Astro-nn.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Заземление трубопроводов от статического электричества

Полное меню
Основные ссылки

Вернуться в «Каталог СНиП»

ГОСТ 12.4.124-83 ССБТ. Средства защиты от статического электричества. Общие технические требования.

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СИСТЕМА СТАНДАРТОВ БЕЗОПАСНОСТИ ТРУДА

СРЕДСТВА ЗАЩИТЫ
ОТ
СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСТВА

ОБЩИЕ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

ГОСТ 12.4.124-83

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Система стандартов безопасности труда

СРЕДСТВА ЗАЩИТЫ ОТ СТАТИЧЕСКОГО
ЭЛЕКТРИЧЕСТВА

Общие технические требования

Occupational safety standards system.
Means of the protection against static electricity.
General technical requirements

ГОСТ
12.4.124-83

Постановлением Государственного комитета СССР по стандартам от 27 января 1983 г . № 428 срок действия установлен

Настоящий стандарт распространяется на средства защиты работающих от опасного и вредного воздействия статического электричества (СЗСЭ) и устанавливает общие технические требования к ним.

Стандарт не распространяется на средства защиты от статического электричества в электро- и радиотехнических устройствах, конденсаторах, длинных линиях электропередач, кабелях, антеннах, транспортных средствах, устройствах противопожарной обороны.

Термины, используемые в настоящем стандарте, и их пояснения приведены в справочном приложении.

1 . КЛАССИФИКАЦИЯ

1.1 . Средства защиты работающих по ГОСТ 12.4.011-75 делятся на средства коллективной защиты и средства индивидуальной защиты.

1.2 . Средства коллективной защиты от статического электричества по принципу действия делятся на следующие виды:

1.2.1 . Нейтрализаторы по принципу ионизации делятся на:

1.2.2 . Увлажняющие устройства по характеру действия делятся на:

1.2.3 . Антиэлектростатические вещества по способу применения делятся на:

вводимые в объем;

наносимые на поверхность.

1.2.4 . Экранирующие устройства по конструктивному исполнению делятся на:

1.3 . Средства индивидуальной защиты в зависимости от назначения делятся на:

специальную одежду антиэлектростатическую;

специальную обувь антиэлектростатическую;

предохранительные приспособления антиэлектростатические (кольца и браслеты);

средства защиты рук антиэлектростатические.

2 . ОБЩИЕ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

2.2 . СЗСЭ должны обеспечивать соблюдение требований санитарно-гигиенических норм допустимой напряженности электростатического поля, утвержденных Министерством здравоохранения СССР.

2.3 . СЗСЭ не должны оказывать отрицательного воздействия на технологический процесс.

2.4 . СЗСЭ должны исключать возникновение искровых разрядов статического электричества с энергией, превышающей 40 % от минимальной энергии зажигания окружающей среды, или с величиной заряда в импульсе, превышающей 40 % от воспламеняющего значения заряда в импульсе для окружающей среды.

2.5 . Специальная одежда, специальная обувь, предохранительные приспособления антистатические обеспечивают защиту при работе с электроустановками напряжением до 1000 В.

2.6 . Требования к заземляющим устройствам

2.6.2 . Выполнение заземляющих устройств должно соответствовать требованиям ГОСТ 12.1.030-81 и ПУЭ . Величина сопротивления заземляющего устройства, предназначенного исключительно для защиты от статического электричества, должна быть не выше 100 Ом.

2.6.3 . Заземление трубопроводов и других объектов, расположенных на наружных эстакадах, должно быть выполнено в соответствии с действующими указаниями по проектированию и устройству молниезащиты зданий и сооружений, утвержденными Госстроем СССР.

2.6.4 . Заземляющие устройства должны применяться на электризующихся движущихся узлах производственного оборудования, изолированных от заземленных частей.

2.7 . Требования к нейтрализаторам

2.7.1 . Нейтрализаторы должны соответствовать требованиям ГОСТ 12.1.006-76, санитарно-гигиенических норм допустимых уровней ионизации воздуха в производственных и общественных помещениях, норм радиационной безопасности, основных санитарных правил работы с радиоактивными веществами и другими источниками ионизирующих излучений, утвержденных Министерством здравоохранения СССР.

2.7.2 . Концентрация озона и окислов азота, выделяемых работающими нейтрализаторами, не должна превышать норм, установленных ГОСТ 12.1.005-76.

2.7.3 . Общие требования электробезопасности к высоковольтным нейтрализаторам — по ГОСТ 12.1.019-79 и ПУЭ .

2.7.4 . Радиоизотопные нейтрализаторы должны быть снабжены блокирующим устройством, закрывающим источник радиоактивного излучения в нерабочем состоянии.

2.9 . Экранирующие устройства должны быть заземлены в соответствии с требованиями ПУЭ .

2.10 . Требования к антиэлектростатической специальной одежде

2.10.2 . Электрическое сопротивление между токопроводящим элементом антиэлектростатической специальной одежды и землей должно быть от 10 6 до 10 8 Ом.

2.11 . Требования к антиэлектростатической специальной обуви

2.11.1 . Электрическое сопротивление между подпятником и ходовой стороной подошвы обуви должно быть от 10 6 до 10 8 Ом.

2.12 . Требования к антиэлектростатическим предохранительным приспособлениям

2.12.1 . Антиэлектростатические кольца и браслеты должны обеспечивать электрическое сопротивление в цепи человек-земля от 10 6 до 10 7 Ом.

2.12.2 . Заземляющий проводник антиэлектростатического браслета должен обеспечивать свободу перемещения рук.

2.13 . На средствах индивидуальной защиты от статического электричества должны наноситься обозначения по ГОСТ 12.4.103-80.

ПРИЛОЖЕНИЕ

ТЕРМИНЫ, ИСПОЛЬЗУЕМЫЕ В СТАНДАРТЕ, И ИХ ПОЯСНЕНИЯ

Совокупность заземлителя и заземляющих проводников

Проводник или совокупность металлически соединенных между собой проводников, находящихся в соприкосновении с землей

Нейтрализатор статического электричества

Устройство, предназначенное для снижения уровня электростатических зарядов путем ионизации электризующегося материала или среды вблизи его поверхности

Индукционный нейтрализатор статического электричества

Нейтрализатор, обеспечивающий ионизацию материала или среды воздействием поля электростатических зарядов

Высоковольтный нейтрализатор статического электричества

Нейтрализатор, обеспечивающий ионизацию материала или среды воздействием высокого напряжения, подаваемого на его электроды

Лучевой нейтрализатор статического электричества

Нейтрализатор, обеспечивающий ионизацию материала или среды под воздействием излучения (радиоактивного, ультрафиолетового, лазерного, теплового и т.п.)

Радиоизотопный нейтрализатор статического электричества

Нейтрализатор, принцип действия которого основан на ионизации воздушной среды радиоактивными источниками

Аэродинамический нейтрализатор статического электричества

Нейтрализатор, в котором ионизированная среда подается к поверхности заряженного материала потоком воздуха

Устройство, обеспечивающее необходимую влажность поверхности или объема заряженного материала

Устройство, обеспечивающее снижение напряженности электростатического поля и количество аэроионов в рабочей зоне до допустимых значений за счет их концентрации в ограниченном объеме вне этой зоны

Заземление трубопроводов от статического электричества

1. В чьей ответственности (электротехнической или технологической) находится защита технологических трубопроводов от статического электричества и молниезащита, учитывая действующие НТД в этой области (РД 34.21.122-03, СО 153-34.21.122-03, «Правила защиты от статического электричества в производствах химической, нефтехимической и нефтеперерабатывающей промышленности»)?

2. Корректно ли в «общих данных» комплектов соответствующих разделов чертежей давать указания по защите трубопроводов от статического электричества и молниезащите, по типу приведенных в альбоме (Серия 4.402-9 Выпуск 4)?

3. В каких разделах (электротехнической или технологической) должны находиться детали и узлы заземления, рабочие чертежи альбома по защите технологических трубопроводов от статического электричества и молниезащите, учитывая действующие руководящие документы?

1. Для объектов, не относящихся к линейным, подраздел проектной документации, в котором должны содержаться проектные решения по заземлению (занулению) и молниезащите, определён Положением о составе разделов проектной документации и требованиях к их содержанию — подраздел «Система электроснабжения» раздела 5 «Сведения об инженерном оборудовании, о сетях инженерно-технического обеспечения, перечень инженерно-технических мероприятий, содержание технологических решений» — см. пункт 16, подпункты к, у.

2. Технологические трубопроводы предприятий не относятся к линейным объектам (см. пункт 10.1 Градостроительного кодекса № 190-ФЗ), поэтому требования пункта 16 Положения о составе разделов проектной документации и требованиях к их содержанию, связанные с оформлением проектных решений по защите от статического электричества и молниезащите, распространяются на них в полном объёме.

3. Серия 4.402-9. Выпуск 4 «Типовые конструкции зданий и сооружений нефтеперерабатывающих и нефтехимических заводов. Молниезащита и защита от статического электричества технологических аппаратов и трубопроводов. Детали и узлы заземления. Рабочие чертежи» не является документом по стандартизации и ссылочным нормативным документом в национальных стандартах, входящих в «Систему проектной документации для строительства», поэтому может использоваться только как справочный документ, в части, не противоречащей документам по стандартизации.

4. Подробные требования к составу, содержанию и оформлению электротехнических разделов проектной и рабочей документации (в том числе по заземлению и молниезащите) изложены, например, в учебном пособии «Проектирование систем электроснабжения. Раздел 5. Требования к составу, содержанию и оформлению электротехнических разделов проектной продукции. А.Е. Вихман, 2016».

Средства защиты от статического электричества

16 декабря 2019

Время на чтение:

Статическое электричество способно навредить человеку в быту и на производстве. В последнем случае его неблагоприятное воздействие может привести к серьезным последствиям. Чтобы защититься от разрядов, необходимо устанавливать заземление, нейтрализаторы, использовать другие средства.

Что такое статическое электричество

Под статическим напряжением понимают самостоятельно возникающий и сохраняющийся в проводниках или диэлектриках электрический заряд. Он появляется вследствие перераспределения электронов, в результате которого часть из них приобретает одинаковый заряд. Результат этих процессов – возникновение разряда при прикосновении к предмету, в котором появилось статическое электричество. Чаще всего это происходит в предметах, которые изготовлены путем соединения частей из разных материалов (например, двух различных металлических сплавов).

Статическое электричество возникает из-за изменения заряда электронов

В чем опасность явления

Статическое электричество в некоторых случаях представляет опасность для человека. Она выражается в следующем:

  • Поражение электрическим током. Обычно разряд неопасен. Это обусловлено его небольшой мощностью. Однако если в каком-либо предмете накопился слишком сильный заряд, он может причинить существенный вред здоровью человека. Он может выражаться в травмах или повреждении кожных покровов в результате ожога. В отдельных случаях возможна смерть пострадавшего.
  • Выход из строя электроприборов. При попадании разряда на бытовую электронику она обычно выходит из строя. Для того, чтобы ее сломать, достаточно даже очень слабого разряда, совершенно не опасного для здоровья человека. Особенно чувствительны к подобному воздействию «умные» устройства: компьютеры, смартфоны.
  • Риск возникновения пожара. Во время высвобождения заряда обычно возникают маленькие искры. Если они попадут на легковоспламеняющееся вещество (горюче-смазочные материалы, высокомолекулярные растворители), произойдет возгорание, которое способно повлечь пожар.

Именно поэтому принимают меры, целью которых является защита от статического электричества, которая предотвращает его появление и минимизирует негативные последствия. Особенно она важна на производстве, где даже одна искра может привести к катастрофическим последствиям.

Читать еще:  Электрокоррозия и заземление водяного полотенцесушителя

Объекты промышленности нуждаются в особой защите

Источники статического электричества

Источники статического напряженья можно разделить на две большие группы: естественные и искусственные.

Первые представляют собой элементы ландшафта, атмосферу. Электроэнергия в них возникает в результате естественных процессов. Наиболее известный пример – разряд молнии, который формируется в результате перемещения и смешивания воздушных масс в атмосфере и перераспределения зарядов электронов в воздухе.

Ярчайший пример природного разряда – молния

Вторые – рукотворные предметы, созданные человеком. Это могут быть:

  • элементы интерьера;
  • текстильные изделия;
  • трубопроводы;
  • электрические приборы;
  • трубы систем отопления.

Важно! Некоторая техника создается специально для генерации статического электричества. К ее числу относятся различные генераторы, сепараторы, окрасочные аппараты. Однако в большинстве случаев статическое напряжение возникает спонтанно и способно нанести существенный вред.

Защита трубопроводов и промышленного оборудования от статического напряжения

Наиболее тяжелые последствия разряд может вызвать, если затронет трубопроводы на объектах промышленности. Особенно тяжелыми будут последствия такого воздействия на химическом, нефтеперерабатывающем предприятии. Это касается и использующихся в быту газопроводов. Чтобы их избежать, принимают меры, которые направлены на защиту трубопроводов на производстве от статического электричества.

Правила защиты

Перечень подобных мер в Российской Федерации регулируется правилами, которые были утверждены 31 января 1971 года, и действуют по сей день.

Защита трубопроводов урегулирована специальными правилами

Методы защиты

Нормативный документ предусматривает следующие мероприятия, направленные на предотвращение возникновения зарядов статического электричества:

  • Заземление. Согласно правилам, все конструкции, в которых может образоваться заряд статического электричества, необходимо заземлять.
  • Уменьшение удельного поверхностного сопротивления в материале, где может образоваться заряд. Этот показатель зависит от общей площади предмета. Чем она меньше, тем меньше сопротивление.
  • Использование нейтрализаторов. Заряд статического электричества можно нейтрализовать с помощью устройств, которые созданы специально для этого. Чаще всего они генерируют индукционное поле или излучают радиоизотопы. Это предотвращает накопление одинакового заряда в большом количестве электронов и возникновение статического напряжения.

Заземление оборудования

Один из самых действенных и распространенных способов защиты от статического электричества – заземление. В результате применения этого метода все предметы, в которых может образоваться заряд, образуют единую цепь, подсоединенную, в свою очередь, к зануляющему проводнику. Он, как правило, представляет собой помещенную в почву стальную конструкцию.

Заземление – самый распространенный и эффективный способ защиты

К сведению! Польза защитного заземления в том, что при образовании заряда он сразу уходит на «ноль», проделывая при этом путь через все элементы цепи.

Заземлить на производстве необходимо все металлические и неметаллические конструкции, обладающие токопроводностью. Среди них:

  • трубопроводы;
  • агрегаты и аппараты;
  • термоизоляция;
  • вентиляционные короба;
  • отдельно стоящие машины;
  • емкости для дробления, распыления, разбрызгивания перерабатываемых продуктов.

Чтобы установить заземление, понадобится выполнить следующие действия.

  • Установить заземлитель. Он представляет собой устройство, которое находится в непосредственном контакте с землей (она в данном случае играет роль «нуля»).
  • Подсоединить трубопровод к заземлителю. Участок металлической конструкции с помощью проводника присоединяют к ранее установленному устройству для заземления.
  • Подключение к системе заземления остального оборудования. Непосредственно к трубопроводу с помощью проводников подсоединяют другие металлические предметы (вентиляционные короба, термоизоляцию). По действующим нормативам подключение должно быть каждые 40–50 метров.

Так выглядит заземлитель

Важно! Заземлять необходимо не только стальные, но и полимерные трубопроводы. Требования здесь несколько иные. Сопротивление между любой точкой трубопровода и заземляющим контуром не должно быть более 100 000 кОм (допускается небольшая статистическая погрешность). Это может потребовать заземления в нескольких местах.

Способы снятия статического напряжения

В руководстве по защите от статического электричества также предусматрен ряд мер, направленных на минимизацию вредоносных последствий воздействия разряда и его снятие. Вот основные из них:

  • очистка проходящих по трубопроводам газов и жидкостей от посторонних примесей (например, твердых частиц);
  • недопущение распыления и разбрызгивания веществ;
  • строгое соблюдение требований к скорости движения по трубопроводу.

Меры безопасности на производстве

Чтобы обезопасить работников предприятия от неблагоприятного воздействия статического электричества, соблюдают следующие меры безопасности:

  • Обеспечивают постоянный контакт работника и контура заземления. Тело человека, работающего на производстве, должно постоянно контактировать с заземленной цепью. Это обеспечивает быстрое прохождение разряда через ткани без причинения какого-либо вреда.
  • Хорошо в этом плане проводить увлажнение воздуха, тогда внезапные молнии статического электричества возникают не так часто, как при малом содержании испаренной жидкости в атмосфере. При увеличении ее количества риск их появления значительно уменьшается.
  • Проводят ионизацию. Если насыщать воздух положительно и отрицательно заряженными частицами, возможность «перекоса» в одну из сторон, вызывающего появление заряда, снижается.

Воздух в цехах насыщают заряженными частицами с помощью промышленных ионизаторов

Статическое напряжение – самопроизвольно возникающий электрический заряд. Его появление особенно опасно на производстве (в трубопроводах, системах вентиляции), так как может вызвать возгорание, детонацию. Понятие статистического электричества и перечень способов защиты от него приведены в специальных правилах. Применяют такие средства, как заземление, уменьшение удельного поверхностного сопротивления, увеличение влажности.

Правила заземления трубопроводов

В процессе прокладки трубопроводов любого предназначения необходимо позаботиться о безопасности их эксплуатации. Важно предотвратить негативное воздействие сильного электрического разряда как на сам трубопровод, так и на вещества, которые транспортируются по нему. Специально для этого важно установить заземление.

Главные особенности

При обустройстве системы заземления необходимо соединение с грозозащитой здания. С ее помощью полностью исключается возможное воздействие на сырье, транспортируемое внутри.

Это особенно актуально в случаях, когда внутри находится взрывоопасное вещество – газ, нефть, спирт и другие легковоспламеняющиеся материалы.

Чтобы заземлить трубопровод, необходимо присоединить токоотводящую полосу к заземленному металлическому предмету. Для этого применяется медная проволока, поскольку медь считается отличным проводником. На каждые двадцать метров делают как минимум одно заземление.

Если магистраль собрали из бумажно-металлической трубы, металлические оболочки надо соединить между собой, а также с корпусами ящиков, электроприемников или коробок.

При выполнении работ потребуются перемычки, выполненные из голого медного проводника с хорошим запасом гибкости.

Специалисты рекомендуют пользоваться проводниками, сечение которых составляет минимум 2,5 м кв. Причем экономить в этом отношении нельзя, даже обращая внимание на высокую стоимость меди. Достаточно закрепить его на каждом конце труб посредством проволочного бандажа, либо припаяв отвод к корпусу и самой трубе с помощью паяльника.

Важно помнить о том, что для полноценного заземления следует устанавливать металлические детали через каждые 20 метров. В данном случае их также придется постоянно подключать с помощью отвода.

Медная проволока

Практика показывает, что наиболее популярным методом, с помощью которого проводится заземление трубопроводов, является применение медной проволоки. Рекомендуется пользоваться проволокой диаметром от 1…1,5 мм.

Ее проводят как с внутренней, так и с наружной стороны, скрепляя между собой в местах соединений посредством проволочной перемычки. Для присоединения используется метод холодной пайки. Наружная проволока, установленная в конечной точке, нуждается в тщательном заземлении.

Заземление трубопровода является самым простым, но при этом обязательным методом отвода скопившихся статических зарядов электричества. В качестве основной меры, которая предотвращает появление разрядов, сопровождаемых искрой, является заземление с полноценным шунтированием кранов и муфт.

Операция выполняется с применением медного провода.

Стоит отметить, что использование технологии заземления в водопроводных трубах позволяет значительно уменьшить потенциал между стенками и самой жидкостью, которая передается по нему. Тем не менее, ни одна система заземления не может полностью ликвидировать электризацию жидких веществ.

Основные правила

Заземлять трубопровод необходимо в обязательном порядке – данное требование прописано в ПУЭ. Хотя на первый взгляд трубопровод и электроустановки имеют мало общего, однако будучи металлической конструкцией, он может пропускать ток и представлять опасность.

Использование заземления дает возможность существенно увеличить уровень безопасности во время прокладки или ремонта. При эксплуатации трубной системы передаваемому веществу свойственно генерировать статическое электричество. Кроме того, никто не исключает вероятность прямого попадания молниевого разряда в трубу.

Согласно действующим правилам, заземлению подлежат не только внешние трубопроводы, но и внутренние. К последним относятся коммуникационные и технологические.

ПУЭ регламентирует главные особенности обустройства заземления трубопроводов:

  • трубчатая система должна являть собой непрерывную сеть, которая соединяется в единый контур;
  • трубопровод должен подключаться к заземлению минимум в 2-х точках. Их количество напрямую зависит от протяженности магистрали, технических особенностей и так далее.

Что касается первого правила, это еще не повод полагать, что трубопроводная система всегда должна иметь непрерывную структуру. В данном случае нужно помнить о том, что следует соединить отдельные трубопроводы или участки в одну сеть. Для выполнения этой задачи потребуется межфланцевая перемычка.

Количество опять-таки зависит от особенностей конструкции. Зафиксировать перемычки к трубопроводу можно посредством болтового соединения, сварки или установки специального хомута, который обеспечивает качественное заземление металлических труб.

Межфланцевой перемычкой является провод, изготовленный из меди, имеющий маркировку ПуГВ или ПВЗ.

Касательно второго правила, специалисты рекомендуют отказываться от разброса заземления по всей технологической линии. Можно обойтись соединением в конце и начале отдельно взятого или единого контура.

Трубостойки

Чтобы установить устройство ввода в коммерческое здание или загородный дом, необходимо использовать трубостойку. Главной ее задачей является фиксация провода питания, который ведет к щиту, а также установки самого щита.

Читать еще:  Инструкция по сборке хорошего удлинителя

Согласно требованиям правил ПУЭ, трубостойка нуждается в обязательном заземлении.

Недалеко от щита надо просверлить отверстие, через которое важно поместить болт заземления. Как сама трубостойка, так и щит требуют качественное заземление. Недалеко от стойки следует вбить металлический уголок полутораметровой длины. Далее следует соединение трубостойки, щита и уголка.

Защите подлежит и нулевая шина. На нее надо подключить нулевой провод маркировки СИП4, который идет с опоры. Чтобы выполнять операцию, нужно воспользоваться желто-зеленым проводом маркировки ПВ-3, на которой установлены наконечники. На этом заземление металлической трубостойки можно считать завершенным.

Взрывоопасные участки

В некоторых случаях на территории производственных предприятий работают взрывоопасные цеха. Здесь важно качественно отводить статическое электричество, возникающее в процессе трения жидкообразного вещества о внутренние стенки труб.

В процессе обустройства таких конструкций обычно создается естественное заземление, которое проходит через аппаратуру и строительные конструкции. Тем не менее, этого недостаточно.

В подобных ситуациях необходимо снизить вынос потенциала. Хорошей мерой является установка промежуточного заземления трубопровода, применение кабельных проводников, имеющих неметаллическую оболочку. К таковым, например, относится марка ААШВ.

Влияние изоляции

Показатель удельного сопротивления изоляции способен значительно влиять на характерные особенности трубопровода. Согласно проведенным исследованиям, уровень сопротивления в заземлении трубопровода, использующего битумную изоляцию, может сильно зависеть от разницы потенциалов между грунтом и самим трубопроводом.

Если разница варьируется в пределах нескольких сотен вольт, в дефектных местах может происходить тлеющий разряд, который, в свою очередь, снижает сопротивление заземления. Если разность потенциала находится на уровне одного киловольта и больше, между грунтом и трубопроводом появляется дуговой разряд.

Он, соответственно, сильно снижает сопротивление установленному заземлению. Также может использоваться и переносное заземление, в котором струбцина является основной деталью.

Подготовка к ремонту

В процессе подготовки к ремонтным работам необходимо освободить трубопровод от передаваемого вещества, после чего провести продувку специальным техническим азотом. Стоит убедиться в наличии заземления.

Если в конструкции не предусмотрена установка температурного конденсатора, промывка водяным паром категорически запрещена. Это приведет к увеличению внутреннего давления, которое приводит к разрыву конструкции. Таким образом, система отопления выйдет из строя.

На протяжении длительного времени для обеспечения непрерывности заземления установленных стальных труб применялись шунтирующие перемычки, монтированные на коробках, фитингах или специальных муфтах. После проведенных испытаний оказалось, что делать это необязательно. Цепь заземления готового трубопровода становится непрерывной благодаря их резьбовому соединению.

Как правило, установленная система заземления способна прослужить на протяжении длительного времени.

Это особенно касается частей, работающих внутри помещения. Тем не менее, периодически следует заменять определенные участки или отдельно взятые элементы. Для повторной сборки линии и дальнейшего ее подключения не требуются дополнительные нюансы.

Все, что надо – убедиться в плотности примыкания рабочих частей друг к другу, отсутствии обрывов, коррозии на стыках и иных недостатков. Если установлена струбцина, она должна находиться в идеальном визуальном и техническом состоянии.

Защита от статического электричества дома и на производстве

Статическое электричество. Какие мысли приходят в голову при упоминании этого выражения?

Мне вспоминается детство и темная комната, где я снимаю свитер через голову и ощущаю легкие покалывания и вполне видимые разряды между волосами на голове и данным предметом гардероба. Даже если глаза закрыты, всё равно вижу, чудо да и только.

Если перенестись в воспоминаниях ближе к годам после университета, то можно вспомнить, как ставишь ссобойку в микроволновку и при прикосновении к дверце устройства, происходит легкий удар током, вызывающий опаску и недоумение.

По дороге на работу, особенно в зимний период, бывает шерстяной свитер и синтетическая куртка составляют дуэт с кожей. И вот ты прощаешься с любимым человеком до вечера, и между вашими губами в прямом смысле проходит электрический разряд, доставляя обоим дополнительные эмоции, усиливая сожаление о недолгой разлуке.

И уже на работе, находясь на составном полу над аккумуляторными батареями, можно потереть подошвой по поверхности пола, а затем дотронуться до напарника, что также даст ему разряд в плечи (ну тут еще подошва играет роль). Но не стоит так делать, а то можно и несчастный случай устроить. В том же помещении, открыв дверь релейного шкафа, можно увидеть напульсник из резинового материала, который соединен с шиной заземления. Дабы не угробить чувствительные микропроцессорные устройства, расположенные в шкафу.

Описанное выше напоминает о том, что мы повсеместно сталкиваемся со статическим электричеством, накапливаем и отдаем заряд — специально или случайно. Особенно это важно помнить, если профессия связана с производством, электроэнергетикой.

Физика возникновения и условия протекания статического электричества заслуживают отдельной статьи, в этой же поговорим о делах более приземленных… или заземленных =)

Правила защиты от статического электричества на производстве

Процессы, при которых может возникать электризация:

  • перекачивание углеводородных жидкостей по диэлектрическим трубам
  • заливка горючих жидкостей в емкости, изолированные от земли
  • просеивание, сушка и прочее

Существуют предприятия, где статическое электричество свыше допустимой нормы способно привести к:

  • взрыву, пожару, гибели персонала
  • электрическому разряду травмирующей величины
  • выводу из строя дорогостоящего оборудования, недоотпуску продукции, финансовым потерям
  • выводу из строя микропроцессорных систем, ложным срабатываниям, опять же потерям и недоотпуску продукции в виде электроэнергии

Однако, некоторые об этом не задумываются, так как эти факторы уже давно известны и были проведены мероприятия по исключению воздействия данных факторов на персонал и оборудование. Они прописаны в ГОСТах, нормативах. Тут важно знать требуемые нормативы и следить на своем предприятии об выполнениях данных предписаний.

ГОСТ 12.4.124-83 — Средства защиты от статического электричества (СЗСЭ)

Средства защиты делятся на групповые и индивидуальные.

  • заземление (сопротивление заземляющего устройства, предназначенного для защиты только от статического электричества по этому ГОСТу должно быть не более 100 Ом)
  • нейтрализаторы (обеспечивают ионизацию поверхности или среды различными способами)
    • Индукционный (путем воздействия поля электростатических зарядов)
    • Высоковольтный (путем подачи высокого напряжения на электроды)
    • Лучевой (под воздействием излучения ультрафиолетового, радиоактивного, лазерного, теплового)
    • Радиоизотопный (ионизация воздушной среды радиоактивными источниками)
    • Аэродинамический (ионизированная среда подается к поверхности потоками воздуха)
  • увлажняющие устройства
  • антиэлектростатические вещества (от их воздействия должно снижаться удельное объемное электрическое сопротивление Rоб материала до 107 Ом*м, а удельное поверхностное Rп — до 10 9 Ом; содержание паров антистатиков на производстве не должно превышать предельно допустимых концентраций (ПДК) ) по ГОСТ 12.1.005-88);
  • экранирующие устройства (должны быть заземлены согласно ПУЭ);

Индивидуальные антиэлектростатические (защита до 1кВ) защитные средства:

  • спецодежда (Rп 7 Ом; R между землей и токопроводящей поверхностью одежды должно быть в пределах 10 6 -10 8 Ом)
  • спецобувь (сопротивление между подпятником и ходовой стороной подошвы 10 6 -10 8 Ом); применяется совместно с рассеивающим напольным покрытием;
  • кольца и браслеты (R между человеком и землей — 10 6 -10 7 Ом);
  • средства защиты рук

ГОСТ 12.1.018-93 — Пожаровзрывобезопасность статического электричества

В данном нормативе вводится такой термин как искробезопасность. Для каждого объекта определяется величина энергии разряда статического электричества, которая может возникнуть на объекте W и минимальная энергия зажигания веществ и материалов Wmin.

Искроопасность (W) определяют следующие показатели:

  • электростатические величины: удельное объемное и поверхностное электрическое сопротивление, относительная диэлектрическая проницаемость, постоянная времени релаксации электрических зарядов
  • геометрические параметры
  • динамические характеристики процессов: скорость движения соприкасающихся сред или тел; величины взаимного давления тел; скорость деформации тел
  • параметры ОС: температура, давление, влажность, содержание аэрозолей, пыли, различных веществ

Далее должно выполняться условие: W

  • Электрические машины 14
  • Электрические аппараты 11
  • Релейная защита 9
  • Измерительные приборы 15
  • Передача электроэнергии 7
  • Электробезопасность 11
  • Электротехнические материалы 6
  • Электротехника и электроника 6

2020 Помегерим! — электрика и электроэнергетика телеграм-канал

3.3. ФЕДЕРАЛЬНЫЕ НОРМЫ И ПРАВИЛА В ОБЛАСТИ ПРОМЫШЛЕННОЙ БЕЗОПАСНОСТИ «ПРАВИЛА ПРОМЫШЛЕННОЙ БЕЗОПАСНОСТИ СКЛАДОВ НЕФТИ И НЕФТЕПРОДУКТОВ»

3.3. Молниезащита и защита от статического электричества

3.3. Молниезащита и защита от статического электричества

3.3.1. Тип и размещение устройств молниезащиты выбираются на стадии проектирования опасных производственных объектов складов нефти и нефтепродуктов.

Защита от прямых ударов молнии, вторичных ее проявлений и заноса высокого потенциала через наземные (надземные) и подземные металлические коммуникации должна соответствовать требованиям технических регламентов и нормативных правовых актов в области промышленной безопасности.

3.3.2. Дыхательная арматура резервуаров с ЛВЖ и пространство над ней, а также пространство над срезом горловины цистерн с ЛВЖ при открытом наливе продукта на наливной эстакаде, ограниченное цилиндром высотой 2,5 м и радиусом 5 м, должны быть защищены от прямых ударов молнии.

3.3.3. Для защиты зданий (сооружений) и электрооборудования от вторичных проявлений молнии должны быть предусмотрены следующие меры:

металлические конструкции и корпуса всего оборудования и аппаратов, находящихся в защищаемом здании (сооружении), должны быть присоединены к заземляющему устройству электроустановок;

в соединениях элементов трубопроводов или других протяженных металлических предметов должны быть обеспечены переходные сопротивления не более 0,03 Ом на каждый контакт.

3.3.4. Заземленное металлическое оборудование, покрытое лакокрасочными материалами, считается электростатически заземленным, если сопротивление любой точки его внутренней и внешней поверхности относительно магистрали заземления не превышает 10 Ом.

Измерение указанного сопротивления должно проводиться при относительной влажности окружающего воздуха не выше 60%, при этом площадь соприкосновения измерительного электрода с поверхностью оборудования не должна превышать 20 см2. При измерениях электрод должен располагаться в точках поверхности оборудования, наиболее удаленных от точек контакта поверхности с заземленными металлическими элементами, деталями, арматурой.

Читать еще:  Измерение сопротивления заземления

3.3.5. Соединения молниеприемников с токоотводами и токоотводов с заземлителями должны выполняться сваркой, а при недопустимости огневых работ разрешается выполнение болтовых соединений с переходным сопротивлением не более 0,05 Ом при условии обязательного ежегодного контроля сопротивления перед началом грозового периода.

3.3.6. Заземлители, токоотводы подвергаются периодическому контролю один раз в 5 лет. Ежегодно 20% общего количества заземлителей и токоотводов подлежит вскрытию и проверке на поражение их коррозией. При поражении коррозией более 25% площади поперечного сечения заземлители и токоотводы подлежат замене.

Результаты проведенных проверок и осмотров заносят в паспорт молниезащитного устройства и в журнал учета состояния молниезащитных устройств.

3.3.7. Для защиты от проявлений статического электричества подлежат заземлению:

наземные резервуары для ЛВЖ и ГЖ и других жидкостей, являющихся диэлектриками и способных при испарении создавать взрывоопасные смеси паров с воздухом;

наземные трубопроводы через каждые 200 м и дополнительно на каждом ответвлении с присоединением каждого ответвления к заземлителю;

металлические оголовки и патрубки гибких шлангов для слива и налива нефти и нефтепродуктов;

железнодорожные рельсы сливоналивных участков, электрически соединенные между собой, а также металлические конструкции сливоналивных эстакад с двух сторон по длине;

металлические конструкции автоналивных устройств;

все механизмы и оборудование насосных станций для перекачки нефтепродуктов;

металлические воздуховоды и кожухи изоляции вентиляционных систем во взрывоопасных помещениях через каждые 40 — 50 м.

3.3.8. Заземляющее устройство для защиты от статического электричества следует объединять с заземляющими устройствами для защиты электрооборудования и молниезащиты. Сопротивление заземляющего устройства, предназначенного только для защиты от статического электричества, должно быть не более 100 Ом.

3.3.9. Соединение между собой неподвижных металлических конструкций (резервуары, трубопроводы), а также присоединение их к заземлителям следует выполнять из полосовой стали сечением не менее 48 мм2 или круглой стали диаметром более 6 мм на сварке или с помощью болтов.

3.3.10. Резиновые (либо другие из неэлектропроводных материалов) шланги с металлическими наконечниками, используемые для налива жидкостей в железнодорожные и автомобильные цистерны, наливные суда и другие передвижные сосуды и аппараты, должны быть заземлены (обвиты медной проволокой диаметром не менее 2 мм или медным тросиком сечением не менее 6 мм2 с шагом витка не более 100 мм). Один конец проволоки (или тросика) соединяется пайкой (или под болт) с металлическими заземленными частями трубопровода, а другой — с металлическим наконечником шланга.

Наконечники шланга должны быть изготовлены из металла, не дающего искры при ударе.

3.3.11. Защита от электростатической индукции должна обеспечиваться присоединением всего оборудования и аппаратов, находящихся в зданиях, сооружениях и установках, к контуру защитного заземления.

3.3.12. Для защиты от электромагнитной индукции между трубопроводами и другими протяженными металлическими предметами (каркас сооружения, металлические оболочки кабелей без наружного покрова), проложенными во взрывоопасной зоне внутри здания (сооружения), в местах их взаимного сближения на расстоянии 10 см и менее, через каждые 20 м длины необходимо приваривать или припаивать металлические перемычки, чтобы не допускать образования незамкнутых контуров.

Перемычки должны быть изготовлены из стальной проволоки диаметром не менее 5 мм или стальной ленты сечением не менее 24 мм2.

3.3.13. Для защиты от заносов высоких потенциалов по подземным металлическим коммуникациям (трубопроводам, кабелям, в том числе проложенным в каналах и тоннелях) необходимо при вводе в сооружение присоединить коммуникации к заземлителю электроустановок или к заземлителю от прямых ударов молнии.

3.3.14. Устройства, предназначенные для вторичных проявлений молнии, должны быть использованы для защиты зданий и сооружений от статического электричества.

Особенности и правила заземления трубопроводов

Трубопроводы, проложенные в земле, подвержены воздействию статического электричества, накапливаемого в грунте под воздействием свободных электрических зарядов, а проложенные над поверхностью земли — воздействию атмосферных электрических разрядов, молний.

Чтобы обеспечить безопасную эксплуатацию трубопроводных сетей, проложенных в земле и на поверхности, выполняется их заземление.

Основные правила

Документ, регламентирующий способы выполнения и устройства систем заземления, — «Правила устройства электроустановок» (ПУЭ). Там указано, что заземление технологических трубопроводов — обязательное условие их допуска к эксплуатации.

Основные правила при выполнении подобных систем:

  1. Должна быть обеспечена непрерывная металлическая связь на всей протяженности трубопровода, вне зависимости от его конструкции и назначения.
  2. Тип контура заземления должен соответствовать удельному сопротивлению грунта в месте монтажа и току растекания конструкции.
  3. Трубопровод должен быть соединен с заземляющим контуром минимум в двух точках.

Особенности выполнения монтажа

Различия в устройстве системы заземления трубопроводов основаны на условиях их эксплуатации.

Трубопроводы, проложенные внутри зданий и сооружений, подключаются к естественным заземлителям зданий и их искусственным контурам заземления.

Таким же образом заземляется и прочее технологическое оборудование, в том числе и трубостойки, выступающие поддерживающими устройствами в проводных сетях связи, при воздушной прокладке электрических проводов и кабелей.

При заземлении технологических магистральных трубопроводов выполняется монтаж искусственных контуров заземления на трассе их прохождения.

При устройстве дополнительной катодной защиты, обеспечивающей антикоррозийную защиту трубопроводов, устройство контура заземления и самой защиты могут быть выполнены в одном месте.

Крепление заземляющего проводника к трубопроводу выполняется посредством установки металлического хомута, оснащенного болтовым соединением для закрепления. Поверхности трубопровода в месте крепления и хомута должны быть зачищены для обеспечения надежного контакта этих элементов.

Сечение заземляющего проводника, посредством которого трубопровод соединяется с заземлителем, должно быть:

  • для медных проводников без механической защиты — не менее 4 кв. мм;
  • для медных проводников с механической защитой — не менее 2,5 кв. мм;
  • для алюминиевых проводников — не менее 16 кв. мм.

Сопротивление растеканию контура заземления с учетом всех повторных заземлений должно быть не более:

  • для сетей трехфазного тока — 5/10/20 Ом, при линейном напряжении — 660/380/220 Вольт соответственно;
  • для сетей однофазного тока — 5/10/20 Ом, при линейном напряжении 380/220/127 Вольт соответственно.

к содержанию ↑

Медная проволока

Для обеспечения непрерывности металлической связи, т. е. электрической цепи, на трубопроводах, имеющих в конструкции фланцевые или иные соединения, выполняется монтаж перемычек медной проволокой или иным медным проводником.

Медная проволока соединяет участки трубопровода, соединенные путем использования фланцев.

Для изготовления перемычек, как правило, используют медные провода марок ПуГВ или ПВ3, на их концы методом прессования монтируются наконечники, которые крепятся к трубопроводу посредством болтового соединения.

Трубостойки

Для обеспечения безопасной эксплуатации металлических конструкций, устанавливаемых на крышах зданий и прочих элементах сооружений, они, в том числе и трубостойки, соединяются с системой грозозащиты здания. Грозозащита соединяется с заземляющим контуром.

Связь трубостоек с системой выполняется методом электродуговой сварки или посредством болтового соединения.

Требования по обеспечению металлосвязи конструкции и используемым материалам аналогичны, как и в случае выполнения заземления трубопроводов.

Взрывоопасные участки

Трубопроводы бывают разной конструкции и различного предназначения, что определяет требования к их эксплуатации и защите. К таким трубопроводам относят:

  • газопроводы и нефтепроводы различного давления;
  • системы транспортировки спиртосодержащих жидкостей и газов.

Если посредством трубной системы транспортируют взрыво- или пожароопасные вещества, к таким трубопроводам предъявляют дополнительные требования к безопасности. Способы устройства во взрывоопасных зонах регламентированы главой 7.3 ПУЭ.

Во взрывоопасных помещениях использование естественных заземлителей допускается лишь в качестве дополнительных устройств, а основным заземлителем служат искусственно смонтированные контуры.

Влияние изоляции

Одним из видов пассивной защиты трубопроводов от коррозии становится их изоляция специальными материалами или покрытиями.

При оснащении трубопроводов специальными видами покрытия и при использовании обработанных труб требования к заземлению аналогичны, как и для «голых» трубопроводных систем.

Ремонт системы заземления

Работы, связанные с системами заземления электрического оборудования, в том числе и трубопроводами, можно классифицировать так:

  • визуальный осмотр видимой части;
  • осмотр со вскрытием грунта;
  • выполнение контрольных измерений;
  • ремонт.

Сроки проведения и объем выполняемых мероприятий регламентированы «Правилами технической эксплуатации электроустановок потребителей» (ПТЭЭП).

Визуальный осмотр видимых частей системы заземления проводится один раз в полгода, а со вскрытием грунта — один раз в двенадцать лет.

Контрольные измерения выполняются в соответствии с планами проведения ремонтных работ, но не реже одного раза в двенадцать лет, после реконструкции и ремонта заземляющих устройств.

При выполнении ремонта делают:

  • проварку сварных соединений;
  • протяжку болтовых соединений;
  • замену поврежденных коррозией или внешними механическими воздействиями элементов заземляющего контура.

Замене подлежат элементы, у которых повреждено более 50 % полезной площади или сечения.

При проведении испытаний контура заземления по току растекания необходимо контур отделить от заземляющих элементов. Для этого, как правило, на шине, соединяющей контур с главной заземляющей шиной системы электроснабжения, есть болтовое соединение.

Проверка металлосвязи выполняется на всех элементах цепи, обеспечивающих целостность электрической цепи.

Заключение

Соблюдение требований «Правил устройства электроустановок» и «Правил технической эксплуатации электроустановок потребителей» — залог безаварийной эксплуатации трубопроводов, а надежная система их заземления — техническая основа безопасной эксплуатации.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector