тока утечки, срабатывает УЗО, тем самым защищая человека, от поражения током при прикосновении к металлическим частям какой-либо техники (стиральные машины, электрические плиты и так далее).

Функции и отличия

Заземление имеет большой ряд назначений, а основной принцип действия защитного заземления — отвод электрического тока в землю от металлических поверхностей электрических приборов. Рассмотрим, для каких же целей применяется защитное заземление и в чем отличия от обычного заземления ?

Основная функция обычного, так называемого рабочего заземления — защита электроприборов от неустойчивой работы и сбоев, а также предупреждение внештатных ситуаций, таких как короткое замыкание.

Основная функция ЗАЩИТНОГО ЗАЗЕМЛЕНИЯ — защита человека при возникновении аварийной ситуации, когда велика вероятность поражения электрическим током при соприкосновении с металлическими частями электроприборов.

Кроме того такой вид соединения:

  • соответствует регламенту ПУЭ (правила устройства электроустановок);
  • снижает помехи при работе электрической техники;
  • является отличной молниезащитой здания.

В современном доме/квартире просто необходимо проводить работы по прокладке заземляющего кабеля и его подключению к общему «контуру земли». Обусловлено это тем, что современные бытовые приборы обладают серьезными мощностными показателями, они способны потреблять большое количество энергии, а их корпусные детали, как правило, выполнены из металлов, которые, как известно, хорошо проводят электрический ток. Отсутствие заземляющей цепи грозит серьезными последствиями, в особенности при установке в помещении такой техники как:

  • стиральные машины;
  • холодильники;
  • электрические плитки;
  • водонагреватели и котлы;
  • микроволновые печи.

Прямое подключение через такую цепь позволяет избежать появления высокого напряжения на поверхностях этих электроприборов и снизить количество помех, возникающих при эксплуатации этой техники.

Заземляющая цепь в квартирах и частных домах

Далеко не все знают, что при работе той же микроволновой печи без подключения к «земле» возникает большое количество помех, вредно влияющих на организм человека. А в случае установки стиральной машины подобные «контуры» безопасности остро необходимы, так как при поломке агрегата и появлении протечек риск поражения человека электрическим током возрастает в разы!

Поэтому у большинства приборов такого класса часто имеется отметка на корпусе или же в инструкции о необходимости подключения к заземляющей цепи, зачастую без указания типа заземления. Лучше лишний раз перестраховаться и подключать такую технику через отдельную клемму на корпусе, в особенности если не указан метод проведения заземления.

Современная бытовая техника заведомо рассчитана на эксплуатацию с розетками имеющими «выход на землю», но далеко не всегда эти розетки, установленные в домах подключены к этому выходу. Особенно это касается старых зданий, без модернизированной электропроводки. Обусловлено это тем, что во времена строительства зданий (до 1998 года) были совершенно иные ГОСТы, регламенты и правила проведения электрических цепей, а у населения отсутствовала мощная электрическая техника, требующая отдельного заземления.

Однако позже ситуация изменилась и заземляющие проводники появились в распределительных общедомовых щитках. В частных же домах ситуация обстоит несколько иначе, заземляющая цепь может быть установлена, а может отсутствовать вовсе, все зависит от того, позаботился ли владелец или строительная компания об установке электропроводки соответствующей всем необходимым нормам или нет.

Виды заземлений

Электропроводка и заземление в зданиях может быть нескольких типов:

  • типа TN-C (глухо заземленная нейтраль), подача напряжения через два провода — один из которых нейтральный, а второй находится под напряжением, ЗАЗЕМЛЕНИЕ ОТСУТСТВУЕТ, необходима его прокладка (возможна только в частном доме);
  • типа TN-S (используется трехжильный кабель) — ЗАЗЕМЛЕНИЕ ПРИСУТСТВУЕТ, возможна необходимость разводки проводки с заземлением в помещении;
  • типа TN-C-S (используется пятижильный кабель — 3 провода фаза, 4 провод — нулевой, 5 провод — защитное заземление, подключение к отдельной шине в щитке), ЗАЗЕМЛЕНИЕ ПРИСУТСТВУЕТ, возможна необходимость разводки проводки с заземлением в помещении.

Основными отличиями систем типа TN-C от систем TN-S (TN-C-S) является наличие отдельного заземляющего провода в системе TN-S (TN-C-S), у архаичных же систем TN-C отдельного заземления нет, оно выполнено вместе с нулем.

Отсутствует заземление, что делать

В случае, если дом старый, а электропроводка не модернизирована, то в электрической схеме такого здания отсутствует канал заземления. В такой ситуации нет возможности создания защиты металлических поверхностей приборов от электрического тока. Однако в данном случае все таки присутствует метод защиты электрических цепей при аварийных ситуациях, таких как короткое замыкание, он называется ЗАНУЛЕНИЕ.

В чем отличия? Если при защитном заземлении происходит защита металлических поверхностей и отвод тока в землю через общую шину, то при занулении канал «земля» какого-либо прибора или розетки осуществляется соединение этого канала с нулем (нулевым проводником электропроводки).

Основное отличие заключается в том, что в схеме с занулением при возникновении аварийной ситуации происходит отключение прибора, поверхности которого оказались под напряжением из-за «пробоя» изоляции, от электросети. Так, зануление не защищает полностью от поражения электрическим током, но минимизирует воздействие на человека за счет моментального отключения электричества.

Если в условиях многоквартирного дома отсутствует возможность установки заземления из-за использования проводки типа TN-C, то стоит использовать метод зануления. Если же присутствует возможность прокладки новой современной проводки, например, в частном доме, то необходимо проводить работы по созданию защитного контура заземления.

Заземляем сами

При прокладке заземляющего контура защиты в первую очередь необходимо выбрать тип схемы, по которой будут вестись работы. Опытные мастера рекомендуют выбирать схему типа TN-C-S. Её основное преимущество заключается в том, что оборудование имеет непосредственный контакт с землей. Контакт нейтрали и земли ведется одним проводником, а на входе в щиток разделяются на 2 отдельных. Данная схема обеспечивает надежную защиту, поэтому устанавливать УЗО нет необходимости, достаточно лишь простых автоматов. Однако согласно ПУЭ обязательно выполнить требования по механической защите общего контакта нейтрали и земли (PEN), а также создать дополнительное резервное заземление на опорах на расстоянии 200 м или 100 м.

Читать еще:  Свойства сетей с глухо заземленной нейтралью и с эффективно заземленной нейтралью

Создать контур защитного заземления достаточно просто, если руководствоваться правилами перечисленными ниже. В первую очередь для создания контура необходимо выбрать схему защитного заземления, их существует несколько видов, самые надежные и удачные:

  • замкнутая (выполняется, как правило, по форме треугольника);
  • линейная.

В замкнутой схеме все заземляющие проводники вкопаны в землю, находятся на одной глубине и соединены между собой металлической перемычкой. Основное преимущество — работоспособность в случае разрыва (от коррозии или других воздействий) металлической перемычки.

В линейной же схеме проводники выстроены в одну линию и соединены перемычкой последовательно друг с другом. Данная схема чуть более проста в создании, но имеет недостаток — при повреждении перемычки из строя выходит вся система.

Создание контура заземления

Итак, для создания контура заземления нам понадобятся следующие инструменты и материалы:

  • Лопата.
  • Сварочный аппарат (обязателен).
  • Пила по металлу или болгарка.
  • Кувалда.
  • Пассатижи, гаечные ключи.
  • Металлический уголок/швеллер/П-образный профиль из нержавеющий стали длиной от двух метров (с площадью поперечного сечения ДО 150 мм²).
  • Металлические полоски длиной от 110 см, шириной 4 см, толщиной 4–5 мм.
  • Металлическая полоса необходимой длины (от места залегания до места контакта с домом), ширина 4 см, толщина 4–5 мм.
  • Крупные болты, гайки и шайбы (М8-М10).
  • Провод из меди с толщиной не менее 6 мм².

После того как все необходимое имеется в наличии можно приступать к монтажу защитного заземления. В первую очередь следует выбрать место, лучше всего выбрать такой участок земли, где редко находятся люди или животное, так как во время отвода электричества в почву может произойти поражение электрическим током. Лучше всего выбрать место на границе участка, на максимальном удалении от зоны постоянного посещения.

После чего необходимо выкопать узкую траншею глубиной 60–70 см от места контакта с домом до места отвода электричества. В месте отвода электричества необходимо выкопать соответствующую фигуру (в зависимости от выбранной схеме) со сторонами

1.2 м между проводниками.

Затем в каждом углу фигуры (у нас это треугольник) — вкапываются металлические уголки в землю на глубину 2 м и больше. К торчащим концам вкопанных проводников привариваются заготовленные заранее металлические пластины, к одному концу которой приваривается полоса-проводник, идущая непосредственно к месту контакта заземления с домом.

В месте контакта заземления к этой пластине монтируется провод из меди, который уже выходит из под земли и выводится в электрощиток.

После выполнения этих работ траншеи обратно закапываются. На данном этапе работы по защитному заземлению можно считать законченными.

Видео по теме

Системы заземления, различие и применение

Область применения и различие систем заземления:

Вначале расшифруем буквенные обозначения различных систем заземления TN, IT, TT и S (N), C (PE):

Первая буква:
T — Глухозаземленная нейтраль.
I — Изолированная нейтраль .

Вторая буква:
T — Непосредственное присоединение открытых токопроводящих частей к земле (защитное заземление).
N — Непосредственное присоединение открытых токопроводящих частей к глухозаземленной нейтрали источника питания (защитное зануление).

Последующие буквы:

Рис. 1 Система TN (TN-C)

Система TNC переменного тока:

система TN-С — система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении (см. рис. 1).

Рис. 2 Система IТ

Система IT переменного тока. Открытые проводящие части электроустановки заземлены. Нейтраль источника питания изолирована от земли или заземлена через большое сопротивление (см. рис. 2).

1 — сопротивление заземления нейтрали источника питания (если имеется);
2 — заземлитель;
3 — открытые проводящие части;
4 — заземляющее устройство электроустановки.

Система ТТ — переменного тока. Открытые проводящие части электроустановки заземлены при помощи заземления, электрически независимого от заземлителя нейтрали, где (а) N и PE проводники соединены, (б) N и PE проводники разъединены (см. рис. 3):

Рис. 3 Система ТТ

1 — заземлитель нейтрали источника переменного тока;
2 — открытые проводящие части;
3 — заземлитель открытых проводящих частей электроустановки.

Рис. 4 Система TN — S

Система TN—S переменного тока. Нулевой защитный и нулевой рабочий проводники разделены см. рис. 4:


1
— заземлитель нейтрали источника переменного тока;

2 — открытые проводящие части.

Система TN-C-S переменного тока. Нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике в части системы см. рис. 5:

Рис. 5 Система TN — C — S

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Заземление: виды, схемы

Заземление – соединение проводящих элементов промышленного или бытового оборудования с грунтом или общим проводом электрической системы, относительно которого производят измерения электрического потенциала. Игнорирование этого мероприятия или его неправильное осуществление становятся причиной длительных простоев и выхода из строя дорогостоящего оборудования, высокой погрешности измерений, замедления функционирования различных систем, несчастных случаев.

Cхема заземления определяется функциональным назначением.

Содержание статьи

  • Виды заземления
  • Типичные ошибки при заземлении
  • Обозначения заземления на схеме

Виды заземления

Защитное

Требуется для защиты человека от удара электрическим током. Для этого проводящие элементы оборудования соединяют с грунтом заземляющим устройством в состав которого входят: проводник, который соприкасается с землей (заземлитель), и заземляющие проводники. Цепь заземления может быть устроена с помощью естественных или искусственных заземлителей. К естественным относятся стальные и ж/б каркасы промышленных строений, ж/б фундаменты, стальные стационарно уложенные трубопроводы, алюминиевые кабельные оболочки. Искусственные заземлители изготавливают из труб, уголков, прута.

Сигнальное

Реализуется соединением с землей общего провода цепей трансляции сигнала. Системы промышленной автоматизации относятся к аналогово-цифровым. Погрешности аналоговой части провоцируются цифровой частью. Поэтому цифровое и аналоговое заземление реализуется с использованием несвязанных между собой проводников, которые соединяются только в одной точке. В зависимости от функционального назначения, сигнальная земля может быть базовой, служащей для трансляции сигнала в электронной цепи, и экранной, применяемой для заземления экрана.

Блок питания заземления

Типичные ошибки при заземлении

  • Заземление на внутренний трубопровод отопления или другого назначения. Это наиболее простой способ получения контакта с землей. Его недостаток – высокая вероятность несчастного случая, если человек прикоснется к трубе или струе воды.
  • Заземление на ноль. Производится сведением заземлителя и нулевой фазы в один провод. Такая схема неплохо работает. Однако она опасна, поскольку существует вероятность смены фазы и ноля. Минимальный ущерб при этом – выход из строя электрооборудования, худший вариант – травмирование или смерть пользователя.
  • Подсоединение к существующим системам заземления молниеотвода или газовой линии. При срабатывании молниеотвода все защищаемое электрооборудование сгорит. Второй способ чреват штрафами от газовой службы, вероятностью поражения током на кухне или взрывом газа.

Обозначения заземления на схеме

Условные обозначения заземляющих систем могут содержать следующие символы:

  • Первая буква характеризует состояние нейтрали относительно земли. T – заземленная нейтраль, I – изолированная.
  • Вторая буква соответствует состоянию открытых проводящих элементов относительно земли. T – открытые токопроводящие части заземляют, независимо от состояния нейтрали по отношению к земле. N – открытые части, находящиеся под напряжением, присоединяют к глухозаземленной нейтрали источника питания.

После буквы N могут следовать обозначения:

  • S – нулевые защитный и рабочий проводники разделены;
  • C – нулевые защитный и рабочий проводники совмещены.

Схема стандартного заземления

Схема функционального заземления

Схема защищенного заземления

Была ли статья полезна?

Комментарии

Оптовая продажа электронных компонентов и радиодеталей с доставкой по всей России

44. Заземление. Виды заземлений, их назначение, нормы сопротивлений заземлений.

Одним из мероприятий, проводимых для защиты линий связи от влияния внешних электромагнитных полей, является заземление, которое используется в комплексе с разрядниками, молниеотводами, грозозащитными тросами.

Заземление- устройство, состоящее из заземлителей и проводников, соединяющих заземлители с электрическими установками.

Заземлителем называется металлический проводник или группа проводников любой формы (труба, шина, проволока), находящихся в непосредственном соприкосновении с землей и предназначенных для создания электрического контакта определенного сопротивления.

Сопротивлением заземления называется сумма сопротивлений подводящих проводов и прилегающих слоев грунта.

В зависимости от выполняемых заземлениями функций различают рабочее, защитное, линейно-защитное и измерительное заземления.

Рабочим заземлением называется заземляющее устройство, предназначенное для соединения с землей аппаратуры проводной связи с целью использования земли в качестве одного из проводов электрической цепи (например, дистанционное питание необслуживаемых усилительных пунктов (НУП) по системе «провод-земля»).

Защитным заземлением называется заземляющее устройство, предназначенное для соединения с землей молниеотводов, оболочек кабеля, цистерн НУП, а также металлических частей силового оборудования, устройств проводной связи, которые не находятся, но могут оказаться под напряжением при повреждении изоляции проводников, несущих рабочий ток, и служат для защиты обслуживающего персонала, линий и аппаратов от опасных напряжений и придания устройствам связи потенциала земли.

Линейно-защитным заземлением называется заземляющее устройство, предназначенное для заземления металлических покровов кабелей (оболочек и экранов) по трассе кабелей и на каждой станции, куда заходят кабели.

Измерительным заземлением называется вспомогательное заземление, предназначенное для контрольных измерений сопротивлений рабочего и защитного заземлений в установках проводной связи.

Норма сопротивления заземления зависит от его назначения. Так, для междугородных телефонных станций (МТС), обслуживаемых усилительных пунктов (ОУП), питающих дистанционно НУП по системе «провод-земля», и для НУП сопротивление рабочего заземления рассчитывается исходя из допустимого падения напряжения тока дистанционного питания на заземлителе. В любом случае сопротивления рабочих заземлений не должны превышать 10 Ом в грунтах с удельным сопротивлением до 100 Ом×м и 30 Ом для грунтов с удельным сопротивлением более 100 Ом×м. Защитные заземления МТС, ОУП и НУП должны быть не более 10 Ом для грунтов с удельным сопротивлением до 100 Ом×м и не более 30 Ом для грунтов с удельным сопротивлением более 100 Ом×м. Сопротивления линейно-защитных заземлений для оболочек кабелей, проложенных в грунте, должны быть не более 10 Ом для грунтов с удельным сопротивлением 100 Ом×м; 20 Ом для грунтов с удельным сопротивлением 100 – 500 Ом×м и 30 Ом для грунтов с удельным сопротивлением свыше 500 Ом×м.

Сопротивление заземления может быть измерено методами амперметра-вольтметра, трех измерений и компенсации. Кроме измеряемого заземления должны быть еще два вспомогательных (измерительных) заземлителя.

Читать еще:  Акт на контур заземления газового котла

Заземление – это система безопасности

В Правилах Устройства Электроустановок (ПУЭ) четко оговорено, что заземление – это система, в которой соединяются какая-то точка электрической сети, оборудования, прибора или установки с заземляющим устройством. С первой половиной этой системы все понятно, а что значит, заземляющее устройство.

Заземляющее устройство – это опять-таки система, состоящая из двух основных элементов: проводник и заземляющий контур (заземлителя). В совокупности с заземляющим устройством все это и называется заземлением. Теперь каждую часть схемы разберем по отдельности.

Заземлитель

Это часть заземления, которая располагается в грунте. Вся схема запитывается именно на грунт, куда электрический ток от установки должен войти. И вот тут многое будет зависеть от самого грунта, а точнее сказать, от его плотности, влажности и химического состава.

Считается, что в каменном грунте самая плохая электрическая проводимость. Поэтому в таких грунтах очень сложно создавать заземляющий контур, поэтому чаще всего устанавливается глубинный заземлитель в виде трубы или штыря. Глубина закладки в данном случае может быть достаточно большой до 20 м.

Что касается песчаных или глинистых грунтов, то оптимальный вариант на них устроить именно заземляющий контур, состоящий из трех или четырех глубинных элементов. Чаще всего используется контур в виде квадрата или равностороннего треугольника. При этом размер фигуры определяет мощность электрических установок или их общее количество. К примеру, для частного дома можно заложить контур в виде квадрата со стороной 4 м, или треугольника со стороной 3м. Если это промышленный объект или большое административное здание, то заземляющий контур будет большим, к примеру, штыри забиваются по углам здания с обвязкой между собой.

Штыревое заземление

Внимание! Установка штыревого заземления требует определенного расчета нагрузки на контур и сопротивления грунта. Что касается последнего, то о нем уже было сказано выше, то есть, от чего зависит сопротивление.

Вот несколько параметров сопротивления почвы из разных пород. Кстати, единица измерения данного показателя – Ом*М.

  • Глина – 20.
  • Песок – 10-60 (влажный-сухой).
  • Садовая земля – 40.
  • Солончак – 20.
  • Торф – 25.
  • Чернозем – 60.
  • Гравий – 300.
  • Щебень – 3000.
  • Гранит – 22000.

Контур заземления

Чем меньше показатель, тем выше электропроводность. То есть, наше утверждение, что в каменных грунтах сложно организовать заземление, подтверждается.

Проводник

Особых требований к проводящему контуру (от электроустановки до контура) нет. Самое главное – это прочность металлического элемента, который способен выдержать и механические нагрузки, и негативное воздействие влаги и температур. Поэтому чаще всего в качестве проводника используются стальные ленты толщиною не меньше 5 мм, тросы сечением не меньше 12 мм, арматура диаметром 10-12 мм.

Что касается частного домостроения, то в них можно использовать даже проволоку диаметром 6 мм ввиду того, что электрические нагрузки на такой проводник будут незначительны. Но¸ как считают специалисты, в этом деле лучше перестраховаться. Поэтому рекомендуется использовать стальную ленту сечением 5×30 мм.

Виды заземления

В классификации видов заземления присутствует два основных его вида:

  • Рабочее.
  • Защитное.

Есть и несколько подгрупп: радиозаземление, измерительное, инструментальное, контрольное.

Рабочее

Существует определенная категория электрических установок, которые не будут работать, если их не заземлить. То есть, основанная цель сооружения заземляющей системы – это необеспечение безопасности эксплуатации, это обеспечение самой эксплуатации. Поэтому в этой статье данный вид нас интересовать не будет.

Защитное

А вот этот вид специально устраивается с целью обеспечить безопасность работы электроустановок. Он делится на три категории в зависимости от назначения:

  • Молниезащита.
  • Защита от импульсного перенапряжения (перегруз линии потребления тока или короткое замыкание).
  • Защита электросети от электромагнитных помех (чаще всего данный вид помех образуется от рядом работающего электрического оборудования).

Нас интересует именно импульсное перенапряжение. Назначение заземления данного типа – это безопасность обслуживающего персонала и самой установки в процессе аварии или поломки оборудования. Обычно такая поломка внутри электрического агрегата – это замыкание провода электрической схемы на корпус прибора. Замыкание может происходить непосредственно или через любой другой проводник, например, через воду. Человек, коснувшийся корпус установки, подвергается воздействия электрического тока, потому что становится его проводником в землю. По сути, он сам становится частью заземляющего контура.

Схема заземления в частном доме

Вот почему, чтобы устранить такие ситуации и устанавливается заземление корпуса на контур, расположенный в земле. При этом срабатывание заземляющей схемы – это толчок для системы автоматов, которые тут же отключают подачу электроэнергии к оборудованию. Все это располагается в специальных силовых и распределительных щитах.

Сопротивление заземлению

Есть такой термин, как сопротивление растеканию тока. Для простых обывателей легче будет воспринимать, как сопротивление заземлению. Вся суть этого термина заключается в том, что схема заземления должна работать корректно с определенными параметрами. Так вот сопротивление является основным из них.

Оптимальный вариант этого значения – ноль. То есть, лучше всего использовать материалы для сборки контура, у которых электропроводность самая высокая. Конечно, добиться идеала никак не получится, поэтому старайтесь выбирать именно те, у которых сопротивление самое низкое. К ним относятся все металлы.

Есть специальные коэффициенты, с помощью которых производится определение показателя сопротивления заземляющего контура, эксплуатируемого в разных условиях. К примеру:

  • в частном домостроение, где используются сети на 220 и 380 вольт (6 и 10 кВ), необходимо устанавливать контур с сопротивлением 30 Ом.

Внимание! Если используется заземляющий контур через нейтраль трансформатора, то сопротивление заземляющей цепи должно быть не больше 4 Ом.

  • монтируемая газопроводная система, входящая в дом, должна заземляться схемой в 10 Ом.
  • молниезащита должна иметь сопротивление не более 10 Ом.
  • Телекоммуникационное оборудование заземляется контуром 2 или 4 Ом.
  • Подстанции от 10 кВ до 110 кВ – 0,5 Ом.

То есть, получается так, что чем больше мощность силы тока внутри оборудования или приборов, тем ниже должно быть сопротивление.

Качество заземления

Выше уже говорилось о том, что тип грунта и материал для системы влияют на качество заземляющего контура. Но кроме этого есть еще несколько позиций.

Площадь заземления

Сразу скажем так, чем больше площадь заземления, тем его качество выше. Поэтому, когда стоит вопрос, что использовать: стержень заземления или пластину, то выбирается второй вариант. Почему? Все дело в ее большей площади. Площадь соприкосновения у пластины для заземления в разы больше, чем у штыря. При этом данную площадь можно, в принципе, увеличивать до бесконечности. А это большой плюс. Для этого обычно используют пластины «PTCE» из сплава никеля и меди.

Поэтому чаще всего, когда планируется заземление высоковольтных линий, к примеру, опор ВЛ 10 кВ, используется именно пластинчатый вариант (PTCE). Хотя показатель площади можно увеличить и по-другому. Можно просто использовать стержень заземления, только не один, а несколько, обвязав их вокруг опор ВЛ 10 кВ контуром из хорошего проводника. Вот почему в частном домостроение используется контур из трех или четырех штырей. Для ВЛ 10 кВ количество может быть увеличено до бесконечности. Для производственных мощностей не обязательно применять квадрат или треугольник, здесь может быть использована линейная структура. Главное – побольше стержней установить на линии.

Чем больше больше площадь заземления, тем выше его качество

Есть еще один вариант увеличения площади контакта с грунтом. Это увеличить размеры штырей. То есть, сделать их длиннее и толще. Кстати, такой вариант используется, если верхние слои грунта имеют высокое сопротивление, а нижние, наоборот, низкое. Такое глубинное заземление прекрасно работает даже в том случае, если устанавливается один металлический штырь. Правда, для 10 кВ линий придется количество заземляющих проводников увеличить, один ничего здесь не решит. Но лучше установить PTCE.

Расчет заземления

Не будем останавливаться на этом разделе долго. Все дело в том, что рассчитать заземление непросто. Существует достаточно большая и сложная формула, по которой и производится расчет. Но, как показала практика, ее конечный результат – всего лишь неточная цифра. Почему? Потому что все зависит от типа грунта. Наша земля во многих участках – слоеный пирог из разных наполнителей. Поэтому точно определить, где и какой слой находится, можно только по специальной карте геологической разведки.

Вот почему выбирая глубинное заземление, необходимо ориентироваться на максимальный показатель, подставляя в формулу разные величины сопротивления грунта.

Заключение по теме

Итак, в этой статье мы постарались ответить на интересующий многих начинающих электриков вопросы, что такое заземление, и как работает оно? Усвойте один нюанс. Заземление – необходимая система в сетях электрического снабжения (неважно, это 6, 10 кВ, или 100). Поэтому ее сегодня используют не только в производственных цехах, заводах и фабриках, это неотъемлемая часть электрической схемы частных жилых домов и городских квартир.

Системы защитного заземления – виды и различия

Строго говоря, применять обозначение – “системы защитного заземления” не верно. По определению Правил Устройства Электроустановок ( ПУЭ 1.7.2. и 1.7.3.) буквенные обозначения TN, TT и IT употребляются для разделения систем электроустановок в отношении мер электробезопасности. В некоторых из этих систем, для соблюдения электробезопасности, применяется как заземление так и зануление. А в других только заземление.

Системы защитного заземления подразделяются на три вида TN, TT и IT. Система TN в свою очередь разделяется на TN-C, TN-C-S и TN-S

Буквенные обозначения, характеризующие системы защитного заземления

Первая буква – положение нулевой точки (нейтрали) источника питания (трансформатора, генератора) относительно земли

  • T – Terra (лат. Земля) – Нейтраль заземляется.
  • I – I solation (англ. Изолированный) – Изолированная нулевая точка источника питания.

Вторая буква – положение открытых частей и корпусов электроприборов потребителя относительно земли

  • T – Корпуса электроприборов заземляются.
  • N – Корпуса приборов соединяются с нейтралью источника питания.

Следующие после N буквы в системе TN

  • C – C ombined (англ. Объединенный) – Назначения нулевого рабочего N и нулевого защитного PE проводников объединены в одном проводнике PEN.
  • S – S eparated (англ. Отдельный ) – То есть нулевой рабочий N и нулевой защитный проводники разделяются.
Читать еще:  Системы заземления TN-S, TN-C, TNC-S, TT, IT

Остальные буквенные обозначения

  • N – Neutral (англ. Нейтральный, нулевой). Нейтраль ( Нулевая точка) источника питания или электроприёмника. Соответственно Нулевой рабочий проводник соединяется с этой точкой. В рабочем состоянии по нулевому рабочему проводнику протекает электрический ток.
  • PE – Protective Earth (англ. Защитное заземление) – Защитный нулевой проводник, заземляющий проводник, проводник системы уравнивания потенциалов. PE проводник соединяет открытые части электрооборудования с землей. То есть корпуса электроприборов. А также возможные места по которым во время аварии может протекать электроток. В рабочем состоянии электрический ток по защитному нулевому проводнику не протекает. (Теоретически – в идеальном случае. Практически – протекает небольшой ток. Но намного меньший, чем по N проводнику.) Течение эл. тока по проводнику PE происходит в аварийной ситуации.
  • PEN – Protective Earth and Neutral (англ. Защитное заземление и нейтраль). Функции нулевого рабочего N и нулевого защитного PE объединены в одном проводнике PEN. В рабочем состоянии по проводнику PEN протекает электрический ток.

Электроустановки системы TN

Существуют три системы TN-C, TN-C-S и TN-S. Про каждую из этих систем можно сказать – это система TN. Безусловно, не существует четвертой отдельной системы TN.

Система TN своим буквенным обозначением T поясняет что нейтраль источника электроэнергии глухо заземлена. А корпуса электроприемников соединяются с нейтралью этого источника N. То есть зануляются. Различия в системах показаны с помощью последующих букв. Буквы означают, как именно занулены корпуса электроприемников. А также и другие их электропроводящие части.

ПЭУ 1.7.61. рекомендует при применении системы TN выполнять на вводе повторное заземление PE и PEN проводников. При вводе питания к потребителю с Воздушных Линий повторное заземление на вводе обязательно (ПУЭ 1.7.102).

Проводники PE и PEN не должны разрываться коммутирующими аппаратами – автоматическими выключателями, рубильниками и тому подобным (ПУЭ 1.7.145.). Это правило касается всех систем. Но только в системах TN, проводники PE и PEN приходят от ввода питающих потребителя проводников. В этом месте до счетчика часто устанавливается двух или четырехполюсный автомат или рубильник. Он не должен разрывать защитные проводники. Разрываться может только рабочий N проводник.

Во всех подсистемах системы TN применяется одновременно защитное зануление и защитное заземление. Наряду с защитными заземление и занулением обычно в системах TN используется защитное отключение.

Смысл применения систем TN

Суть применения всех систем TN в том, чтобы снизить потенциал на корпусе электрооборудовании. При аварийном прикосновении фазного проводника на зануленный и повторно заземленный корпус электрооборудования. Или другие металлические части этого оборудования. Разумеется, снижение потенциала на корпусе защищает человека, к нему прикосновшемуся, от поражения электротоком.

Одновременно со снижением потенциала происходит короткое замыкание. То есть к аварийному повышению тока. Повышение тока до больших величин приведет к отключению защитного автоматического выключателя. Или перегоранию предохранителя. Оборудование обесточится. И это защитит человека от удара электрическим током. Который бы мог произойти в результате прикосновения к оборудованию, находящемуся под напряжением.

Система защитного заземления TN-C – зануление с повторным заземлением

Именно систему TN-C в разговорном языке чаще всего называют занулением. Намного реже так говорят про системы TN-C-S и TN-S, чаще их называют заземлением. На самом деле во всех этих системах осуществляются оба эти действия.

Буква C в системе TN-C говорит о том, что соединение корпусов и нейтрали происходит с помощью проводника PEN. Который объединяет в себе рабочую N и защитную функцию PE. То есть корпуса электроприборов зануляются.

На вводе, соблюдая рекомендации ПУЭ в пункте 1.7.61, делается дополнительное заземление PEN проводника.

Не допускается применять УЗО, реагирующие на дифференциальный ток, в четырехпроводных трехфазных цепях для системы TN-C (ПУЭ 1.7.80.). При необходимости применения такого УЗО проводник PE, соединенный с корпусом электрооборудования, подключается к PEN до УЗО.

Система TN-C применяется только в трехфазных сетях. Только на еще не реконструированных промышленных предприятиях. Или в многоэтажных зданиях, в том числе жилых. И только до ввода в квартиру . Однофазные электроприемники, включенные в такую систему, не зануляются и не заземляются.

Если нулевой проводник соединен с корпусом трехфазного промышленного станка, то это защитный PEN проводник. Синего цвета изоляция и желто-зеленая окраска в месте соединения. Однако этот же нулевой проводник может быть соединен с клеммой питания однофазного прибора. Тогда это рабочий N проводник для этого прибора. Изоляция синего цвета. Несомненно, он не должен иметь соединения с корпусом однофазного прибора.

Применение системы TN-C в однофазных сетях и в быту запрещено (ПУЭ 7.1.13.). То есть квартиры и дома в системе TN-C не имеют защитного заземления. Обеспечить электробезопасность в однофазных и трехфазных сетях дома и квартиры с данной системой не возможно. Потому при реконструкции электросетей в домах старой постройки должен выполнятся переход на систему TN-C-S.

Системы защитного заземления – система TN-C-S

Система TN-C-S своим названием говорит о том, что нейтраль трансформатора заземлена. А корпуса электроприемников соединенны с нейтралью источника питания. Соединение нейтрали с корпусами оборудования происходит с помощью проводника PEN. Который на вводе к потребителю разделяется на N и PE.

Система TN-C не может применяться в однофазных сетях и бытовом секторе. Однако она, подвергаясь модификации, может быть превращена в систему TN-C-S. Это относительно недорогое преобразование. Поскольку не требует переделки всей системы электроснабжения. Разумеется не без недостатков.

Применение PEN проводника не допускается в цепях однофазного и постоянного тока. Кроме ответвлений от ВЛ (Воздушных Линий) до 1ооо вольт к однофазным потребителям электроэнергии (ПУЭ 1.7.132.). Из этого пункта правил можно сделать однозначный вывод:

Применение системы TN-C-S в квартирах, с разделением PEN в этажном щите, недопустимо.

Разделение должно производиться в трехфазной цепи распределительного щита на вводе в здание. Применять проводник PEN можно в частных домах, к которым питание приходит по опорам электропередач. Если ввод при TN-C-S с Воздушных Линий электропередачи, то делается обязательное повторное заземление защитного проводника (ПУЭ 1.7.102.).

Такая система не может применяться в случае сильного износа электросетей. Поскольку появляется большая вероятность нарушения контакта нулевого проводника. Также она не может применяться, если жилы кабеля на вводе имеют менее 16мм² алюминия. А также менее 10мм² меди (ПУЭ 1.7.131.).

Разделение проводника PEN на проводники PE и N должно производится на вводе. То есть на главной заземляющей шине. После того как проводник PEN разделён, проводники PE и N нигде не должны соединяться обратно (ПУЭ 1.7.135.). Потому как в противном случае это будет система TN-C.

Система защитного заземления TN-S

В системе TN-S нейтраль источника питания глухо заземлена. Безусловно, как и во всех системах защитного заземления типа TN. Корпуса оборудования соединяются с нейтралью источника питания (зануляются). Соединение производится с помощью отдельного проводника PE. То есть нуль рабочий N и нуль защитный PE разделяются уже на трансформаторной подстанции. Проводник PE дополнительно заземляется на вводе к потребителю. Причем при вводе с ВЛ обязательно. В остальных случаях рекомендательно.

Это наиболее дорогая в устройстве система, так как требует ещё один дополнительный проводник. В масштабах страны только одно количество меди на этот проводник будет выглядеть внушительно. Не считая затрат на труд, производство и различные дополнительные изменения. Однако все новые электросети должны строиться уже с системой TN-S.

Для потребителя – это самая удобная и безопасная система защитного заземления. Особенно в бытовых однофазных сетях. Не требует частого осмотра и обслуживания как другие системы TN. А также менее требовательна к качеству выполнения повторного заземления на вводе к потребителю.

Система заземления TT

Система TT представляет собой систему заземления. В этой системе нейтраль источника питания и корпуса приборов потребителя заземляются отдельно. То есть независимо друг от друга. Так что зануление в этой системе не применяется.

В быту такая система может использоваться, если по условиям электробезопасности систему TN применить нельзя (ПУЭ 1.7.59.).

При однофазном замыкании на заземленный корпус в системе TT токи короткого замыкания слишком малы. То есть автоматический выключатель может не сработать. Потому применять эту систему без УЗО или диффавтоматов запрещено ПУЭ в пункте 1.7.59. Однако это не отменяет обязательного применения автоматического выключателя. Он отключает подачу питания при замыкании фазы с нулем. А также в случае замыкания между разными фазами.

Система заземления IT

В системе IT нейтраль источника питания изолированна от земли. Практически же нулевая точка чаще всего заземляется через сопротивление. В качестве сопротивления обычно используется разрядник. Эта мера безопасности предотвращает повышение напряжения на низкой стороне трансформатора со стороны потребителя. В аварийной ситуации разряд высокого напряжения пробивает сопротивление разрядника. И уходит в землю. В результате создавая повышенный ток короткого замыкания. Разумеется, на это реагирует вышестоящая защита и отключает аварийный участок.

Корпуса и другие открытые прикосновению части оборудования в системе IT заземляются. В этой системе отсутствует нулевой проводник и соответственно не проводится зануление. Если нет нулевого проводника, то нет и однофазных потребителей. В IT подключается только двухфазное и трехфазное электрооборудование. Применяется система там, где требуется повышенная пожаробезопасность. Или, к примеру, существует недопустимость прерывания электроснабжения.

Токи короткого замыкания в этой системе, при однофазном замыкании на корпус, очень малы. Потому кроме автоматических выключателей ставится дополнительная защита. То есть устанавливается или диффзащита или защитная сигнализация. Причем в обязательном порядке

Не существует идеальной системы защитного заземления. Безусловно, каждая система по электробезопасности имеет свои достоинства и недостатки. То есть должна применяться соответственно обстоятельствам.

Вы можете прочитать записи на похожие темы в рубрике – Электромонтаж

Следующие статьи могут быть полезны для Вас

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector